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Abstract: Eutrophic estuaries receive organic matter (OM) inputs from multiple sources. 
This study evaluated the distribution and origin of sedimentary OM in an eutrophic 
estuary (Pina Sound, NE Brazil). Thirteen samples were collected in the sublittoral in 
addition to major local sources. Biochemical (chlorophyll - Chl), elemental [(C/N)a and 
C/S ratios] and isotopic (δ15N and δ13C) analyses were carried out for characterizing 
OM and redox conditions. The SIAR mixing model was used to quantify contribution 
from main sources. At Pina Sound, distribution of OM is associated with mud, refl ecting 
the hydrodynamics control on deposition of suspended particles. Microphytobenthic 
production is limited ([Chl a] < 1000 µg/g organic carbon) in the sublittoral where the Chl 
degradation products prevail (mean [Pheopigments] = 2643 ± 958 µg/g organic carbon). 
Anoxic conditions (C/S ratio ≈ 2) are typically observed in sediments of deeper portions 
of Pina Sound. Such sediments receive high organic loads and are subject to poor water 
renewal. According to SIAR mixing model, sedimentary OM of Pina Sound is composed of, 
on average: 50% phytoplankton, 24% sewage and 26% C3 plants. This refl ects fertilization 
of Pina Sound with high loads of untreated sewage. Pina Sound has a great potential to 
retain sewage-derived OM.

Key words: chlorophyll, mixing model, sewage, stable carbon isotope, stable nitrogen 
isotope.

INTRODUCTION

Estuaries are ecosystems that retain organic 
matter (OM) from terrestrial and aquatic 
sources (Dittmar et al. 2001, Andrews et al. 2008). 
Additionally, human-impacted estuaries receive 
nutrients and OM inputs from anthropogenic 
sources (Mcclelland & Valiela 1998), increasing 
productivity of aquatic primary producers 
(Nixon 1995). Such OM inputs are preserved in 
sedimentary OM (SOM) that refl ects proportional 
contribution from each source (Lesen 2006, 
Canuel & Hardison 2016). Thus, SOM is an 
environmental compartment that records the 
historical inputs of OM to urban estuaries 

(Andrews et al. 2008, Barcellos et al. 2017) 
and it contributes to CO2 sequestration from 
atmosphere (Watanabe & Kuwae 2015).

Estuaries exhibit a characteristic pattern of 
OM mixing from terrestrial and marine sources 
(Gearing 2013). Contribution of terrestrial-
derived OM to SOM decreases from upper 
to lower estuary while marine contribution 
increases toward the ocean (Gireeshkumar et 
al. 2013, Sarkar et al. 2016). In contrast, SOM is 
predominantly derived from aquatic primary 
producers in eutrophic coastal systems 
(Zimmerman & Canuel 2001, Carreira et al. 2002, 
Zhao et al. 2015, Kubo & Kanda 2017). The origin 
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of SOM has been evaluated using biochemical 
(chlorophyll and pheopigments), elemental 
(carbon-to-nitrogen - C/N - ratio) and isotopic 
(stable carbon and nitrogen isotope ratios - δ13C 
and δ15N, respectively) proxies (Hardison et al. 
2013, Canuel & Hardison 2016). These proxies 
allow to quantify the relative contribution 
from multiple OM sources (C3 higher plants, 
phytoplankton, benthic algae and domestic 
sewage) to SOM (Watanabe & Kuwae 2015, Kubo 
& Kanda 2017). The relative contribution of bulk 
sewage-derived OM to human-impacted coastal 
environments has been scarcely reported in 
the literature (Tucker et al. 1999, Kubo & Kanda 
2017). This gap needs to be filled in order to 
understanding the fate and the impacts of 
sewage-derived OM on marine ecosystems 
(Spano et al. 2014, Roth et al. 2016).

OM is preserved in sediments according 
to its composition, sedimentary mineralogical 
composition and redox conditions in interstitial 
water (Burdige 2007, Arndt et al. 2013, Barber et 
al. 2017). Redox conditions regulate the early 
diagenesis of SOM and diagenetic shifts of 
its isotopic signature (Freudenthal et al. 2001, 
Lehmann et al. 2002). Water anoxic conditions 
favor preservation of OM in sediments (Arndt 
et al. 2013), and have been commonly reported 
in eutrophic estuaries (Pinckney et al. 2001). 
Thus, SOM preserved in anoxic conditions is an 
appropriate record of long-term OM inputs to 
eutrophic estuaries.

