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vehicle crashes and land use classes

LARISSA S. TSUDA, CLEYTON C. CARNEIRO & JOSÉ ALBERTO QUINTANILHA

Abstract: The construction and expansion of roads cause significant impacts on 
the environment. The main potential impacts to biotic environment are vegetation 
suppression, reduction of the amount and composition of animal distribution due to 
forest fragmentation and increasing risks of animal (domestic and wildlife) vehicle 
collisions. The objective of this work was to establish a relationship between the 
different spatial patterns in wildlife-vehicle crash, by using spatial analysis and machine 
learning tools. Self-Organizing Maps (SOM), an artificial neural network (ANN), was 
selected to reorganize the multi-dimensional data according to the similarity between 
them. The results of the spatial pattern analysis were important to perceive that the 
point data pattern varies from an animal type to another. The events occur spatially 
clustered and are not uniformly distributed along the highway. SOM was able to analyze 
the relationship between multiple variables, linear and non-linear, such as ecological 
data, and established distinct spatial patterns per each animal type. In the studied area, 
most of the wildlife was run over very close to forest area and water bodies, and not 
so close to sugarcane fields, forestry and built environment. A considerable part of the 
wildlife-vehicle collisions occurred in areas with diverse landscape.

Key words: Accident prevention, artificial neural networks, geographic information sys-
tems, machine learning, road safety, wildlife-vehicle crash.

INTRODUCTION
Globally, most terrestrial wildlife deaths are 
caused by wildlife-vehicle collisions (Forman 
1998, Freitas et al. 2010, Teixeira et al. 2013). 
Aside from their direct impact on biodiversity, 
wildlife-vehicle collisions affect the safety 
and assets of road users (Huijser et al. 2013). 
Therefore, it is necessary to investigate the 
locations and circumstances under which 
wildlife-vehicle collisions occur and to identify 
the spatial patterns connecting them. This 
information would inform not only the efforts of 
infrastructure planners, road safety specialists, 
and managers of wildlife populations, but also 
the development of stable mitigation measures 

aimed at improving driver and animal safety 
and minimizing economic losses. 

Litvaitis & Tash (2008) affirm that research 
to understand the factors that contribute 
to wildlife-vehicle collisions (WVC) can be 
partitioned into several major themes, including 
(i) characteristics associated with roadkill 
hot spots, (ii) identification of road-density 
thresholds that limit wildlife populations, and 
(iii) species specific models of vehicle collision 
rates that incorporate information on roads 
(e.g., proximity, width, and traffic volume) and 
animal movements. Results revealed important 
species-specific differences, with traffic volume 
and rate of movement by candidate species 
having the greatest influence on collision rates.
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Intending to summarize empirical WVC 
findings to facilitate the application of this 
knowledge to the planning, and design of 
mitigation strategies on roads, Gunson et 
al. (2011) conducted a review restricted to 
manuscripts that used generalized linear 
models to statistically determine the influence 
that numerous explanatory predictors have on 
the location of WVCs. They conclude that WVCs 
exhibit clustering on roads, which is attributed 
to specific landscape and road-related factors. 

In a similar spatial analysis approach to 
this our paper, Morelle et al. (2013) report data 
on WVC in Wallonia, southern Belgium for wild 
boar, roe deer, red deer, and red fox, clustering 
the accidents for all these species, mapping 
via Kernel density analysis. The Authors also 
performed a temporal analysis which was not 
developed by us given the lack of data for this 
type of analysis.

Sáenz-de-Santa-María & Tellería (2015) 
review official, unpublished information on WVC 
provided by the Spanish authorities to assess 
the main features and geographic distribution 
of this wildlife human interaction. They use the 
reported vehicle collisions to explore: (a) the 
identity, conservation status, and biological 
traits of species involved in most WVC; (b) the 
distribution of those areas within the country 
where these collisions are more likely to occur; 
and (c) the economic and human costs (injured 
persons) of this wildlife-human interaction.

Bíl et al. (2016), present an objective method 
for hotspot identification that can be used for 
animal-vehicle collisions (AVC) data, using the 
Kernel density estimation – KDE and determining 
the significance level of hotspots. According to 
the Authors, the prioritization of hotspots allows 
a transportation manager to effectively allocate 
resources to a feasible number of identified 
hotspots. 

In Pagany (2020) a review of WVC is 
presented and identify factors such as the 
proximity to forest, a gentle topography with 
sparsely curves, street width, and seasonal 
differences are common denominators for WVCs 
- independent of the species -, while traffic 
volume, the distance to urban areas, or road 
accompanying infrastructure are not assignable 
influencing or non-influencing factors. 

