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Landslide susceptibility mapping using 
the statistical method of Information 
Value: A study case in  Ribeirão dos 
Macacos basin, Minas Gerais, Brazil

MATEUS L. ROSA, FREDERICO G. SOBREIRA & CESAR F. BARELLA

Abstract: This research study was developed in the Ribeirão dos Macacos basin at the 
district of Nova Lima, Minas Gerais state, Brazil. The information value statistical method 
was applied in the construction of the landslide susceptibility map at the 1:25,000 
scale. Different partitions of the inventory were tested, as well as different landslide 
predisposing factors. In the construction of the landslide inventory, the south, southeast 
and south-west slopes generally present a higher quality in aerial / orbital images due 
to the position of the sun (lighting direction), which emphasizes the surface structures 
and it may omit old landslides on slopes facing north, northeast, and northwest. This 
condition can generate misleading models when using the slope aspect. Another 
verifi cation was that the models with better Area Under the Curve index will not always 
restrict the high susceptibility class in smaller areas. This incongruence occurs due to the 
different curve conformations, since a smaller index curve can present more restrictive 
results than a larger index curve. The results showed that the model has a high capacity 
of adjustment to the input data and high landslide predictive capacity.

Key words: natural disasters, landslide susceptibility map, statistical methods, informa-
tion value, territorial planning.

INT  RODUCTION

The expansion process of Brazilian urban 
centers in recent decades has brought along 
with it an intense urbanization of areas with 
greater susceptibility to landslides. The most 
common natural disasters in Brazil are generally 
associated with periods of intense and prolonged 
rainfall (Tominaga et al. 2009). According to the 
CENAD records – the National Center for Risk 
and Disaster Management, in the southeast 
region, where the study area is located, has 
been the most affected by landslides in the year 
2013 (Brazil 2014).

In accordance with the data published 
in the Material Damage and Losses Due to 

Natural Disasters in Brazil Report, the country 
experienced about 9 thousand hydrological 
disasters, which encompasses mass movements 
and floods, between 1995 and 2014, thus 
accounting for damages and losses in the 
order of 70 billion reais (CEPED-UFSC 2014). Still, 
according to CRED (2016), between 2006 and 
2015, the average death toll was 540 people per 
year related to this type of disaster in South 
America.

A refl ection on the importance attributed 
to this type of disaster are initiatives seeking 
to increase knowledge and implement policies 
that reduce the risks to which society is exposed. 
Internationally, we can mention the Hyogo 
Frame Work for Action 2005 - 2015, promoted 
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by The United Nations Office for Disaster Risk 
Reduction - UNISDR (Garcia 2012). In the case of 
Brazil, the Law 12,608 / 2012, which established 
the National Policy for Protection and Civil 
Defense - PNPDEC (Brazil 2012) is significant.  
This Law aims to meet the demand for legal 
instruments that lead to orderly and sustainable 
urban development, aiming to prevent and 
minimize natural disasters. 

Therefore, this work elaborated an analysis 
of landslides susceptibility using the statistical 
method of information value (Yan 1988, Yin & Yan 
1988). The models simulated in a Geographical 
Information System (GIS) were validated from the 
success and prediction rate curves (Sterlacchini 
et al. 2011).

SUSCEPTIBILITY TO LANDSLIDES

The landslides susceptibility portrays the 
occurrence probability of a movement according 
to the terrain characteristics (Guzzetti et al. 
2006, Sobreira & Souza 2012). It is based on 
the concept that new landslides will occur 
under the same conditions that have already 
generated landslides in the past (Guzzetti et 
al. 1999, Barella et al. 2019) and can be used to 
predict the geographic location of future mass 
movements (Chung & Fabri 1999, Guzzetti et al. 
2005). It should be noted that the susceptibility 
is not intended to predict the time or frequency 
of events, only their spatial location (Guzzetti et 
al. 2005).

The landslide susceptibility maps should 
indicate the areas of the terrain with greater and 
lesser predisposition to experiment a geological 
process, classified according to the degree of 
susceptibility (Bittar et al. 1992, Bittar 2014), as 
well as to inform the typology of the expected 
mass movement (Aleotti & Chowdhury 1999, 
Tominaga 2007). 