Pina Sound (2 km2) is an estuary located 
on the northeastern coast of Brazil (8° S). The 
sound is delimited by the urban zone of Recife 
city (218 km2) whose population increased from 
1.3 to 1.6 million inhabitants over the past 20 
years (IBGE 2019). Pina Sound receives every day 
inputs from untreated domestic sewage with 
an estimated outflow between 0.81 and 2.31 m3 
s-1 (IBGE 2011, Zanardi-Lamardo et al. 2016). As 
a consequence, an eutrophic to hypertrophic 

and hypoxic to anoxic conditions have been 
reported at surface and bottom waters of Pina 
Sound, respectively (Flores Montes et al. 2011, 
Nascimento et al. 2003, Somerfield et al. 2003). 
Pina Sound also receives natural OM inputs from 
local Atlantic forest (~13.4 km2) and mangrove 
patches (~3.2 km2) (Ferreira & Lacerda 2016). 
The apportionment of OM inputs from natural 
and anthropogenic sources is important for 
understanding their impacts on Pina Sound.

This study investigated the distribution 
and origin of OM in sediments of Pina Sound, 
northeastern Brazil. Major potential OM 
sources to the sound were characterized in 
terms of elemental and isotopic composition. 
A stable isotope mixing model was employed 
for estimating the relative contribution of OM 
sources to SOM of Pina Sound. Additionally, 
a non-metric multidimensional scaling was 
performed for visualizing sample grouping 
according to distribution and sources of OM. 
Finally, a factor analysis was also performed for 
identifying major latent dimensions related to 
distribution, origin and early diagenesis of SOM 
in Pina Sound.

MATERIALS AND METHODS
Study area
Pina Sound is a tropical ecosystem with mean 
annual temperature and rainfall of 26 °C and 
2450 mm, respectively (Schettini et al. 2016a). 
The sound is formed by the confluence of 
Pina, Jordão and Tejipió creeks in addition to 
the southern branch of Capibaribe River (Fig. 
1). Annual mean outflow of Capibaribe is 11 
m3 s-1, ranging from 2 m3 s-1 in the dry season 
(September to February) to 30 m3 s-1 in the wet 
season (March to August; Schettini et al. 2016a). 
Concentration of suspended particulate matter 
has been reported to be in the range 10-60 mg 
L-1 (Nascimento et al. 2003, Schettini et al. 2016b) 
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and mean sedimentation rate is estimated to 
be 0.45 cm year-1 (Xavier et al. 2017). The sound 
is a shallow depositional environment with 
sand bars and mud flats exposed during low 
tide (Feitosa et al. 1999). In the dry season, algal 
mats grow on mud flats (Santos et al. 2009) 
while they are not observed during wet season. 
Mats are mainly composed of cyanobacteria but 
may also contain diatoms (Santos et al. 2009, 
Valença et al. 2016), and are visually identified 
by their typical blue-green color. In Pina Sound, 
estuarine phytoplankton production ranges 
between 2.70 and 256 mg m-3 throughout the 
year (Feitosa et al. 1999, Nascimento et al. 2003).

Sampling
Surface sediment (top 10 cm) was collected 
using a stainless steel van Veen grabber from 13 
sites at Pina Sound in December 2014 (Fig. 1). In 
the laboratory, samples were homogenized and 
frozen at -20 °C until further analysis.

Three potential sources of OM in the sound 
were sampled: algal mats (AM), suspended 
particulate OM (SPOM) from an untreated 
sewage outfall and leaves from higher C3 plants 
(HP) - terrestrial plants and mangrove. Marine 
phytoplankton production in the adjacent shelf 
was not considered as an important OM source to 
Pina Sound. Marine primary production is about 

Figure 1. Geographical setting of the lower Capibaribe estuary and sampling sites (1-13) at Pina Sound, 
northeastern Brazil. The dotted area depicts a mangrove patch.
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an order of magnitude lower than estuarine 
production, with concentrations ranging 
between 0.05 and 5 mg m-3 throughout the year 
(Resurreição et al. 1996). Elemental and isotopic 
signatures of estuarine phytoplankton were 
reported by Costa (2018). Costa (2018) sampled 
estuarine SPOM during complete tidal cycles 
at lower and middle portions of the Capibaribe 
River estuarine system. The AM samples (n = 5) 
were taken from mud flats during low tide using 
a stainless steel spatula. Samples of estuarine 
SPOM (n = 11) and SPOM from untreated sewage 
(n = 13) were collected in a plastic bottle (250 
mL) and cooled until filtration in the laboratory. 
Fresh leaves of terrestrial plants (n = 3) and 
mangrove Avicennia schaueriana (n = 1) were 
collected using a stainless steel scissor, stored 
in aluminum containers and processed in the 
laboratory as soon as possible.

