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ABSTRACT

In this paper we prove a tangency principle (see Fontenele and Silva 2001) related with the length

of the second fundamental form, for hypersurfaces of an arbitrary ambient space. As geometric

applications, we make radius estimates of the balls that lie in some component of the comple-

mentary of a complete hypersurface into Euclidean space, generalizing and improving analogous

radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and

the authors. The basic tool established here is that some operator is elliptic at points where the

second fundamental form is positive definite.
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1 INTRODUCTION

In (Fontenele and Silva 2001), the same authors proved that if an n-dimensional embedded compact

hypersurface Mn into (n + 1)-dimensional Euclidean space satisfies |Hk| ≥ 1
λk , for some k-mean

curvature Hk, 1 ≤ k ≤ n, and some positive constant λ, then the greatest ball that fits inside Mn

has radius less than λ unless Mn is a sphere of radius λ, generalizing results of (Blaschke 1956) and

(Koutroufiotis 1973) for surfaces. Our basic tool for the proof of the above result was a tangency

principle stated in (Fontenele and Silva 2001) as Theorem 1.1. This tangency principle turned out

to be very useful to obtain other geometric applications. In this work we obtain a tangency principle

(see Fontenele and Silva 2001) related with the length of the second fundamental form and improve
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(see Remark 3.1) the radius estimate for the greatest ball that fits inside a suitable component of the

complementary of an n-dimensional complete hypersurface into (n + 1)-dimensional Euclidean

space. In order to state our results we need the following.

As in (Fontenele and Silva 2001), given a hypersurface Mn of a complete Riemannian manifold

Nn+1 with metric 〈 , 〉 and exponential mapping exp : T N → N, we parametrize a neighborhood

of Mn containing p and contained in a normal ball of Nn+1 putting

ϕ(x) = expp(x + µ(x)ηo), (1)

where x varies in a neighborhood W of zero in TpM (the tangent space to Mn at p), ηo is a fixed

unitary vector normal to Mn at p and µ is an unique real function defined in W with µ(0) = 0.

Let η : W → T ⊥
ϕ(W)M be a local orientation of Mn with η(0) = ηo. Denote by Aη(x) the second

fundamental form of Mn in the direction η(x) and by σ the vector valued second fundamental form

of Mn. The length of the second fundamental form at x is given by

|σ |2(x) = trace A2
η(x).

If λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x) are the principal curvatures of Mn at x ∈ W, we have that

|σ |2(x) =
n∑

i=1

λ2
i (x).

Given hypersurfaces Mn
1 and Mn

2 of Nn+1 with TpM1 = TpM2 (tangent at p), parametrize Mn
1 and

Mn
2 as in (1) obtaining correspondent functions µ1 and µ2. As in (Fontenele and Silva 2001), we

say that Mn
1 remains above Mn

2 in a neighborhood of p with respect to ηo if µ1(x) ≥ µ2(x) in a

neighborhood of zero.

Following the ideas in (Fontenele and Silva 2001), we obtain the following tangency principle:

Theorem 1.1. Consider hypersurfaces Mn
1 and Mn

2 of Nn+1 tangent at p and ηo a unitary vector

normal to Mn
1 at p. Denote by |σ1|2(x) and |σ2|2(x) the length of the second fundamental form of

respectively Mn
1 and Mn

2 at x ∈ W. Assume that Mn
1 remains above Mn

2 in a neighborhood of p with

respect to ηo, |σ1|2(x) ≤ |σ2|2(x) in a neighborhood of zero and that the principal curvatures of

M2 at zero are all positive. Under these conditions, Mn
1 and Mn

2 must coincide in a neighborhood

of p.

For hypersurfaces with boundaries and as a consequence of proof of Theorem 1.1, we obtain

the following tangency principle:

Theorem 1.2. Let Mn
1 and Mn

2 be hypersurfaces of Nn+1 with boundaries ∂M1 and ∂M2 respec-

tively. Suppose that Mn
1 and Mn

2 as well as ∂M1 and ∂M2 are tangent at p ∈ ∂M1 ∩∂M2 and let ηo

be normal to Mn
1 at p. Denote by |σ1|2(x) and |σ2|2(x) the length of the second fundamental form

of respectively Mn
1 and Mn

2 at x ∈ W. Assume that Mn
1 remains above Mn

2 in a neighborhood of p

with respect to ηo, |σ1|2(x) ≤ |σ2|2(x) in a neighborhood of zero and that the principal curvatures
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of M2 at zero are all positive. Under these conditions, Mn
1 and Mn

2 must coincide in a neighborhood

of p.