According to Shilling et al. (2020): “Preventing 
WVC begins with recording locations of conflict, 
such as vehicle crashes, animal carcasses 
(roadkill), or animal behavior around roads, such 
as avoidance of roads or crossing-behavior”. 
They developed a web-systems for reporting 
wildlife-vehicle-conflict reviews and provided 
recommendations for future WVC reporting 
systems and guidelines for the management of 
road networks.

Schwartz et al. (2020) affirm “The number 
of WVCs has an obvious value in estimating the 
direct effects of roads on wildlife, i.e. mortality 
due to vehicle collisions”. They provide a review 
through a series of case studies contributing 
to the advancement of knowledge in species 
distributions, population dynamics, and animal 
behavior, as well as informing us about the 
health of the species and of the environment. 
Propose that monitoring roadkill facilitates 
five critical areas of ecological study: (1) 
monitoring of roadkill numbers, (2) monitoring 
of population trends, (3) mapping of native 
and invasive species distributions, (4) animal 
behavior, and (5) monitoring of contaminants 
and disease. Our paper agrees with “monitoring 
of roadkill numbers” with the proposal to 
provide guidelines for transportation planning.

Valerio et al. (2021) identify spatio-temporal 
trends of roadkill occurrence using citizen 
science data from one of the most urbanized 
and biodiversity-rich regions of Italy. Temporal 
trends were analyzed using generalized additive 
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models, while landscape patterns were assessed 
by identifying significant thresholds over land 
cover gradients, related to increases in relative 
roadkill abundance, by employing threshold 
indicator taxa analysis. They develop a map 
of potential roadkill risk that could assist in 
planning the placement of mitigation measures. 
Citizen science contributions from highly 
populated areas allowed data collection over a 
large area and a dense road network, and also 
directly led to the evaluation of management 
decisional options.

Studies discussing the results of primary 
surveys of wildlife-vehicle collisions (Rowden 
et al. 2008), focus on the specific species of 
animals involved in such collisions (Taylor et 
al. 2002, Huijser & Bergers 2000), evaluating the 
efficiency of wildlife crossings (Glista et al. 2009), 
estimating the costs generated by wildlife-
vehicle collisions and implementing mitigating 
measures (Huijser et al. 2013, 2009), and using 
spatial analysis methods to understand the 
spatial patterns of wildlife-vehicle collisions 
(Barthelmess 2014, Clevenger et al. 2003, De 
Freitas et al. 2015, Gunson et al. 2011), among 
others, have been conducted. However, these 
studies are relatively recent. Further research 
and a greater amount of data are needed 
to improve the identification of the species 
involved in collisions with vehicles, evaluate the 
consistency of wildlife crossings, and identify 
spatial patterns in wildlife-vehicle collisions. 

Self-organizing maps (SOMs) are tools based 
on artificial neural networks (ANNs) and are 
used to analyze and visualize multidimensional 
data. They reorganize an N-dimensional dataset, 
where N is the number of variables involved in a 
two-dimensional (2D) map. Based on sequences 
of competition and collaboration, best matching 
units (BMUs) are chosen to represent sample 
groups according to the similarity of their 
relationships. A SOM is an ideal method for 

analyzing complex data, as it can be used to 
extract linear and non-linear relationships from 
a data set, and can be effectively applied to 
classification and association (Park et al. 2003), 
for example, Kussul et al. (2017) used a SOM to 
restore missing values in low-resolution satellite 
images using neural coefficient weights. 

The main objective of this study was to 
establish a relationship between the different 
spatial patterns in wildlife-vehicle collisions 
by using spatial analysis and machine learning 
tools to understand the connection between 
wildlife-related collisions, the animal species 
involved, and the variables that represent land 
cover and road characterization features. To this 
end, a SOM algorithm was used to extract the 
relationships between wildlife species involved 
in collisions and the spatial characteristics that 
contextualize crash events. These characteristics 
included proximity to and the relative area of 
forest formations, water bodies, silviculture, and 
built-up areas, as well as the maximum speed 
allowed on the road, traffic volume, landscape 
diversity, and time of the day when the crash 
occurred.

MATERIALS AND METHODS
The study area is a 207 km stretch of toll highway 
intercepting 14 municipalities that are located 
in the western part of the state of São Paulo, 
Brazil. The land cover in the study area consists 
of pastures and anthropogenic areas, sugarcane 
fields, silviculture, water bodies, and built-up 
areas (FBDS 2017). The study area is located 
in the western central plateau of Brazil and is 
characterized by wide and low hills, which range 
from being minimally eroded to being flat, with 
valleys that are not deep and a low drainage 
density (Ross & Moroz 1997).