Grain size analysis
Subsamples of sediment (50 g) were oven dried 
at 60 °C for at least 96 h. OM was removed with 
H2O2 (10%, v/v) and grain size was determined 
according to Suguio (1973). Briefly, samples were 
wet sieved through a 63 µm sieve with distilled 
water. The fraction > 63 µm was dry sieved for 
separating sand (63 to 2000 µm) and gravel (> 
2000 µm). These fractions were weighed for 
determining their contribution to the total 
sediment. The mud fraction (< 63 µm) was added 
to a graduated cylinder (1 L) containing sodium 
pyrophosphate (3.75 mmol L-1). Silt (4 to 63 µm) 
and clay (0.5 to 4 µm) fractions were sampled 
at specific settling time and depth according 
to the Stokes’ law. These fractions were then 
weighed for determining their contribution to 
the mud fraction. Results were plotted on the 
Pejrup’s triangular diagram (Pejrup 1988) which 
is suitable for classifying sediments according 
to particle texture and hydrodynamic conditions 
of the depositional environment.

Chemical analysis
Subsamples of wet sediment were freeze-dried 
for 24 h in the dark to avoid Chl degradation 
and ground using mortar and pestle. Pigments 
were extracted from 0.5 g of sediment (in 
triplicate) with 10 mL acetone (90%, v/v) for 
20 h at -20 °C. Pigments were measured with a 
spectrophotometer using absorbance readings 
at 630, 647, 664, 665 and 750 nm. Chl a and 
pheopigments (Pheop) were estimated according 
to the Lorenzen’s equations (Lorenzen 1967). In 
addition, Chl b and c (c1 + c2) were estimated 
according to equations reported by Jeffrey & 
Humphrey (1975). Concentration of sedimentary 
pigments was OC-normalized in order to assess 
the microphytobenthos contribution (Moreno 
& Niell 2004). Analytical precision (standard 
deviation, SD) ranged from 0.4 to 19 µg g-1 dry 
weight.

For elemental analyses, sediment aliquots 
(1 g) were weighed in centrifuge tubes and 
acidified with 10 mL HCl (1 M) for 72 h to ensure 
complete dissolution of carbonates (Hedges 
& Stern 1984). After acidification, the aliquots 
were washed with distilled water and oven dried 
at 60 °C for 24 h. Carbonate-free sediments 
were weighed in Sn capsules and analyzed for 
elemental [total nitrogen (TN), organic carbon 
(OC) and total sulfur (TS)] and isotopic (δ15N and 
δ13C) composition.

Water samples were filtered through 
Whatman GF/C membrane (Ø = 45 mm) and 
oven dried at 60 °C for 24 h. One-eighth of each 
filter was wrapped in tin disk prior to elemental 
and isotopic analyses. Leaf samples were 
washed with distilled water for removing salts. 
Leaf and AM samples were oven dried at 60 °C 
for at least 24 h and ground using mortar and 
pestle. Aliquots were weighed in tin capsules. 
All elemental and isotopic analyses were carried 
out using an elemental analyzer coupled to an 
isotope ratio mass spectrometer (EA-IRMS). 
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The stable N and C isotope ratio values were 
calculated using delta notation (δ15NAIR for TN 
and δ13CVPDB for OC, respectively) according to Eq. 
1 (Coplen 2011).

	 (1)

C/N atomic ratio - (C/N)a - and C/S weight 
ratio were calculated according to Hedges 
& Stern (1984) and Berner & Raiswell (1984), 
respectively. Average precision of sample 
replicates was 0.09% and 0.30‰ for elemental 
and isotopic analysis, respectively.

Modeling
The SIAR mixing model (version 4.0) was used 
for quantifying OM contribution from natural 
and anthropogenic sources (Parnell et al. 2008). 
Model input data were (C/N)a, δ

13C and δ15N values 
of sediment and potential local OM sources 
(including their respective standard deviation), 
and discrimination factors (DF). This parameter 
is the magnitude of change in signatures during 
early diagenesis (Bond & Diamond 2011). DF was 
assumed to be 0 in OM (C/N)a ratio and δ13C, 
and DF ranging from -5 to +5‰ in OM δ15N. This 
is the range of DF values observed by Lehmann 
et al. (2002) during laboratory experiments. The 
model was run through 5 x 105 iterations using 
the ‘siarsolo’ command (Parnell et al. 2008). 
Output was mean estimate of the contribution 
from each source and its 95% credible interval.

Statistical analysis
Pearson product-moment correlation was 
performed for investigating relationships 
between sedimentary elemental contents and 
isotopic ratios. Linear regression between TN and 
OC was performed for confirming prevalence of 
organic nitrogen (ON) in the sedimentary N pool. 
The critical level of significance for all statistical 
tests was set at α = 0.05.

Data were log transformed [log(50 + x)] and 
normalized previously multivariate analysis 
(Hair et al. 2006). Potential relationships among 
variables (mud content, OC, sedimentary 
pigments (Chl a + Pheop), (C/N)a, δ13C, C/S, 
Pheop/Chl a and δ15N) were summarized using 
a factor analysis (FA) (Hair et al. 2006). Factors 
with eigenvalues above 1 were extracted using 
the principal component (PC) method followed 
by varimax rotation (Kaiser 1970, Hair et al. 2006). 
Two non-metric multidimensional scaling (MDS) 
plots were constructed using the Euclidian 
distance similarity matrix (Clarke & Warwick 
2001). MDS plots evaluated sample grouping 
according to sand content and OM contribution 
from HP.