Currently, landslide susceptibility maps 
use an integrated approach to the physical 
environment in a geographic information 
system (GIS), due to the greater capacity of data 
storage, the possibility of constant updates, and 
a faster spatial analysis, both qualitative and 
quantitative (Guzzetti et al. 2006, Barella 2016).

METHODOLOGIES FOR LANDSLIDE 
SUSCEPTIBILITY ASSESSMENT

Several approaches can be applied in the 
development of landslide susceptibility maps 
(Barella & Sobreira 2015). Currently, most of the 
employed methods consider the algebraic map 
between the landslide predisposing factors.

Methods of susceptibility analysis are 
divided into qualitative and quantitative 
(Soeters & van Westen 1996, Aleotti & Chowdhury 
1999). Among the qualitative methods are 
the Geomorphological Analysis and Heuristic 
Models, which present high subjectivity since 
they are directly associated with knowledge by 
the expert (Guzzetti et al. 1999).  The Quantitative 
Methods are highlighted by the deterministic and 
statistical models, which seek to standardize the 
analysis criteria and decrease the professional 
intervention in the model elaboration.

One of the first statistical susceptibility 
models with geodynamic processes was 
developed in California (USA) in the 1970s 
(Brabb et al. 1972). Since then, the refinement 
and development of new methodologies and 
analysis tools began, culminating in several 
statistical works around the world (e.g. Varnes et 
al. 1984, Soeters & van Westen 1996, Guzzetti et 
al. 2012, Chung & Fabbri 2003, Glade et al. 2005, 
Lee et al. 2007, Corominas et al. 2014, Zêzere et 
al. 2017, Reichenbach et al. 2018).
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Statistical methods
Statistical methods are constructed from the 
premise that landslide predisposing factors 
from past events will be correlated with future 
events (Aleotti & Chowdhury 1999, Guzzetti et al. 
1999, Fell et al. 2008, Barella et al. 2019). These 
methods are indirect and establish spatial 
correlations between processes and parameters 
that cause instability (Guzzetti et al. 1999). 
Therefore, the landslide predisposing factors 
which led to the development of landslides 
in the past are statistically calculated and the 
determination of the landslide susceptibility in 
currently stable areas is based on quantitative 
predictions (Soeters & van Westen 1996).

Statistical models are constructed from a 
sequence of procedures (Aleotti & Chowdhury 
1999) and generally use mapping units in 
matrix format. According to the proposals of 
Hengl (2006), the ideal resolution (cell size) to 
be adopted for the 1:25,000 scale should be 
between 62.5 m (rough resolution) and 6.25 m - 
2.5 m (fine resolution).

Despite the lower subjectivity when 
compared to qualitative methods, some of the 
disadvantages can be usually observed (van 
Westen et al. 2003): i) the generalization imposed 
by considering that all the processes located in 
the study area react to the same combination 
of conditioning factors and; ii) the simplification 
tendency of the input parameters, since in 
general only the more accessible cartography 
parameters are used.

MATERIALS AND METHODS
Study area
The Ribeirão dos Macacos basin is located in 
the central region of Nova Lima, Minas Gerais, 
Brazil (Figure 1). It has an area of 131 km² and 
altitudes ranging from 730m to 1540m. This 

region is marked by conflict of interest among 
environmental issues, since it constitutes one 
of the main water sources of the Metropolitan 
Region of Belo Horizonte, which is the capital of 
Minas Gerais State, while at the same time, it has 
an expressive concentration of mining activities 
(Davis et al. 2005).

Geologically, the area is inserted in the region 
called Quadrilátero Ferrífero (Iron Quadrangle), 
through the occurrence of ferruginous rock 
concentrations and by the production of iron 
ore. The context is dominated by pre-cambrian 
rocks, represented by two main lithostratigraphic 
groups: i) Rio das Velhas supergroup, formed 
by archean greenstones and metasedimentary 
units of medium to low-grade metamorphism; ii) 
Minas Supergroup, which consists of proterozoic 
metasedimentary rocks also of medium to low-
grade metamorphism (Alkmim & Marshak 2008).