This study used secondary data collected 
by  public agencies—the Secretaria do Meio 
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Ambiente do Estado de São Paulo (SMA), 
Fundação Brasileira para o Desenvolvimento 
Sustentável (FBDS), Instituto Nacional de 
Pesquisas Espaciais (INPE), and the highway 
management company. Primary data were not 
used in this study. The data collected were related 
to collisions involving animals, land cover, and 
land cover in the areas around the highway, as 
shown in Figure 1, and the characteristics of the 
highway itself (Table I). Animal-related collision 
data were obtained from CETESB, public process 
no. 13716/2001 and no. 154/2011. Figure 2 shows a 
flowchart summarizing the methodology.

A total of 1469 wildlife-vehicle collisions 
involving 16 types of animals that occurred 
between 2011 and 2015 (Table II) were mapped. 
Mammals, the animal group most reported, and 
potentially endangered animals were studied 
further. This is because wildlife-vehicle collisions 
are usually monitored from a motor vehicle and 
because medium or large mammals (those over 
1 kg) are easier to see from such vehicles than 
smaller animals, such as most amphibians, 
some mammals, and reptiles (Glista et al. 2008). 

Furthermore, medium and large animals are 
more likely to be involved in accidents that 
cause material damage and present a fatal risk 
to highway users (Huijser et al. 2013, Bueno et 
al. 2013).

In addition to the wildlife-vehicle collision 
locations, this study examined 32 variables 
(Table II) related to the characteristics of the 
road and the land use and land coverage of the 
surrounding area. The variables were chosen 
based on the data available at the time the 
research was conducted and the results of 
previous studies (Barthelmess 2014, Gunson et 
al. 2011, Bueno et al. 2013, Carneiro et al. 2012). 
The decision to use the SOM algorithm was 
justified by the high number of variables.

The distances from each collision point 
to the nearest forest formation, water bodies, 
silviculture, sugarcane fields, and built-up 
area were calculated, and circular buffers were 
also considered around each crash point. The 
relative areas of the land cover classes within 
each of these buffers were measured as a 
percentage of the total area. The variables 

Figure 1. Map of 
the study area.
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related to the relative area, landscape diversity, 
and total length of rivers in the surroundings 
were measured in three radius sizes, i.e., 500 m, 
1 km, and 5 km, resulting in analysis areas of 0.78 
km², 3.14 km², and 78.53 km², respectively. This 
was done to identify the radius within which 
the greatest number of collisions with animals 
occurred.

The Shannon–Wiener Diversity index (1949) 
was used to measure the number of species 
within a community (Spellerberg & Fedor 2003). 
In this study, the index was used to identify only 
the number of different land cover types in one 
parcel. This index does not differentiate types 
of land cover by biological importance; rather, 
it considers all types of coverage as equally 
important. For instance, forest and sugarcane 
fields received the same weight even though 
their significance to different animal species, 
which was not considered in our analysis, is 
different. It makes sense since we are identifying 
the hot spot occurrences places and then, trying 

to associate them with land cover, not the 
opposite.

The species involved in the collisions were 
originally codified as categorical variables; 
however, for SOM to be applied, the variables 
must be converted into numerical values. Binary 
code, which transforms each categorical attribute 
into a set of binary attributes (Hsu 2006), was 
used to convert each categorical value into a 
binary attribute. As a result, 16 columns were 
created, one for each species involved in the 
collisions (Table II), and these were populated 
with a 1 if an animal of a given species was run 
over (involved in a crash) and a 0 if an animal of 
a given species was not run over. In addition to 
the animal columns, 32 variables related to the 
characteristics of the road and land cover (Table 
III) were added as columns. The SOM pre-training 
database totaled 1469 rows, each of which 
represented one sample (one collision event), 
and 48 columns, each representing a variable. To 
ensure that the variables contributed the same 

Table I. List of Secondary Spatial Daa used for the research work. 