RESULTS
Granulometric composition, sedimentary 
organic matter distribution and redox 
conditions
Pina Sound sediments exhibited sand and 
mud contents ranging from 7 to 80% and from 
16 to 91%, respectively (Table I). Samples were 
separated according to their sand content into 
two groups: sandy sediments with higher (≥ 
45%) sand content collected mostly from central 
portions of Pina Sound, and sediments with 
lower sand (< 45%) content collected mainly 
from bank portions (Fig. 1). Samples had a 
predominance of clay in the mud fraction and 
they were plotted along hydrodynamic section II 
of Pejrup’s triangular diagram (Fig. 2).

Mean sedimentary TN and OC was 0.28% 
(range: 0.07 to 0.44%) and 2.40% (range: 1.01 to 
3.42%), respectively (Table I). TN was significantly 
(F1,11 = 21.1, p = 0.001) and linearly correlated to OC, 
with a zero intercept. Mean sedimentary Chl a 
and Pheop were 459 µg g-1 OC (range: 192 to 1003 
µg g-1 OC) and 2643 µg g-1 OC (range: 1321 to 4642 
µg g-1 OC), respectively (Table I). Predominance 
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of Pheop was expressed using Pheop/Chl a 
ratio, which exhibited mean value of 6.40 (range: 
3.39 to 12.3; Table I). Mean sedimentary Chl b and 
c was 96 µg g-1 OC (range: 31 to 191 µg g-1 OC) 
and 408 µg g-1 OC (range: 155 to 695 µg g-1 OC), 
respectively.

Mean TS and C/S ratio were 0.94% (range: 
0.11 to 1.36%) and 3.14 (range: 1.66 to 9.58), 
respectively (Table I). C/S ratio was lower than 
2.5 in sediments from upper sound (sites 1-5) 
and at the confluence with the Capibaribe River 
main stem (site 13; Fig. 1). Site 10 showed the 
lowest TS content and the highest C/S ratio 
(Table I) because it was collected from a sand 
bar exposed to the atmosphere during low tides.

Elemental and isotopic signatures of OM 
sources
HP, sewage-derived SPOM, AM and estuarine 
phytoplankton were considered as potential OM 

sources. Local HPs have the highest (C/N)a ratio 
and the lowest δ13C and δ15N values (Table II). The 
lowest (C/N)a value and the highest δ13C and δ15N 
values were reported in AM samples collected 
from the intertidal zone of Pina Sound (Table II). 
Sewage-derived SPOM exhibited intermediate 
(C/N)a, δ

13C and δ15N values (Table II). Elemental 
and isotopic signatures of phytoplankton 
collected in the Capibaribe River estuary are 
reported by Costa (2018). According to the author, 
phytoplankton had mean (C/N)a, δ

13C and δ15N 
values around of 6.67 ± 0.33, -25.83 ± 1.37‰ and 
-1.57 ± 1.18‰, respectively, in the middle estuary, 
and 6.22 ± 0.39, -21.14 ± 1.95‰ and +3.36 ± 3.53‰, 
respectively, in the lower estuary.

Table I. Sedimentary mud, elemental composition [total nitrogen (TN), organic carbon (OC) and total sulfur (TS)], 
pigments (chlorophyll a (Chl a) and pheopigments (Pheop)) and isotopic signature (δ15N and δ13C) of sediment 
samples collected from Pina Sound, northeastern Brazil. C/S and (C/N)a ratios are showed.

Station Bathymetry Sand Mud TN OC TS [Chl a] [Pheop] Pheop/
Chl a (C/N)a C/S δ15N δ13C 

  (m) (%) (%) (%) (%) (%) (µg g-1 
OC) 

(µg g-1 
OC)       (‰) (‰)