The stratigraphy and geological structures 
control the 3 main morphostructural units in the 
area. The Curral Ridge, with WSW-ENE alignment 
at the northern boundary, the Moeda Sincline 
Plateau, with N-S alignment, in the eastern 
portion, and the Anticline Valley of the Rio das 
Velhas corresponding to a fluvial depression 
excavated along the axis of an anticline, 
surrounded by elevated synclines (Medina et al. 
2005).

Model development strategies
The development of the study requires a series of 
processes that were developed simultaneously 
or in an individualized way, as presented in 
Figure 2.

Landslide predisposing factors
Landslide predisposing factors affecting the 
stability of a slope are numerous, diverse and 
can interact in a complex and often subtle way 
(Varnes et al. 1984). They are static, inherent to 
the terrain and are correlated with the degree of 
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Figure 1. Ribeirão dos Macacos Basin location.
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potential instability of the slope and the spatial 
variation of landslides susceptibility (Popescu 
1994). When considered individually, they do not 
originate landslides, but only act as catalysts of 
dynamic factors (e.g. rainfall) (Glade et al. 2005).

These factors are correlated to the physical 
environmental characteristics such as topography, 
geology, soils, hydrology and geomorphology. 
Topography is one of the most relevant factors 
in the analysis of susceptibility to landslides (van 
Westen et al. 2008, Corominas et al. 2014), and can 
be considered the main source of information 
used in the construction of forecasting models. 
Therefore, diverse cartographic subjects derive 

from the topography, like slope angle, slope 
aspect, slope curvature, among others.

The cartographic database included the 
geology, the geomorphology and the pedology 
(Minas Gerais 2005) in a 1: 50,000 scale, in addition 
to maps derived from the topography on a scale 
of 1: 25.000: slopes angle, slopes aspect and slope 
curvature (Figure 3). 

The slope aspect was also addressed in the 
study, but was not used in the final model. In 
the inventory construction, it was noticed that 
the S, SE and SW slopes generally presented a 
better representation of ancient landslides due 
to the position of the sun (lighting direction), 
which emphasizes the superficial structures, in 

Figure 2. Sequence of procedures adopted in the study of statistical analysis of landslide susceptibility.
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Figure 3. Landslide predisposing factors used to model landslide susceptibility; (a) slope angle, (b) 
geomorphology, (c) soil, (d) geology, (e) slope curvature; and (f) landslide inventory.
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a way that cataloged more landslides on these 
slopes. For this reason, the slope aspect was 
excluded from the final model, because it ended 
up overestimating the information value of the 
slopes facing N, NE and NW. 

The geology (Silva 2005) was grouped into 
13 lithological units (UL), based on observations 
or stability inferences, as suggested by Varnes 
et al. (1984). Still, in cases that the mapped body 
had reduced dimensions without significant 
expressions on the surface, it chose to insert it 
in the juxtaposed unit of greater geotechnical 
similarity. The 8 geomorphological units (UGM) 
are based on data from Medina et al. (2005) and 
were refined and/or grouped based on remote 
sensing. 

The pedological units (UP) are based on 
Shinzato & Carvalho Filho (2005) and were 
grouped into 8 pedological units according to the 
order classification proposed by the Brazilian Soil 
Classification System (Embrapa 2006).

The slope angle variable classes were 
defined by “trial and verification”, where intervals 
of 2°, 5°, 10° and 15° were tested, besides non-
standard intervals defined qualitatively. Finally, 
the 5° interval returned the greater Area Under 
the Curve (AUC) when the method of information 
value was applied.

The derivation of the slope profile map, 
also called the curvature map, was produced 
by combining the transverse and longitudinal 
profiles decomposed into concave, convex and 
linear forms. Through these combinations, 9 
morphological classes were generated, which 
allowed to infer the control of the slopes on 
the water movement and soil moisture content.  
This process may influence the distribution of 
vegetation and the occurrence of geological 
processes (Wysocki et al. 2011).