Data type Geographic data 
type Year Scale Responsible 

agency Acess at

forest formation

land 
use

vector/polygon

2013

1:20,000 FBDS http://www.fbds.org.br

water body 2013

urban area 2013

silviculture 2013

river vector/line 2013

sugarcane vector/polygon 2013 1:50,000 INPE http://www.dsr.inpe.br/laf/
canasat

elevation raster/pixel 2013 1:50,000 SMA http://datageo.ambiente.
sp.gov.br

wildlife-vehicle collision vector/point 2011-
2015 local concessionary¹ Cetesb process nº 

13716/2001 e nº 154/2011

highway vector/line 2014 - OpenStreetMap https://www.openstreetmap.
org

FBDS - Fundação Brasileira para o Desenvolvimento Sustentável; INPE - Instituto Nacional de Pesquisa Espaciais; SMA - 
Secretaria do Meio Ambiente do Estado de São Paulo; Cetesb - Companhia Ambiental do Estado de São Paulo.
1The fauna running over data were obtained through public processes Cetesb nº 13.716/2001 and nº 154/2011. Organization: 
Larissa S. Tsuda.
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weight to the analysis, they were normalized 
based on their variance before the SOM analysis 
was performed.

An exploratory SOM analysis was carried 
out to filter the variables that, according to the 
presented correlation, were related to wildlife-
vehicle collisions (Figure 3). The elimination of 
variables that had a low correlation with the latter 
decreased map dimensionality and allowed the 
main relationships between variables to gain 
greater prominence in the SOM. The exploratory 
analysis was completed in two stages.

In the first stage, exploratory analysis 1 (EA1) 
only considered 21 variables that were repeated 
at more than one scale (radius of 500 m, 1 km, 

and 5 km) and 16 variables related to wildlife-
vehicle collisions. Only the scale with the highest 
correlation to the number of wildlife vehicle 
collisions was selected per variable. Exploratory 
Analysis 2 (EA2) considered 16 animal species 
and 18 variables related to road characteristics 
and land cover, all of which were eliminated in 
EA1. It identified and eliminated variables with 
low correlations (r < 0.099) with wildlife vehicle 
collisions. In the second stage, a definitive 
analysis (DA) was developed. This included 31 
variables, of which 16 were animal species and 
the other 15 were related to land cover and road 
characteristics.

In other similar studies, two common rules 
were followed when choosing the map size, 
that is, the number of map units that make up 
the matrix. Vesanto et al. (2000) recommended 
that the number of map units in the matrix be 
approximately 5√N, where N is the total number 
of samples in each variable. Kohonen (2013) 
stated that it was not possible to estimate 
the exact map size beforehand and that this 
number should be determined based on trial 
and error by comparing the results obtained 
from each trial and then selecting the size. Our 

Figure 2. Flowchart summarizing the adopted 
methodology.

Table II. Animals (Variables) considered in the study.

N Variable Unit
1 Presence of run over tapir

Number 
of 

animals

2 Presence of run over canid
3 Presence of run over capybara
4 Presence of run over deer
5 Presence of a trampled opossum
6 Presence of run over raccoon
7 Presence of run over ocelot
8 Presence of run over hare
9 Presence of a trampled maned wolf
10 Presence of run over monkey
11 Presence of a trampled puma
12 Presence of run over hedgehog
13 Presence of a trampled coati

14 Presence of a trampled giant 
anteater

15 Presence of a trampled anteater
16 Presence of a trampled armadillo
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dataset consisted of 1469 samples. The map 
size calculated using the method indicated by 
Vesanto et al. (2000) was approximately 191.65 
units, which resulted in a 14 × 14 map unit matrix. 
Several maps were created for other sizes, and 
it was noted that the larger maps tended to 
have smaller quantization errors, which is the 
average distance between each sample and its 
BMU. The topographical error, which is used to 
measure topology preservation, represents the 
proportion of all samples for which the first and 
second BMUs are not adjacent (Céréghino & Park 

2009). According to Compin & Céréghino (2007), 
a map that is too small might not efficiently 
explain some of the important differences that 
should be detected; however, if the map is too 
large, the differences observed would be very 
small. In other words, the larger the map, the 
lower the number of samples per neuron, and 
the fewer the samples that can be grouped 
based on similarity.

The size of the map was set as 14 × 14 units 
with toroidal projection and hexagonal cells. The 
algorithm training commenced with a random 

Table III. Land use types and road characteristics (Variables) considered in the study.