1 1.1 54 38 0.23 2.07 1.25 192 2347 12.3 11 1.66 4.53 -24.19

2 2.2 53 37 0.21 2.32 1.11 276 1321 4.8 13 2.09 2.68 -24.10

3 2.9 29 69 0.39 2.64 1.11 445 2702 6.1 7.9 2.37 2.13 -24.37

4 1.8 48 43 0.12 2.10 1.11 742 4642 6.3 20 1.90 1.44 -23.46

5 1.1 38 61 0.29 2.75 1.27 271 1786 6.6 11 2.17 3.64 -24.12

6 4.4 26 47 0.31 2.19 0.61 506 3239 6.4 8.2 3.59 2.43 -24.14

7 1.8 16 84 0.43 3.16 1.05 481 3241 6.7 8.6 2.99 2.75 -24.20

8 2.0 7 91 0.44 3.42 1.05 1003 3404 3.4 9.1 3.26 2.67 -23.69

9 2.7 25 75 0.35 2.35 0.74 533 2404 4.5 7.8 3.16 2.75 -23.38

10 0.7 80 16 0.16 1.01 0.11 696 3725 5.4 7.5 9.58 1.69 -24.16

11 3.3 57 33 0.25 2.72 0.92 289 1765 6.1 13 2.96 3.29 -25.20

12 3.8 51 46 0.07 1.60 0.54 315 2033 6.4 26 2.98 4.72 -23.83

13 10 18 82 0.41 2.90 1.36 213 1752 8.2 8.2 2.13 4.57 -24.50
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SPOM/SOM signatures and SIAR mixing model
Local surface SPOM exhibited mean (C/N)a, δ

13C 
and δ15N values of 7.32 ± 0.95, -22.68 ± 2.11‰ and 
-2.68 ± 1.42‰, respectively. SOM exhibited (C/N)

a values higher than 10 in sandy sediments with 
the exception of sample from site 10 (Table I). In 
muddy sediments, mean (C/N)a value was 8.70 
(range: 7.80 to 11.1) (Table I). A narrow range of 
signatures was observed for SOM δ13C and δ15N 
values (Table I). Mean δ13C and δ15N values were 
-24.10‰ (range: -25.20 to -23.38‰) and +3.02‰ 
(range:+1.44 to +4.72‰), respectively (Table I). 

No correlation was found between sedimentary 
δ15N and δ13C in Pina Sound (Pearson product-
moment correlation analysis, r = -0.26, p = 0.39, 
n = 13).

A cross-plot of (C/N)a and δ13C values 
indicated that local SPOM and SOM samples 
are constrained to a polygon formed by three 
sources: HP, estuarine SPOM and sewage-
derived SPOM (Fig. 3). Apparently, AM is not an 
important OM source to Pina Sound sediments 
(Fig. 3). According to the SIAR mixing model, 
mean contributions of sources to SPOM were 

Figure 2
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Table II. Elemental - (C/N)a ratio - and isotopic (δ13C and δ15N) signatures of local potential OM sources to Pina 
Sound. Legend: SD = standard deviation. SPOM = suspended particulate organic matter.

Sources (C/N)a ratio δ13C (‰) δ15N (‰)

Mean SD n Mean SD n Mean SD n

Higher C3 plants 20.8 4.44 4 -29.25 2.23 4 2.40 1.91 4

Sewage-derived SPOM 9.19 1.13 13 -20.73 1.32 13 3.59 3.14 13

Algal mats 7.26 0.27 5 -17.16 1.06 5 4.73 0.93 5

Figure 2. Pejrup’s triangular 
diagram showing classification 
of estuarine sediments from 
Pina Sound, northeastern 
Brazil. Sections I to IV indicate 
increasing hydrodynamic 
conditions in the estuary.



BRUNO V.M. DA COSTA et al.	 SOURCES OF ORGANIC MATTER TO PINA SOUND

An Acad Bras Cienc (2021) 93(1)  e20190638  8 | 17 

77% (range: 41 to 93%), 19% (range: 4 to 52) and 
4% (range: 2 to 9%) for estuarine phytoplankton, 
sewage and HP-derived OM, respectively (Fig. 4). 
Similarly, mean contributions to SOM were 50% 
(range: 13 to 72%), 24% (range: 11 to 29%) and 26% 
(range: 7 to 77%) for estuarine phytoplankton, 
sewage and HP-derived OM to SOM, respectively 
(Fig. 4). Relative contributions from each OM 
source did not vary substantially across the 
range (-5 to +5‰) of DF values used in the SIAR 
mixing model.

Factor analysis and MDS ordination
FA extracted three components that explained 
81% of the data variance. PC1 accounted for 35% 

of the total variance and showed high, positive 
loadings for mud, OC and sedimentary pigments, 
and high negative loading for C/S (Fig. 5a). 
PC2 (28% of the total variance) exhibited high 
negative loadings for Pheop/Chl a and δ15N, and 
positive loading for C/S (Fig. 5a). PC3 (18% of the 
total variance) exhibited high positive loadings 
for δ13C and (C/N)a. MDS plot separated samples 
with high (sites 1, 2, 4, 10, 11 and 12) and low 
(sites 3, 5, 6, 7, 8, 9 and 13) sand content (Fig. 5a). 
Correspondingly, MDS also separated samples 
with high (sites 1, 2, 4, 5, 11 and 12) and low (sites 
3, 6, 7, 8, 9, 10 and 13) OM contribution from HP 
(Fig. 5b).