Landslide inventory map
The landslide inventory maps are essential 
information for mapping susceptibility to 
landslides (Fell et al. 2008). During its elaboration, 
the old landslides morphologically visible in the 
area are mapped in the form of points or polygons 
(Parise 2001, Oliveira 2012). The construction of 
landslide inventory maps can be performed by a 
variety of methods, such as stereoscopic analysis 
of aerial photographs, field geomorphological 
cartography, engineering geology investigations, 
remote sensing techniques, and compilation of 
data in historical archives (Guzzetti et al. 2000, 
Guzzetti 2005).

Several factors influence the accuracy of the 
inventory such as i) scale, date, cloud presence 
and resolution of aerial photographs or remote 
sensor images; ii) the type, scale and quality of 
the map used to present information about the 
landslides; iii) the tools used in the interpretation 
and analysis of the images; and iv) the knowledge 
and experience of the performer on the image 
analysis and; v) the interference caused by the 
light and shadow relation on the images, due to 
the angle of sunlight incidence during the image 
collection (Guzzetti et al. 2012, Rogers & Doyle 
2003).

The landslide inventory maps were 
constructed with remote sensing techniques in 
orbital and aerial images, from which polygons 
were traced, thus delimiting the landslide 
features found.  Topography was also used in 
the delimitation of landslides from the concepts 
proposed by Rogers & Doyle (2003). Field 
campaigns were conducted at specific sites and 
selected according to qualitatively defined areas 
in remote sensing. The objective was to calibrate 
the photointerpretation process and to validate 
the inventory produced in situ.

In total, 313 features left were identified 
by ancient landslides (Figure 3f), which were 
randomly divided into two groups, 157 training 
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and 156 test. The typology of these movements 
was not discriminated, although it is known that 
there exists a predominance of translational 
landslides and a smaller number of rotational 
landslides.

The features cataloged on the landslide 
inventory map cover about 0.2% of the Ribeirão 
dos Macacos basin and are heterogeneously 
distributed in 3 groups of higher density. These 
groups of higher density are located in the 
eastern portion, possibly associated to the Moeda 
Sincline Plateau, in the northern part, possibly 
associated to the Curral Ridge, and South-Central, 
which shows no apparent correlation with any 
morphostructural unit.

Information value method
The information value method (Yan 1988, Yin 
& Yan 1988) combines in a bivariate statistical 
approach, the spatial distribution of landslides 
(dependent variable) with the classes of each 
landslide predisposing factor (independent 
variables), weighing their importance based on 
their respective density of instabilities (Soeters 
& van Westen 1996).  

The evaluation by this method is divided 
into 2 stages (Yan 1988, Yin & Yan 1988).  In the 
first step, the weight of each class and each 
landslide predisposing factor is calculated 
from its intersection with the mass movements 
cataloged in the landslide inventory through the 
expression: 

 (1)

Where Ii is the informative value of the 
variable xi; Si is the number of mapping units 
(grid-cells) with landslides of type y within 
variable xi; Ni is the number of mapping units 
with variable xi; S is the total number of mapping 

units with landslides of type y; and N is the total 
of mapping units in the study area. 

 In the second stage, the susceptibility 
is estimated through the summing of the 
informative values:

 (2)

Where m is the number of variables; Xij is 
equal to 0 or 1 whether the variable is present 
or not in pixel j.

In practice, the informative value method 
compares the density of landslides in each class 
of conditioning factor with the mean density 
of the total area, applying the logarithmic 
transformation so that there is an increase in 
the numerical amplitude, with values ranging 
from -∞ a +∞. In this context, positive values 
are considered to be influential on landslides, 
while negative values have a low influence on 
the development of landslides. The degree of 
importance for these values is related to their 
numerical magnitude (Yin & Yan 1988).

The application of the information value 
method was performed with the ArcGIS 9.3 
software from integrated maps data through 
the algebra tool map. The raster integration 
was performed one by one, following a pre-
established order according to the Sensitivity 
Analysis.

Sensitivity analysis
The importance quantification of the factors 
involved in the landslide process is called 
“Sensitivity Analysis” and it is a tool aimed at 
the identification of the individual abilities for 
each landslide predisposing factor and the 
hierarchization of these parameters, in order 
to generate more robust combinations that 
produce higher quality susceptibility maps, thus 
decreasing the volume of data used and making 
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the data processing less complex (Zêzere et al. 
2005).