N Variable Unit
17 Distance from the nearest forest formation
18 Distance from the nearest forestry area
19 Distance from the nearest water body m
20 Distance from the nearest build-up area
21 Distance from the nearest sugarcane growing area
22 Percentage of forest formation in the 500m buffer
23 Percentage of forestry area in the 500m buffer
24 Percentage of water bodies in the 500m buffer
25 Percentage of built-up area in the 500m buffer
26 Percentage of sugarcane in the 500m buffer
27 Percentage of forest formation in the 1km buffer
28 Percentage of forestry area in the 1km buffer
29 Percentage of water bodies in the 1km buffer %
30 Percentage of built-up area in the 1km buffer
31 Percentage of sugarcane in the 1km buffer
32 Percentage of forest formation in the 5km buffer
33 Percentage of forestry area in the 5km buffer
34 Percentage of water bodies in the 5km buffer
35 Percentage of built-up area in the 5km buffer
36 Percentage of sugarcane in the 5km buffer
37 Total length of linear rivers withn the 500m buffer
38 Total length of linear rivers withn the 1km buffer
39 Total length of linear rivers withn the 5km buffer
40 Shannon-Wiener Diversity Index for land use classes within the 500m buffer
41 Shannon-Wiener Diversity Index for land use classes within the 1km buffer
42 Shannon-Wiener Diversity Index for land use classes within the 5km buffer
43 Traffic volume vehicles/year
44 Maximum speed allowed km/h
45 Elevation (altitude) m
46 Time of the day: Morning
47 Time of the day: Afternoon -
48 Time of the day: Night
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sample for which the closest neuron was 
selected. This process was repeated for all the 
samples, and the training was completed in two 
stages. The same training parameters were used 
for EA1, EA2, and DA. The data generated during 
DA were displayed using 2D maps for each of 
the variables. In these maps, the color scale 
shows the neurons that have a greater variable 
contribution to the analysis. Furthermore, 
neuron clustering was completed using a 
U-matrix based on k-means and the Davies–
Bouldin index (DBI) (Davies & Bouldin 1979). It 

displays the results more comprehensively and 
quantitatively. 

RESULTS
No relationship was observed between the 
elevation data and maximum allowable vehicle 
speed, and wildlife-vehicle collisions. The 
maximum allowable vehicle speed was the same 
as that provided on road signs, and it did not vary 
significantly over the study area. The elevation 
data did not change significantly, given that the 
terrain of the study area was predominantly flat 

Figure 3. Flowchart 
of the exploratory 
SOM analysis.
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and composed of wide and low hills. Other data 
that could be related more to wildlife-vehicle 
collisions include the longitudinal profile of the 
roads and the actual speed of vehicles involved 
in the collisions. Only data available at the time 
the research was being conducted were used. 
Data on the longitudinal profile of the road and 
actual vehicle speeds were more difficult to 
obtain. 

The following variables were selected from 
EA1: percentage of forest formation within a buffer 
of 500 m, percentage of water bodies within a 
buffer of 500 m, percentage of silviculture within 
a buffer of 5 km, percentage of the built-up area 
within a buffer of 5 km, percentage of sugarcane 
fields within a buffer of 500 m, total length of 
linear rivers within a buffer of 500 m, and the 
Shannon–Wiener Diversity index for types of 
land cover within a 1 km buffer.

EA2 generated a 14 × 14 (196) unit map, and 
the samples were grouped into 127 BMUs. The 
final quantization error was 3.35. The eliminated 
variables were elevation (r < 0.07), maximum 
speed of the vehicle (r < 0.087), and time of day: 
afternoon (r < 0.034). The DA generated a 14 × 14 
(196) unit map, and the samples were grouped 
into 126 BMUs. The final quantization error was 
3.02.

Two-dimensional maps for each variable 
are shown in Figure 4. It should be noted that, 
although most of the studied animals are found 
in specific regions, a capybara can be found in all 
regions; the maps of the different distances are 
quite complementary among them (justifying 
their choice), and the spatial behavior of the 
selected variables. The averages for the variables 
for land cover and highway characterization by 
animal species are shown in Table IV. The data 
on the distances from various land cover types 
(Table IV) confirmed that, in general, the animals 
were run over 315 m and 311 m, on average, from 
forest fragments and water bodies, respectively. 

In comparison, wildlife-vehicle collisions 
occurred 3.4 km, 2.2 km, and 5.8 km from the 
closest sugarcane fields, silviculture, and built-
up areas, respectively.

A second clustering process was applied 
to refine the initial process that generated 
the 2D variable map. This second clustering 
was optional, and its purpose was to present 
the results more clearly. The DBI was used to 
determine the ideal number of clusters for 
the dataset. To reach a statistically consistent 
ideal number of clusters, the DBI was applied 
70 times, and the ideal mode was selected. This 
resulted in the creation of 15 clusters (Figure 5). 