Figure 3
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Figure 3. Cross-plot of (C/N)a versus δ13C (‰) depicting end members (filled squares), suspended particulate 
organic matter (SPOM, filled triangle) and surface sediments (open circles) from Pina Sound, northeastern Brazil. 
Error bars denote standard deviation. Legend: AM = algal mats; SW = sewage suspended particulate organic 
matter; PhytoLE = estuarine phytoplankton in lower Capibaribe River estuary; PhytoME = estuarine phytoplankton in 
medium Capibaribe River estuary; HP = higher C3 plants. Data of estuarine phytoplankton were reported by Costa 
(2018).
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Figure 4
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Figure 5. Factor analysis loading 
plot (a) and MDS plots (a, b) of 
sediments collected from Pina 
Sound, northeastern Brazil. 
Sediment samples were grouped 
according to their sand content (a) 
and organic matter contribution 
from higher C3 plants (b). Black 
circles depict samples with low sand 
content or contribution from higher 
plants while gray circles depict the 
inverse situation. Legend: Pheop/
Chl a: pheopigments-to-chlorophyll 
a ratio; (C/N)a = carbon-to-nitrogen 
ratio; Mud = sedimentary mud 
content; OC = organic carbon; 
[Pigments] = sum of concentrations 
of pheopigments and chlorophyll a; 
C/S = carbon-to-sulfur ratio.

Figure 4. Relative 
contribution of natural 
and anthropogenic 
sources to suspended 
particulate organic 
matter (SPOM) and 
sediments collected from 
Pina Sound. Legend: 
Phyto-ME = estuarine 
phytoplankton in medium 
Capibaribe River estuary; 
Phyto-LE = estuarine 
phytoplankton in lower 
Capibaribe River estuary; 
SW = sewage suspended 
particulate organic 
matter; HP = higher C3 
plants.
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DISCUSSION
Distribution of SOM, redox conditions and 
diagenesis of labile OM
Distribution of SOM in Pina Sound was evaluated 
by bulk parameters (TN and OC contents) and 
pigment (Chl a, b and c) contents. Bulk TN 
and OC parameters were significantly related, 
indicating that TN is a good estimate for organic 
nitrogen. This allows the use of (C/N)a to infer 
SOM sources (Hedges et al. 1986). A strong 
relationship between TN and OC has been 
commonly reported for organic-rich estuarine 
sediments, and indicates sorption of SOM onto 
clay minerals (Andrews et al. 1998, Resmi et al. 
2016, Sarkar et al. 2016).

Sedimentary Chl is a proxy for both 
planktonic and benthic primary production 
(Burford et al. 1994). Low concentrations (< 2000 
µg g-1 OC) indicate that subtidal sediments at 
Pina Sound have limited microphytobenthic 
production (Moreno & Niell 2004) and 
sedimentary pigment content is related to 
planktonic primary production (Lesen 2006). 
Chl b is a proxy for OM inputs from green 
algae, euglenophytes and higher plants, while 
Chl c indicates OM inputs from dinoflagellates, 
diatoms and chrysophytes (Leavitt 1993). At Pina 
Sound, dinoflagellates and diatoms are the 
most abundant groups of planktonic primary 
producers (Santiago et al. 2010). In contrast, 
green algae and euglenophytes exhibit a small 
abundance in the phytoplanktonic community 
at Pina Sound (Santiago et al. 2010). Thus, higher 
plants are likely the main Chl b source to SOM.

Redox conditions at the sediment-water 
interface were evaluated using TS and C/S ratio as 
proxies (Berner & Raiswell 1983, 1984). Boundary 
TS and C/S values for oxic marine sediments 
are 0.6% and 2.8, respectively (Goldhaber 2005). 
Under anoxic conditions, sedimentary TS tends 
to increase while C/S tends to decrease (Berner 

& Raiswell 1983, Goldhaber 2005). Bottom water 
anoxic conditions are commonly reported for 
eutrophic estuaries (Pinckney et al. 2001, Bricker 
et al. 2008), including Pina Sound (Nascimento 
et al. 2003, Somerfield et al. 2003). This is related 
to the balance between sewage discharges and 
estuarine hydrodynamic conditions (Cardoso-
Mohedano et al. 2016), which regulate the 
dispersal and dilution of sewage. At Pina Sound, 
sewage discharges (0.81-2.31 m3 s-1) can be 
similar to river discharge during dry season (≤ 
2 m3 s-1) (Schettini et al. 2016a). At Pina Sound, 
sulfur proxies indicated predominantly anoxic 
conditions at sites 1-5 and 13 (TS > 1.1% and C/S 
< 2.4). This is probably related to OM input from 
streams that drain into the sound (see Fig. 1) 
and receive high loads of untreated sewage. At 
sites 6-12, sulfur proxies (TS < 1% and C/S ratio 
> 3) indicated predominantly oxic conditions 
at the sediment-water interface. At these sites, 
mesotides and shallow depths (ca. ~ 2.7 m) 
facilitate wastewater dilution, leading to oxic 
conditions in sediment. According to Valença 
& Santos (2013), there is a high density of 
macrobenthic fauna (up to 40,000 individuals 
m-2) in surface sediments of the lower sound, 
which is additional evidence for predominantly 
local oxic conditions.