When the ambient is the (n + 1)-dimensional Euclidean space and the hypersurfaces Mn
1 and

Mn
2 have the same constant length of the second fundamental form, Theorems 1.1 and 1.2 are the

analogous of the well known maximum principles for hypersurfaces with the same constant k-mean

curvature in the Euclidean space.

For enunciate our geometric applications let us fix some notation. Given an oriented hyper-

surface Mn of the (n + 1)-dimensional Euclidean space R
n+1, the k-mean curvature Hk(p) of Mn

at p is given by

Hk(p) = 1(
n

k

) ∑
i1<i2<···<ik

λi1λi2 . . . λik ,

where λ1 ≤ λ2 ≤ · · · ≤ λn are the principal curvatures of Mn at p. In particular, H1(p) is denoted

by h(p) and called the mean curvature of M at p and H2(p) is denoted by R(p) and called the

scalar curvature of M at p.

The Ricci curvature of Mn at a point p in the direction of an unitary vector v is given by

Ricp(v) = 1

n − 1

n∑
i=2

K(v, wi),

where w1 = v, w2, . . . , wn is an orthonormal basis of TpM and K(v, wi) is the sectional curvature

of the plane generated by v and wi.

Definition 1.3. If U is an open subset of the Euclidean space R
n+1, we define

ρU := sup { r > 0, such that U contains a closed ball in R
n+1 of radius r },

where U denotes the closure of U in R
n+1.

Condition I. Mn is a complete connected euclidean hypersurface that splits R
n+1 into two disjoint

regions of which Mn is the common boundary.

Theorem 1.4. Suppose that Mn satisfies Condition I. Assume further that |σ |2 ≥ n

λ2 and |h| > n−2
n λ

over Mn, where λ is a positive constant. Under these conditions, if we denote by U the component

of R
n+1 \ M that contains the normals for which h is positive, then ρU ≤ λ. Moreover, if U ∪ M

contains a closed ball of radius λ then Mn coincides with a sphere in R
n+1 of radius λ.

Corollary 1.5. Suppose that Mn satisfies Condition I. Assume further that |σ |2 ≥ n

λ2 and R > n−4
n λ2

over Mn, where λ is a positive constant. Then, the mean curvature function h is positive for some

suitable orientation of Mn and, denoting by U the component of R
n+1\M that contains the normals

for which h is positive, we have ρU ≤ λ. Moreover, if in the closure of U there exists a closed ball

of radius λ, then Mn must be a sphere in R
n+1 of radius λ.
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Corollary 1.6. Suppose that Mn satisfies Condition I and that |Hk| ≥ 1
λk on Mn for some

k, 1 ≤ k ≤ n, and some positive constant λ > 0. For k ≥ 2, assume further that there exists at

least one point in Mn where the second fundamental form is definite. Then there exists a component

U of R
n+1 \ M such that ρU ≤ λ. Moreover, if U ∪ M contains a closed ball of radius λ, then Mn

coincides with a sphere in R
n+1 of radius λ.

Theorem 1.7. Suppose that Mn satisfies Condition I and is oriented. Assume that h ≥ 0 and that

|σ |2 ≥ n

λ2 over Mn, where λ is a positive constant. Assume further that n ≥ 3 and RicM ≥ − 1
(n−1)λ2 .

Then, if we denote by U the component of R
n+1 \ M that contains the normals, we have ρU ≤ λ.

Moreover, if U ∪Mn contains a closed ball of radius λ then either n must be even or Mn coincides

with a sphere in R
n+1 of radius λ.

Corollary 1.8. Suppose that Mn satisfies Condition I and that |σ |2 ≥ n

λ2 over Mn, for some

positive constant λ. Consider also that RicM > − 1
(n−1)λ2 . Then, the mean curvature function h is

positive for some suitable orientation of Mn and denoting by U the component of R
n+1 \ M that

contains the normals for which h is positive, we have ρU ≤ λ. Furthermore, if in the closure of U

there exists a closed ball of radius λ, then Mn must be a sphere in R
n+1 of radius λ.

In the following result, Mn is a connected and complete manifold isometrically immersed in

R
n+1.