The animals involved in the highest number 
of collisions, capybaras (41%) and armadillos 
(18%), were found in large numbers in multiple 
clusters (Table V). No unique spatial patterns 
were observed for these species. Hares, canids, 
and collared anteaters, which were also involved 
in several recorded collisions, were grouped 
into more than one cluster. However, they 
were predominantly in a single cluster, which 
indicated a more defined pattern.  The other 
species, which were involved in 35 collisions or 
fewer, were grouped into single clusters. This 
indicated a more defined special pattern. In 
general, animals were run over when they were 
closer to forest formations, i.e., at an average 
distance of 315.3 m from the forest formations. 
Canids and maned wolves were involved in 
collisions further away from forests or in areas 
with low-density forests. Lowland tapirs, ocelots, 
pumas, and monkeys were involved in collisions 
that occurred closer to forests and in high-
density forests. 

These results are consistent with the 
literature since, according to Silveira et al (2010), 
some species search for food and water in 
dry seasons, which increases the contact with 
roads. In the studies of Abra (2019) and Abra 
et al. (2021), road kills are improved, during dry 
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seasons, for some species, including manned-
wolf and ocelot. The maned wolf, the largest 
canid in South America, is subject to many 
threats, including road kills and inhabiting 
habitats such as woodland with an open canopy, 
mixed forest and grassland, and wet fields 
(https://seaworld.org/animals/facts/mammals/
maned-wolf/). Lowland tapir, also known as 

the Brazilian tapir, lives in the rain forests of 
South America (https://tapirs.org/wp-content/
uploads/2018/06/TAPIR-TRACKS-A-Curriculum-
Guide-for-Educators.pdf). Ocelots have been 
recorded in a great variety of habitats, from 
heavily logged and fragmented forests, to early 
and late successional forests, the outskirts 
of major cities and towns, disturbed scrub/

Figure 4. Component 
plots showing two-
dimensional maps for 
the variables used in the 
SOM analysis. Each map 
shows the activation of 
neurons based on the 
values of the analyzed 
variables. In this way, 
warm colors show 
the high values of the 
variables, and cool colors 
the low values. The last 
map corresponds to 
the U-Matrix, where it 
is possible to observe 
the similarity between 
neighboring samples. 
In this case, cool colors 
correspond to the high 
similarity between 
neighboring samples, 
while warm colors denote 
greater dissimilarity. The 
red circles exemplify the 
common characteristics 
of running over the 
ocelot: low distance 
to the nearest forest 
formation; regions 
close to sugarcane and 
silviculture; low traffic 
volume; high landscape 
diversity; at the end of 
the day or the beginning 
of the evening; among 
others.
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woodland Savannah, and agricultural areas (de 
Oliveira et al. 2010). Results from Azevedo et al. 
(2021) revealed that the puma habitat has an 
association with forest vegetation, followed by 
pasture with shrubs. Road kills are important 
factors linked to the reduction of the cougar 

population in several areas (Azevedo et al. 2013, 
Benatti 2021). Titi monkeys occur in the Brazilian 
states of Rio de Janeiro, São Paulo, and Minas 
Gerais. Nowadays their population is restricted 
to forest patches within a highly fragmented 

Table IV. Animals involved incrashes and the average for land cover and highway characterization variables.
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Armadillo 399,6 5,7 554,7 0,3 2.287,8 1,6 6.040,9 3,09 2.724,4 16,0 2.157.373 0,5 1,0

Canid 406,4 5,5 342,2 0,3 2.215,7 1,3 6.276,7 2,69 2.978,8 20,2 2.094.463 0,6 1,1

Capybara 245,3 9,2 204,9 0,9 2.386,3 1,0 5.720,7 3,91 4.128,6 15,6 2.275.000 0,6 1,5

Coati 293,6 10,4 167,3 1,2 2.734,0 2,0 7.594,1 2,28 2.804,4 17,8 2.044.316 0,7 1,7

Collared 
anteater 383,0 11,2 283,9 0,4 2.240,2 1,4 7.507,7 1,83 3.439,8 17,1 1.988.907 0,6 1,3

Deer 206,6 11,3 512,4 0,3 1.969,3 0,6 5.361,6 3,22 2.140,1 9,6 2.710.043 0,6 1,2

Giant 
anteater 267,7 16,5 198,4 0,0 3.127,9 0,2 6.755,8 0,61 4.272,8 29,6 2.167.683 0,5 1,9

Hare 339,2 5,9 327,6 0,3 1.769,2 1,1 5.058,3 4,56 3.209,3 8,2 2.709.195 0,4 1,4

Lowland 
tapir 18,4 44,1 155,1 0,0 2.236,4 1,3 9.617,3 0,00 5.596,2 31,5 1.314.221 1,2 1,0