For this, the Accountability (AI) and Reliability 
(RI) indices (Greenbaum et al. 1995, Meneses et 
al. 2017) were used, as well as the Area Under 
the Curve parameter (AUC) associated with the 
informative value.

The index AI counts how much the different 
classes of landslide influencing parameters are 
relevant to the analysis due to the landslide 
features contained therein, while the RI is based 
on the landslides average density of each 
predictor variable class to define its relevance.  
The indexes AI and RI are calculated by equations 
3 and 4 (Meneses et al. 2017):

 (3)

 (4)

Where k is the area with landslides in 
classes with conditioned probability values 
greater than the considered probability; N is the 
total landslide area; y is the area of each class 
of the independent variable with conditioned 
probability above the considered probability.

The AUC was proposed as a validation tool 
for statistical models of susceptibility and is 
widely used in the technical literature. It can be 
used in the sensitivity analysis when linked to 
a statistical model, allowing for the adequacy 
identification of each predictor variable (Zêzere 
et al. 2005, Piedade et al. 2010). 

After the calculation of the AUC, AI and 
RI indices, the position of each landslide 
predisposing factor (1 to 5) was defined.  The 
order of integration established involved 
the arithmetic mean of the three calculated 
indices hierarchy, thus establishing the 
importance degree of each parameter on the 

process investigated. In total, four landslide 
susceptibility models were produced with the 
progressive integration of these conditioning 
parameters according to the order of integration 
established.

Previously built models have returned a 
myriad of informational values that needed to be 
classified. Thus, through the prediction curves, 
there was a zoning of the landslide susceptibility 
in three classes, that is, a high susceptibility 
class to landslides, which should predict 85% 
of landslides, a class of average susceptibility 
to landslides, which should predict 10% of the 
movements, and a low landslide susceptibility 
class with a predictive capacity of 5%.

Validation
The evaluation of the model predictive capacity 
is an essential step (Beguería 2006). For Frattini 
et al. (2010), three basic criteria must be met in 
order for a model to be acceptable: i) conceptual 
and mathematical adequacy in describing the 
behavior of the natural system; ii) robustness to 
small changes in the data base; and iii) accuracy 
of recorded data.  As it is expected, the model is 
not perfect and it is necessary to know its degree 
of confidence (Remondo et al. 2003).

Validation can be understood as a test 
on the ability of the model to reflect the real 
environment, evaluating its accuracy and 
predictive capacity (Beguería 2006).  Studies 
without some type of validation do not present 
any scientific value and since it is not feasible 
to wait for new events to verify the capacity of 
the model, the inventory is divided, so that one 
part is used in the construction of the model 
(training group) and another in the evaluation 
of the results (test group) (Chung & Fabbri 2003).

For the construction of the landslide 
susceptibility models, only 50% of the scars 
scheduled were used.  At the moment of 
validating the produced models, success curves 
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that use the same portion of the inventory were 
used in the construction of the models, as well 
as the prediction curves, which use the inventory 
portion not used until the moment. The areas 
under the success and prediction rate curves were 
determined in order to facilitate the verification 
of the results and to apply a numerical value to 
the graphic constructions.

Prediction and success rates
The success and prediction rate curves result 
from the integration of accumulated percentages 
arranged in descending order between the 
susceptibility indexes generated by the model 
and the sites considered unstable by the 
landslide inventory (Chung & Fabbri 1999). These 
graphs are presented in terms of percentage 
study area in descending order of susceptibility 
in the abscissa axis, against the accumulated 
distribution of landslides in the ordinate axis 
(Oliveira 2012). Therefore, the curves express the 
fraction of the area required to justify a certain 
percentage of landslides (Garcia 2012). For the 
numerical interpretation of these curves, the 
calculation of the AUC was used (Garcia et al. 
2007).

The difference between the success and 
prediction curves is in the portion of the inventory 
used (Sterlacchini et al. 2011).  In the success curve 
we have an evaluation of the result between the 
model and the data that produced the model. 
The prediction curve represents the ability of the 
model to predict a future event in an undefined 
period of time (Zêzere 2006, Chung & Fabbri 
2008), since different data from those used in the 
model construction are used. For Barella (2016), 
similar success and prediction curves may denote 
accurate landslide inventories, further that data 
division between training and test groups was 
adequate.