Diagenesis of labile OM was evaluated 
using Pheop/Chl a ratio (Rasiq et al. 2016). Such 
ratio indicated a prevalence of chlorophyll 
degradation products in sediments of Pina 
Sound. This might be primarily related to analysis 
of ancient sediments deposited during the last 
20 years (Xavier et al. 2017), which record past 
planktonic primary production of Pina Sound. 
Additionally, low light conditions are prevalent 
in surface sediments from sublittoral zone of 
Pina Sound (Nascimento et al. 2003). Thus, 
microphytobenthos does not have an important 
contribution to surface SOM from sublittoral. 
Microphytobenthos have been found to play an 
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important role in primary production of bottom 
sediments where the Pheop/Chl a ratio is close 
to 1 (Hardison et al. 2013, Valença & Santos 2013, 
Gontharet et al. 2015).

Signatures of OM sources
At Pina Sound, potential OM sources exhibited 
distinct elemental and isotopic signatures (Fig. 
3 and Table II). Local HPs and sewage-derived 
SPOM showed (C/N)a, δ

13C and δ15N values similar 
to signatures reported in the literature (Dover et 
al. 1992, Kuramoto & Minagawa 2001, Waldron et 
al. 2001, Gearing 2013, Francisquini et al. 2014). 
The δ13C values of AM were similar to the mean 
δ13C (-17‰) reported for marine benthic algae 
(France 1995, Bouillon et al. 2011, Noh et al. 
2019). In contrast, δ15N of AM was higher than 
that reported for marine N-fixing cyanobacteria 
(δ15N ca. 0‰) (Yamamuro et al. 1995). This 
suggests assimilation of dissolved inorganic 
nitrogen derived from nitrogen-rich wastewaters 
discharged into Pina Sound (Rejmánková et al. 
2004).

At Capibaribe River estuarine system, 
estuarine phytoplankton exhibits striking 
differences in isotopic signatures along 
the estuarine gradient (Costa 2018). 13C and 
15N-depleted signatures of phytoplankton in 
middle estuary suggest fixation of dissolved 
inorganic carbon (DIC) and assimilation of 
NH4

+ from depleted pools, respectively (Waser 
et al. 1998, Montoya 2007, Bouillon et al. 2011). 
Conversely, 13C and 15N-enriched signatures of 
phytoplankton in lower estuary suggest fixation 
of marine DIC and NO3

-, respectively (Montoya 
2007, Bouillon et al. 2011). Thus, both depleted 
and enriched signatures should be included in 
the mixing model in order to obtain accurate OM 
contributions from estuarine phytoplankton.

Origin of SPOM and SOM
At Pina Sound, SPOM and SOM are mixtures 
of OM from HPs, estuarine phytoplankton and 
sewage-derived SPOM. Apparently, AM is not an 
important OM source to Pina Sound (Fig. 3). Low 
contribution of AM is likely a consequence of 
their seasonal growth (September to February) 
on restricted areas (intertidal mud flats).

Sedimentary δ15N and δ13C were not 
significantly related. A positive correlation 
between these proxies tend to be observed 
in estuaries dominated by OM inputs from 
terrestrial C3 plants and marine algae (Middelburg 
& Nieuwenhuize 1998, Gearing 2013). Conversely, 
the lack of correlation between δ15N and δ13C 
has been related to either high OM inputs from 
a third source (Wada 2009) or diagenetic shifts 
in δ15N of organic nitrogen (Kurian et al. 2013). 
At Pina Sound, inputs of untreated domestic 
sewage (an anthropogenic source) are likely the 
major reason.

Estuarine phytoplankton was the major OM 
source to both SPOM and SOM, reflecting the 
eutrophic to hypertrophic condition commonly 
observed in surface waters of Pina Sound 
(Flores Montes et al. 2011). High phytoplankton 
contribution suggests sewage fertilization 
effect on planktonic primary production. The 
contribution of sewage-derived OM at Pina 
Sound was higher than that reported for Tokyo 
Bay (10%) (Kubo & Kanda 2017). Differences in 
sewage-derived SOM between Pina Sound and 
Tokyo Bay likely reflect local treatment of sewage 
and hydrodynamic conditions of these marine-
influenced systems.