Maned wolf 479,4 1,4 123,7 0,0 2.759,8 0,5 8.662,8 0,54 1.460,9 10,4 2.780.044 0,4 1,8

Monkey 89,5 19,0 147,1 0,2 3.363,2 0,7 6.230,0 0,94 423,4 9,4 2.659.721 0,6 1,9

Ocelot 248,1 9,8 291,3 0,6 1.950,0 2,3 4.691,8 2,06 3.022,7 19,8 2.211.378 0,7 1,1

Porcupine 324,9 3,7 247,0 0,5 2.148,7 0,8 3.919,1 5,89 3.711,1 19,1 2.726.528 0,5 1,3

Puma 209,6 21,0 439,0 0,1 1.683,0 1,1 6.970,0 1,62 1.969,8 18,8 1.870.553 0,7 1,1

Skunk 277,6 7,8 304,0 0,1 1.789,9 0,5 4.629,4 5,38 2.262,4 15,3 2.511.563 0,5 1,5

South 
American 
raccoon

387,9 6,3 310,2 0,5 3.886,9 0,4 8.574,1 5,67 702,1 30,8 2.333.978 0,5 1,2

Total 315,3 7,9 311,6 0,6 2.259,9 1,2 5.874,2 3,62 3.407,7 15,6 2.293.886 0,6 1,3

  meters % meters % meters % meters % meters % vehicles/ 
year - km
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landscape, where local extinction is a constant 
threat (Trevelin et al. 2007). 

In most occurrences, animals were run over 
when they were closer to water bodies. Lowland 
tapirs, South American coatis, maned wolves, 
and monkeys were involved in collisions that 
occurred very close to water bodies (Table IV). 
No species were run over far from the water. 

The animals, in general, were run over far 
from silviculture, at an average distance of 2.2 
km. No species were predominantly run over 
very close to silviculture. Raccoon collisions 
(cluster 1), 18.5% of the capybaras’ collisions 
(clusters 4 and 12), and 14% of the armadillos 

(cluster 4) collisions occurred farther away from 
silviculture in areas with low silviculture density.

Sugarcane occupies a significant amount 
of land in the study area. However, collisions 
occurred far away from the sugarcane fields, at 
an average distance of 3.4 km; lowland tapirs 
were run over farther from sugarcane fields than 
the average distance; South American raccoons 
and monkeys were run over closer to sugarcane 
fields than the average distance. Fourteen 
percent of the armadillos’ collisions (cluster 4), 
47% of the capybaras’ collisions (clusters 4 and 
13), and 92% of the canid collisions occurred in 
areas with high densities of sugarcane fields.

In most cases, collisions with animals 
occurred far from built-up areas, at an average 
distance of 5.8 km. No species was run over very 
close to built-up areas in general, although in 
highly dense regions, South American raccoons, 
hares, 28.6% of the capybaras, deer, skunks, and 
porcupines were run over. Of all the animals 
studied, a small proportion (2.38%, cluster 9), 
consisting of capybaras, canids, hares, collared 
anteaters, and armadillos, were run over very 
close to silviculture, at an average distance of 242 
m. These areas have a very diverse landscape, 
including a high proportion of water bodies 
(rivers and ponds) and sugarcane fields, and are 
near forest fragments.

Another small proportion (4.83%, cluster 11) 
of the animals studied, particularly capybaras, 
canids, hares, porcupines, and collared anteaters, 
was run over in areas with a high density of 
water bodies, a high density of built-up areas, 
and a high traffic volume. In these areas, the 
landscape is composed of forest fragments, 
rivers, dams, lagoons, and urban patches. 
Lowland tapirs and South American coatis were 
run over in areas with high landscape diversity; 
however, hares and maned wolves were run 
over in areas with low landscape diversity. 
Furthermore, the latter, along with monkeys, 

Figure 5. (a) Clustering of 15 regions with high 
similarity obtained based on the (e) U-Matrix and 
three examples for (b) capybara, (c) skunk, and (d) 
hare, respectively. In these three examples, the red 
color indicates a high concentration of accidents.
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Table V. Averages for distances to different types of land cover and highway characterization, per cluster, in the 
definitive analysis of the self-ordering map.
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1
South American raccoon 
(100%),capybara (0,5%)