RESULTS AND DISCUSSIONS

Five landslide predisposing factors were used 
in the construction of the model: slope angle, 
geomorphology, soil, geology and slope curvature. 
In relation to the inventory, 3 different partitions 
were performed, for which the whole procedure 
of the statistical analysis were executed, so that 
in the end the use of a partition that presented 
the most accurate results and the smallest 
difference between the success and prediction 
curves was chosen.

The information values index of each 
landslide factor, which were the basis for the map 
algebra, are shown in Table I. It is noteworthy that 
the area below the curve of the slope angle and 
the geomorphology parameters presented an 
AUC above 0,8. 

Analyzing the AUC and IV indexes, it is possible 
to notice that the most influential parameters in 
the landslide development along the study area 
correspond to the slope angle between 25° and 
75°, generally associated with geomorphologic 
units of scarps, ridges and spurs. It should be 
noted that the units with slopes higher than 
50°, although they have very high IV indexes, are 
regions of limited scope, not exceeding 0.5% of 
the total area.

The parameters used in the Sensitivity 
Analysis (AI, RI and AUC) and the hierarchy of 
the values are shown in Table II. From the mean 
reached by each predisposing factor, from the 
lowest to the highest, the order of integration 
was defined.

The map algebra used in the application 
of statistical techniques was performed 
with successive addition of each landslide 
predisposing factor, according to the order of 
integration achieved in the sensitivity analysis 
(Table II). Considering that 5 factors were 
employed and the sum is performed factor 
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by factor, we have the execution of 4 analyzes, 
according to Table III.

For each of these analyzes, the validation of 
the model was performed, with the calculation of 
success and prediction rates. On Table IV, it can 
be seen that both rates rise with the continuous 
insertion of the landslide predisposing factors, 
and the difference between them tends to increase 
with each inclusion, except for the Analysis 2. 
Analysis 4, which derived from the combination 
mapping of all the predictive variables employed, 
presented the highest success and prediction 
rates as well as the greatest difference. However, 
this simulation configures a good quality model, 
since the magnitude of this difference is very low.

The definition of the susceptibility classes 
was based on the landslide occurrence. In the 
classification utilized, the percentage of landslides 

was grouped in 85%, 10% and 5%, referring to 
the high, medium and low susceptibility classes, 
respectively (Table V). Thus, for example, it is 
expected that 85% of the landslides will occur in 
areas defined as high susceptibility.

From this point, the variation of the indices 
observed in analyzes 3 and 4 is highlighted, where 
there is an increase in the area classified as high 
susceptibility. This indicates that, although the 
AUC increased, the model did not present, as 
expected, a restriction in the definition of the 
most susceptible areas. This incongruence occurs 
due to variations in the shape of the curve, 
which the high susceptibility class of Analysis 3 
has a punctual widening over the same class in 
Analysis 4. In Figure 4, it is possible to observe the 
behavior of the success curve in the proximity of 
the prediction ratio of 85%, which would justify 

Table I. Information value (IV) and area under the curve (AUC) of the predisposing factors used in the study.