The mixing model revealed that on average 
HP-derived OM in Pina Sound comprises 26% of 
local SOM (Table III). Contribution of that source 
to Pina Sound SOM is lower than those reported 
for other estuaries and coastal zones (Table III). 
This is likely related to the small area occupied by 
Atlantic forest (13.4 km2) and mangrove patches 
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(3.2 km2) in the highly urbanized Recife city (218 
km2) (Ferreira & Lacerda, 2016). Additionally, 
MDS indicated a high contribution of HP to 
sandy sediments (see Fig. 5). This suggests the 
accumulation of large (> 63 µm) HP-derived 
detritus in the sand fraction (Megens et al. 2002).

Major factors controlling SOM
FA was used to infer major latent factors which 
may be related to distribution and origin of 
SOM in Pina Sound. PC1 indicated that SOM 
distribution was regulated by sedimentary 
mud content (Fig. 5a), reflecting hydrodynamics 
control on deposition of fine-grained (silt 
and clay) suspended particles. This has been 
commonly observed in estuarine and coastal 
ecosystems (Keil et al. 1994, Fagherazzi et al. 
2014). Estuaries are retention zones for fine-
grained suspended particles (Schettini et al. 
2013). This has been previously observed along 
the longitudinal axis of Pina Sound (Maciel et 
al. 2016), resulting in high local sedimentation 
rate (0.45 cm year -1) of fine-grained suspended 
particles (Xavier et al. 2017). At Pina Sound, 
calm hydrodynamic conditions are prevalent 

according to indicated by the Pejrup’s triangular 
diagram (Fig. 2) (Pejrup 1988). FA also indicated 
that anoxic conditions were inversely related to 
SOM content (Fig. 5a), reflecting the control of 
dissolved oxygen concentrations on preservation 
of sedimentary OC (Goldhaber 2005).

PC2 is likely related to OM degradation/
preservation that is directly influenced by 
sediment redox conditions (Lehmann et al. 
2002). Low C/S ratio indicates anoxic sediments 
that facilitate OM preservation. In contrast, 
high Pheop/Chl a along with high δ15N reflect 
OM degradation. A positive shift in δ15N of 
SOM may be related to selective removal 
of labile organic compounds (e.g. Chl a) or 
microbial fractionation during degradation of N 
compounds (Freudenthal et al. 2001). On average, 
Chl a is 15N-depleted by 5‰ when compared to 
the total biomass of marine primary producers 
(Sachs et al. 1999). Thus, selective degradation 
of Chl a would result in15N enrichment of the 
non-degraded biomass of primary producers. 
Intense N isotope fractionation occurs during 
microbial assimilation of aminoacids, altering 
the δ15N value of bulk SOM (Macko & Estep 1984, 

Table III. Apportionment of organic matter sources in coastal sediments around the world. Figures in brackets 
represent 95% confidence interval. Legend: HP = higher C3 plants; SIAR = stable isotope analysis in R; ME = mixing 
equation reported by Gireeshkumar et al. (2013); nc = not calculated.

Local Phytoplankton Sewage HP Model Reference 

Pina Sound (NE Brazil) 50 (4 - 41) 24 (11 - 29) 26 (7 - 77) SIAR This study

Tokyo Bay (Japan) 68 (64 - 72) 10 (5 - 15) 21 (15 - 27) SIAR Kubo & Kanda 
(2017)

Cochin estuary (India) nc nc (13 - 74)* ME Gireeshkumar et al. 
(2013)

Yellow River mouth 
(China) nc nc (40 - 50)* ME Liu et al. (2015)

Vembanad estuary 
(India) nc nc (< 2 - 60)* ME Sarkar et al. (2016)

Footnote: *Range of values.
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Lehmann et al. 2002). For instance, Lehmann et 
al. (2002) reported an increase in δ15N (ca. 4‰) 
during degradation of planktonic algae under 
oxic conditions after 21 days.

PC3 probably reflects the conservative 
mixing of protein-rich and 13C-depleted OM 
from estuarine phytoplankton (mean C/N = 6.5 
and mean δ13C = -23.49‰), and 13C-enriched OM 
from sewage SPOM (mean C/N = 9.2 and δ13C ≈ 
-20.73‰).

CONCLUSIONS

Distribution of SOM is regulated by hydrodynamic 
conditions in Pina Sound. Sediments from 
subtidal zone have limited microphytobenthic 
production with predominance of chlorophyll 
degradation products. Pina Sound exhibits non-
uniform redox potential at the sediment-water 
interface, with anoxic conditions prevalent in 
the upper sound and at the confluence with 
the Capibaribe River main stem. SOM of Pina 
Sound is predominantly composed of OM from 
estuarine phytoplankton and sewage followed 
by a lower contribution from higher plants. This 
reflects fertilization of Pina Sound by high loads 
of untreated domestic sewage. Additionally, Pina 
Sound has a great potential to retain sewage-
derived OM and adsorbed contaminants.
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