662,66 5,52 274,18 0,56 3,43 0,38 9,71 5,01 0,71 29,62 2,2 0,55 1,34 8 15

2
hare (87,6%),  

maned wolf (100%)
330,29 4,25 222,90 0,16 1,71 0,90 4,95 4,07 3,24 7,36 2,8 0,40 1,44 67 108

3
capybara (28,6%), macaco 

(100%)
299,92 4,87 151,95 0,47 1,71 1,11 4,57 4,25 4,13 0,74 2,8 0,32 1,45 161 0

4
capybara (9%),hare (1%), 

armadillo (14,7%)
514,97 4,85 366,38 0,25 5,10 0,18 11,20 0,07 2,92 38,06 1,5 0,70 0,89 78 10

5 ocelot (100%), puma(100%) 226,93 15,95 372,54 0,30 1,80 1,68 5,94 1,82 2,44 19,25 2,0 0,73 1,14 9 10

6 coati (100%) 293,56 10,37 167,31 1,20 2,73 2,04 7,59 2,28 2,80 17,84 2,0 0,74 1,70 13 14

7 collared anteater (94,6%) 386,58 11,53 256,92 0,31 2,31 1,11 7,80 1,35 3,26 17,37 2,0 0,60 1,28 28 39

8 canid (88,2%) 442,62 3,99 300,47 0,13 2,34 0,67 6,57 2,19 3,15 20,64 2,1 0,52 1,06 53 59

9
canid (4,6%), capybara (2,5%), 
hare (1%), collared anteater 

(2,7%) armadillo (3,4%)
180,74 4,93 173,61 2,73 0,24 12,12 2,30 0,12 2,18 23,21 1,3 1,14 1,44 19 12

10
deer(100%), skunk (100%), 
porcupine (96,9%), giant 

anteater (100%)
287,88 7,11 300,78 0,29 1,98 0,61 4,60 4,46 2,96 17,02 2,6 0,50 1,40 22 47

11

canid (2,6%), capybara (9,6%), 
hare (2,4%), porcupine (3,1%), 

collared anteater (1,4%), 
armadillo (0,8%)

68,37 12,47 63,36 5,15 1,90 0,18 0,74 19,00 4,22 2,67 3,6 0,65 2,41 30 32

12
lowland tapir (100%), canid 
(2%), capybara (9,5%), hare 

(2,9%), armadillo (1,9%)
27,68 43,27 85,23 0,28 3,82 0,67 12,06 0,13 5,13 17,73 1,4 1,02 2,46 44 21

13 capybara (38,4%) 220,33 5,80 201,23 0,24 2,31 0,58 5,10 2,95 3,60 24,86 2,0 0,59 1,24 35 167

14 armadillo (67,2%) 316,17 5,11 248,05 0,16 1,70 0,72 5,27 4,08 2,88 10,11 2,5 0,47 1,20 52 104

15
canid (2,6%), capybara (2,0%), 
hare (5,2%), collared anteater 

(1,4%), armadillo (12,1%)
655,09 3,46 2.412,39 0,00 1,76 4,90 4,79 0,90 4,14 14,11 1,6 0,50 0,00 25 29

Average 315,33 7,87 311,59 0,56 2,26 1,19 5,87 3,62 3,41 15,57 2,3 0,55 1,340 644 667
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was also run over in stretches with a high traffic 
volume, while lowland tapirs were run over in 
areas where traffic volume was low. Armadillos, 
South American raccoons, maned wolves, hares, 
deer, skunks, porcupines, and giant anteaters 
were run over predominantly at night, whereas 
capybaras, monkeys, lowland tapirs, and pumas 
were predominantly run over during the day.

CONCLUSION
The SOM analysis results revealed that the 
concentrations of wildlife-vehicle collisions 
were related to road characteristics and land 
cover. This allowed the relationships between 
multiple linear and non-linear variables, such 
as ecological data, to be analyzed.

The following interventions could be 
implemented in areas where road kill clusters 
occur. First, underpass tunnels for animals 
should be installed so that animals can cross 
the road safely and avoid collisions with 
vehicles moving at high speeds. Second, fences 
should be installed parallel to roads that are 
adjacent to wildlife crossings to funnel animals 
toward crossing structures (Van Der Ree 2015). 
Because wildlife-vehicle collisions occurred 
approximately 300 m from bodies of water and 
forest formations, the fences should have a 
minimum length of 300 m, on average, on either 
side of the wildlife crossing structure. Finally, 
tools such as mobile phone applications with 
which road users can report accidents in real-
time (Tong et al. 2020) should be developed so 
that data from road users can be collected and 
a richer database on wildlife-vehicle collisions 
can be built.
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