Slope angle Geomorphology Soil Geology Slope curvature

Class IV Class IV Class IV Class IV Class IV

UI 05 -4.060 UGM 01 -1.496 UP 01 -0.578 UG 01 -1.598 VC 0.592

UI 10 -3.423 UGM 02 0.524 UP 02 1.875 UG 02 0.778 VL -1.079

UI 15 -2.713 UGM 03 0.253 UP 03 -5.593 UG 03 0.584 VV -0.393

UI 20 -1.179 UGM 04 -1.935 UP 04 -1.035 UG 04 -0.167 LC -0.316

UI 25 -0.222 UGM 05 -4.115 UP 05 -0.273 UG 05 -4.212 LL -2.819

UI 30 0.703 UGM 06 2.389 UP 06 -5.594 UG 06 -2.642 LV -1.351

UI 35 1.401 UGM 07 -4.117 UP 07 -5.591 UG 07 -2.832 CC 0.684

UI 40 1.692 UGM 08 -4.116 UP 08 -5.592 UG 08 1.323 CL -0.808

UI 45 1.883 - - - - UG 09 -0.289 CV -0.128

UI 50 1.863 - - - - UG 10 -4.210 - -

UI 55 2.043 - - - - UG 11 -4.211 - -

UI 60 2.317 - - - - UG 12 1.169 - -

UI 65 2.639 - - - - UG 13 -4.178 - -

UI 70 3.555 - - - - - - - -

UI 75 4.179 - - - - - - - -

UI 80 -4.062 - - - - - - - -

UI 83 -4.061 - - - - - - - -

AUC 0.859 AUC 0.823 AUC 0.760 AUC 0.737 AUC 0.679
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the alteration presented in the classes of high 
susceptibility.

It should be noted that the slope aspect was 
also analyzed. However, during the construction 
of the inventory, there was a great tendency of 
cataloging slides positioned on slopes facing S, 
SE and SW, mainly the older ones, with some type 
of vegetation coverage already established (Table 
VI).

In fact, there is a difference in these groups, 
since the slopes facing south, southeast and 
southwest have an average slope greater than 
the average of the other areas (Table VI), and in 
view of this finding, we sought to identify the 
factor which controls this trend.

Since geological structures were not included 
in the statistical analysis, we decided to carry out 
a visual analysis looking for cataclinal slopes, 
with penetrative discontinuity dips in the same 
direction as the slope (Cruden & Hu 1998, Cruden 
2000). However, this visual inspection did not show 
sufficient indications revealing the influence of 
the discontinuities on the investigated process. 
Therefore, the decision to analyze the insolation 
direction was taken since it can influence the 
vegetation distribution and soil moisture content 
(van Westen et al. 2008, Corominas et al. 2014), 
as well as contribute to the quality of aerial 
images/orbitals (Rogers & Doyle 2003). Regarding 

the vegetation, no trend was observed related 
to the direction of the slopes and, in relation to 
the moisture content, no studies were carried 
out. Regarding the aerial/orbital images, it was 
verified that the slopes facing south and adjacent, 
always have a superior response with respect to 
the retraction of ancient landslides.

Although two field verification steps were 
conducted, the inventory was mostly based on 
remote sensing, since extensive areas are private 
properties, mainly condominiums and mines, 
and the accesses are scarce in several places. In 
view of these observations, we decided to remove 
the slope aspect variable  due to the tendency 
of the inventory to attribute great weight to the 
south facing slopes and/or adjacent directions, 
making the slopes facing north, northeast and 
northwest present pixels with more attenuated 
informative values, whereas the slopes facing 
south, southeast and southwest, prevailed with 
high indices of informative value (Figure 5).

The final model integrates the predisposing 
factors geomorphology, slope angle, soil, 
geology and slope curvature. In areas with high 
susceptibility, they are concentrated in the 
northwest, west and center-south portions of 
the terrain, thus occupying 14.5% of the territory 
(Figure 6).

Table II. Relevance of the landslide predisposing factors according to the accountability, reliability, and area under 
the curve.

Parameters A1 (%) R1 (%) AUC Average Order of 
Integration

Geomorphology 88.41 (1) 1.74 (1) 0.82 (2) 1.3 1

Slope angle 79.76 (2) 0.78 (3) 0.86 (1) 2.0 2

Soil 54.43 (5) 1.37 (2) 0.76 (3) 3.3 3

Geology 75.22 (3) 0.42 (4) 0.74 (4) 3.7 4

Slope curvature 60.53 (4) 0.40 (5) 0.68 (5) 4.7 5
(1, 2, 3, 4 and 5) - Hierarchization of the Parameters.
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Table III. Order of integration of the landslide predisposing factors.

ID Predisposing factors

Analysis 1 Geomorphology + Slope angle

Analysis 2 Geomorphology + Slope angle + Soil

Analysis 3 Geomorphology + Slope angle + Soil + Geology

Analysis 4 Geomorphology + Slope angle + Soil + Geology + Slope curvature

Table IV. Comparison between the AUCs of the Success and prediction rate curve.