Corollary 1.9. Assume that KM ≥ 0 and |σ |2 ≥ n

λ2 over Mn, for some positive constant λ. If

Mn is not compact, assume further that there exists at least one point in Mn where all sectional

curvatures are positive. Then there exists a component U of R
n+1 \M such that ρU ≤ λ. Moreover,

if U ∪ M contains a closed ball of radius λ then Mn coincides with a sphere in R
n+1 of radius λ.

2 SKETCH OF PROOF OF THEOREM 1.1

Fix an orthonormal basis e1, e2, . . . , en in TpM1 = TpM2 and introduce coordinates, for x in TpM1,

setting x = ∑n
i=1 xiei. As in (1), parametrize M1 and M2 in a neighborhood of p by respectively

ϕ1 and ϕ2, obtaining respectively functions µ1 and µ2. Let ηl : W → T ⊥
ϕl(W)

Ml, l = 1, 2, be

a local orientation of Ml with ηl(0) = ηo and denote by Aηl(x) the second fundamental form of

Ml in the direction ηl(x). Denote by ϕl
i (x) the vector ∂ϕl

∂xi
(x) and by Al(x) the matrix of Aηl(x) in

the basis ϕl
i (x), 1 ≤ i ≤ n. In (Fontenele and Silva 2001), it is proved the existence of a matrix

valued function Ã defined in R
n(n+1)

2 +n × N , where N is a connected open set of R
n+1 containing

the origin, such that

Ã(µl
ij (x), µl

i(x), µl(x), x) = Al(x), x ∈ W, l = 1, 2, (2)

where (µl
ij (x), µl

i(x), µl(x), x), 1 ≤ i ≤ j ≤ n, is a point of R
d, d = n(n+1)

2 + 2n + 1. We write

an arbitrary point of R
d as (rij , ri, z, x), 1 ≤ i ≤ j ≤ n, and x = (x1, . . . , xn). Define a function

� : R
n(n+1)

2 +n × N → R by

� = trace Ã2. (3)
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Now using the derivatives of Ã, with respect to the rkl’s, given in (Fontenele and Silva 2001), we

obtain that

n∑
k≤l=1

∂�

∂rkl

( (1 − t) µ2
ij (0) + t µ1

ij (0) , 0 , 0 , 0 )ξkξl = 2 〈 At(0) ξ, ξ 〉,

where At(0) = Ã( (1 − t) µ2
ij (0) + t µ1

ij (0) , 0 , 0 , 0 ). Using that Mn
1 remains above Mn

2 in a

neighborhood of p with respect to ηo, |σ1|2(x) ≤ |σ2|2(x) in a neighborhood of zero and that the

principal curvatures of M2 at zero are all positive, one can prove that � is elliptic in ((1−t) µ2
ij (0)+

t µ1
ij (0) , 0 , 0 , 0 ) for t ∈ [0, 1], and, restricting W if necessary, conclude that � is elliptic with

respect to the functions (1 − t)µ2 + tµ1, t ∈ [0, 1] (see Fontenele and Silva 2001).

Recalling that |σl|2(x) = trace [Al(x)]2, it follows from (2), (3) and our assumptions that

�(µ2
ij (x), µ2

i (x), µ2(x), x) = |σ2|2(x) ≥ |σ1|2(x) = �(µ1
ij (x), µ1

i (x), µ1(x), x), x ∈ W.

Now the conclusion of the theorem is obtained from the following maximum principle (Alexandrov

1962):

Maximum Principle. Let f, g : U → R be C2-functions defined in an open set U of R
n and let

� : 	 ⊂ R
d → R be a function of class C1. Suppose that � is elliptic with respect to the functions

(1 − t)f + tg, t ∈ [0, 1]. Assume also that

�(fij (x), fi(x), f (x), x) ≥ �(gij (x), gi(x), g(x), x), ∀x ∈ U,

and that f ≤ g on U. Then, f < g on U unless f and g coincide in a neighborhood of any point

xo ∈ U such that f (xo) = g(xo). �

Now we will prove Theorem 1.7 for give an idea of how one can use Theorem 1.1 to obtain

geometric applications.

3 PROOF OF THEOREM 1.7

Proof of Theorem 1.7. Consider in R
n+1 an arbitrary closed ball Br [po], centered at po and

radius r, contained in U ∪ M. Move Br [po] until its boundary Sr [po] touches Mn the first time.