ID Success rate (AUC) Prediction rate (AUC) Average (AUC) Difference (AUC)

Analysis 1 0.911 0.904 0.908 0.007

Analysis 2 0.921 0.918 0.919 0.003

Analysis 3 0.930 0.920 0.925 0.011

Analysis 4 0.937 0.923 0.930 0.014

Table V. Evolution of success and prediction rates in relation to the addition of new predisposing factors with the 
percentage of area occupied by each class of susceptibility.

ID
Success 

rate 
(AUC)

Landslide susceptibility 
 in area Prediction 

rate 
(AUC)

Landslide susceptibility 
 in area

High Medium Low High Medium Low

Analysis 1 0.911 17.3% 13.8% 68.9% 0.904 21.7% 27.8% 50.4%

Analysis 2 0.921 18.1% 13.7% 68.2% 0.918 18.1% 19.5% 62.4%

Analysis 3 0.930 14.5% 15.5% 70.0% 0.920 13.7% 39.3% 47.1%

Analysis 4 0.937 14.7% 10.4% 74.9% 0.923 14.5% 36.9% 48.7%
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Figure 4. Success 
curves for analyzes 3 
and 4. The red arrows 
indicate locations 
where analysis 3 
presents a result 
superior to analysis 
4.  The green line 
indicates the limit of 
the high susceptibility 
class.

Table VI. Table with the slide trends cataloged and grouped, with reference in the centroid, by slopes orientation.

Slope aspect Azimuth interval Landslide count Percentage Average slope 
angle

Standard 
deviation

SE-S-SW 112.5° - 247.5° 175 55.9% 19.9° 10.5°

NW-N-NE 292.5° - 67.5° 70 22.4% 17.6° 9.5°

Others (E - W) - 68 21.7% 18.9° 9.3°

Figure 5. Map of 
susceptibility 
with the use of 
the slope aspect 
variable.
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CONCLUSIONS

The susceptibility map shows the predisposition 
of the land in developing certain geodynamic 
processes and it configures itself as a basic tool 
for the execution of territorial planning, when 
it is aimed at the prevention of catastrophes 
and it acts as an important tool to attend the 
demands of the law 12,608 (Brazil 2012).

The use of statistical analysis through the 
informative value method was efficient, with high 
predictive capacity and low cost for execution.  
The possibility of revising the data during the 
study execution process is another notorious 
feature, since the model can be refined with 
each acquisition of new information. It should 
be noted that this method demands a diversified 

cartographic database and in a reasonable scale, 
which does not occur in most of Brazil.

The Area Under the Curve index, although 
effective and able to portray, in general, the 
robustness of the models produced, may not 
lead to the selection of the most efficient 
simulation. This occurs due to the different 
conformations that the curve can take along its 
path, since there may be alternations between 
curves produced by models with different AUC. 
Therefore, a higher prediction rate cannot 
guarantee a greater constriction of the zones 
of high susceptibility, not necessarily leading to 
the choice of the best statistical forecast model.

The slope angle, as observed by Corominas 
et al. (2014), had a great correlation with the 
landslides, but attention should be paid to the 
importance of the other cartographic bases. The 

Figure 6. Final landslide susceptibility map obtained with information value based on grid cells (5 m) terrain units 
and considering the landslide test group.
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geomorphology used in the study presented a 
very high predictive index, and in itself, it would 
allow for the construction of a good predictive 
model. 

The landslide inventory is a key piece for 
the quality of the model, since all landslide 
predisposing factors will be attached to it.  The 
identification and delimitation of events have a 
subjective feature, since it is influenced by the 
knowledge and experience of the responsible 
professional, besides being associated with 
the accuracy of the topographic model, the 
resolution and the representativeness of the 
images or even the morphological alteration 
of the landslide surface due to the weathering 
action and the vegetation growth.

The position of the sun during the 
acquisition of the images exerts a great influence 
in the construction of the landslide inventory, 
highlighting or omitting surface structures, 
depending on the incidence angle of the light 
and can misrepresent the final model, especially 
when using the slope aspect.  Therefore, the use 
of a diversified image base and the execution 
of field checks can give more credibility to the 
inventory and avoid misunderstandings in the 
predictive model. This is an important issue and 
needs further investigation studies.
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