Let p be a tangency point between Mn and Sr [po]. Denote by λ1 ≤ λ2 ≤ · · · ≤ λn the principal

curvatures of Mn at p. It is well known that λi ≤ 1
r

for all i. Since λ1 + λ2 + · · · + λn ≥ 0 by

assumption, we have

λ1 + λ2 + · · · + λ̂i + · · · + λn ≥ −λi,

where λ̂i means that λi has been omitted on the sum. Therefore, for a negative λi, we deduce that

1

λ2
≥ −(n − 1) Ric(ei) = −λi ( λ1 + λ2 + · · · + λ̂i + · · · + λn ) ≥ λ2

i
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where ei stands for an unitary eigenvector with eigenvalue λi. The above inequality, gives − 1
λ

≤
λi < 0 for a negative λi. We consider two possibilities:

P.1. There exists at p at least one negative λi. Denoting by t the number of λi
,s that are negative

and using our assumption on the length of the second fundamental form, we get

n

λ2
≤

t∑
j=1

λ2
j +

n∑
j=t+1

λ2
j ≤ t

λ2
+ n − t

r2
.

Thus, λ ≥ r. In case r = λ, we have that λ1 = λ2 = · · · = λt = − 1
λ

and λt+1 = · · · = λn = 1
λ
.

Since h ≥ 0, we obtain that n ≥ 2 t. On the other hand, we have

1

λ2
≥ −(n − 1) Ric(e1) = −λ1 ( λ2 + · · · + λn ) = n − 2 t + 1

λ2
,

which implies that n ≤ 2 t. Hence, n = 2 t and n is even. Notice also that Mn is minimal at p and

the Ricci curvature at p is constant and equal to − 1
(n−1)λ2 .

P.2. At p, all λi
,s are nonnegative. In this case,

n

λ2
≤ λ2

1 + λ2
2 + · · · + λ2

n ≤ n

r2
.

Thus λ ≥ r. If r = λ, it follows easily that λ1 = λ2 = · · · = λn = 1
λ
. Using Theorem 1.1 and noting

that n

λ2 is the constant value of the length of the second fundamental form of a sphere having radius

r, we obtain that Mn and Sr [po] coincide in a neighborhood of p. By an argument of connectness,

we conclude that Mn is equal to Sr [po]. �

Remark 3.1. We point out that Corollary 1.6 extends to complete hypersurfaces Theorem 1.3 in

(Fontenele and Silva 2001) and that its hypothesis are stronger than those in Theorem 1.4. In fact,

for k = 1, this follows from the well known inequality |σ |2 ≥ n h2 and, for k > 1, this follows from

Lemma 1 in (Montiel and Ros 1991). Furthermore, the estimate for ρU in Theorem 1.4 improves

the one given by Corollary 1.6. For if inf |h| = 1
Ho

> 0 and inf |σ |2 = n

λ2
o

with |h| > n−2
nλo

, the upper

bound given for ρU in Theorem 1.4 is λo and the one given by Corollary 1.6 is Ho. That λo ≤ Ho

follows from the well known inequality |σ |2 ≥ n h2. For example, in the cilinder C = S
1 × R in

R
3, oriented by the normals pointing to the component U of R

3 \ C containing the origin,where

S
1 is the unitary circle, the mean curvature and length of the second fundamental form are given

respectively by 1
2 and 1. The estimate given by Theorem 1.4 is ρU ≤ √

2, while the estimate given

by Corollary 1.6 is ρU ≤ 2.

RESUMO

Neste trabalho nós provamos um princípio de tangência (veja Fontenele and Silva 2001) para hipersuper-

fícies de um espaço ambiente arbitrário e relacionado com o comprimento da segunda forma fundamental.

Como aplicações geométricas, nós fazemos estimativas dos raios das bolas contidas em uma determinada
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componente conexa do complemento de uma hipersuperfície completa do espaço Euclidiano, generalizando

e melhorando estimativas de raios análogas obtidas por Blaschke, Koutroufiotis e os autores. O fato básico

estabelecido aqui é que um determinado operador é elíptico nos pontos onde a segunda forma fundamental

é positiva definida.

Palavras-chave: hipersuperfícies, princípio de tangência, segunda forma fundamental, bolas, estimativas

de raios.
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