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Abstract: This study addresses the prediction of fatigue life in SAE AMS 7475-T7351
aluminum alloys under variable loads, commonly used in the construction of aircraft
fuselages. The main objective of the research was to develop a numerical-experimental
procedure to analyze crack growth, using the Walker’s approach which considers the
effects of the stress ratio R on the fatigue crack growth rate da/dN, combined with the
Finite Element Method and Linear Regression of the Stress Intensity Factor. Observations
showed that Walker’s model effectively consolidated fatigue crack propagation data for
various stress ratios when applied longitudinally to L-T rolling orientation, due to low
dependence of exponent m on R-value in da/dN equation. Simple averaging of m values
effectively calculated Walker’s exponent. The methodology employed experimental tests
following ASTM standards for tension, fracture toughness, and fatigue, complemented
by Finite Element Method (FEM) simulations. The Walker’s model proved more effective,
while the Paris-Erdogan model, which ignores the R effect, resulted in overly conservative
service life estimates. The principle of similitude suggests that this methodology could be
effective in predicting fatigue life in cases with complex geometries, where calculating the
Stress Intensity Factor Fracture parameter is challenging and the Finite Element Method
shows efficiency.

Key words: Aluminum alloys, crack growth, fatigue failure, load ratio, numerical
simulation.

INTRODUCTION

The SAE AMS 7475-T7351 Aluminum Alloy has been designed to offer high fracture toughness and
corrosion resistance, commonly used in constructing aircraft fuselages and other structures. This
alloy ranks among the most mechanically robust aluminum alloys (Chemin 2012). To accurately
predict the service life of materials subject to variable loads, it is essential to use equations that
consider the effects of the stress ratio R on the fatigue crack growth rate da/dN (Rüchert 2007). This
approach, known as damage tolerant (Fig. 1), allows for deriving fracture parameters through analytical,
experimental, or computational methods.

The literature presents various expressions for fatigue crack growth rate da/dN (Bilby et al. 1963,
Forman et al. 1967, Tomkins 1968, Elber 1971, Miller & Gallagher 1981, Ogura et al. 1985, Forman & Mettu
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Figure 1. Schematic
representation of the
damage tolerant design
approach, showing the loss
of structural strength with
crack progression and
monitoring for repair.

1992, Chang & Hudson 1981, Bannantine et al. 1990, Lazzeri et al. 1995, Newman 1998, Decoopman 1999,
Datta et al. 2018, Tong et al. 2019). Paris et al. (1961) related the variation of the Stress Intensity Factor
ΔK with da/dN. However, it was discovered that ΔK alone could not correlate the crack growth rates
at different stress ratios R (Duran & Hernandez 2015), leading to other equations. Specifically, Walker
(1970) proposed an empirical relationship where an effective ΔK′ could predict the influence of the
stress ratio R on da/dN.

ΔK‘ = ΔK
(1− R)1−𝛾w

(1)

Equation (1) is known as the Walker’s equation, where 𝛾w is the Walker’s exponent assumed to be a
material constant dependent on the stress ratio R, andΔK′ is the equivalent stress intensity variation
for R = 0 that causes the same growth rate for a combination of Kmax and R. It is important to note
that when R = 0, ΔK′ is equal to ΔK . In other words, Walker’s equation consolidates the fatigue crack
growth data at R = 0. Therefore, the Paris-Erdogan Equation can be modified as shown in Eq. (2):

da
dN

= C0 (ΔK′)
m0 = C0 (1− R)−(1−𝛾w)mo (ΔK)m0 (2)

where C0 and m0 are respectively the Paris coefficient and exponent for R = 0, noting that C0 = CR=0
and m0 = mR=0. According to Rosenfeld (1997), Equations (1) and (2) can be applied in cases where the
da/dN lines are parallel. Consequently, the Paris exponent m is constant (m = m0), regardless of the
stress ratio R. In the analytical procedure proposed by Zheng and Powell (1999), small differences in
m are considered by the simple average of values at different stress ratios R.

Therefore, the term C0 (1− R)−(1−𝛾w)m0 in Eq. (3) represents the Paris coefficient, C, for a specific
stress ratio R:

C = C0 (1− R)−(1−𝛾w)m0 (3)

Applying a logarithmic transformation to both sides:

log C = log C0 − (1− 𝛾w)m0 log (1− R) (4)
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where logC0 and − (1− 𝛾w)m0 are the coefficients of the equation obtained through linear regression
(LR) analysis of the graph logC versus log(1−R), thus allowing the calculation of 𝛾w . By integrating Eq.
(2), it is possible to develop a mathematical expression to predict the fatigue life N of a component
subjected to constant amplitude loading.

∫
N

N0

dN = ∫
a

a0

da
C (ΔK)m
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da
C (YΔ𝜎
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N =
ln( a

a0
)

𝜋C (YΔ𝜎)2
,m = 2 (7)

These expressions involve three variables. Y is a constant that depends on the geometry of the
component being tested, while Δ𝜎 is the applied stress range. N represents the number of cycles
required for a crack to grow from its initial length of a0 to its final length a. Eventually, the fracture
will occur when the crack reaches a critical value of ac and Kmax equals to the fracture toughness
KC . The stress intensity factor (SIF) can be calculated numerically through the finite element method
(FEM), which uses solutions of stress and strain fields at the crack front. This calculation employs the
formulation of the interaction integral I0 during the solution phase of the analysis (Song & Paulino
2006). The interaction integral is a formula that involves two types of fields: auxiliary and actual
fields. The auxiliary fields are based on previously known fields like Williams’ solution (Williams 1957).
The actual fields, on the other hand, use quantities like displacements, strains, and stresses that are
obtained through numerical methods like FEM. The actual and auxiliary fields are superimposed on
the path-independent J-integral on the interaction integral (Rice 1968).

I0 = − ∫
V
qi,j [𝜎k,l𝜀avxk,l 𝛿i,j − 𝜎auxk,j uk,i − 𝜎k,juauxk,i ]dV/ ∫

S
𝛿qndS (8)

Where, 𝜎i,j , 𝜀i,j , ui are stress, strain, and displacement, respectively. 𝜎auxi,j , 𝜀
aux
i,j , u

aux
i are stress, strain,

and displacement, respectively, of the auxiliary field qi is the crack extension vector. The interaction
integral is associated with the stress intensity factors as follows:

I = 2
E∗ (K1Kaux1 + K2Kaux2 ) + 1

𝜇
K3Kaux3 (9)

where, Ki (i = 1,2,3) = SIF in Modes I, II, and III, respectively; Kauxi (i = 1,2,3) = SIF auxiliary in Modes I, II, and
III; E∗ = E for a predominant plane stress state; E∗ = E/(1− 𝜈2) for a predominant plane strain state; E
= Young’s modulus; 𝜈 = Poisson’s ratio; 𝜇 = Shear modulus. The auxiliary fields, specified in Eq. (8) and
(9), are based on local crack tip coordinate systems and represent the asymptotic stress and strain
fields for crack configurations in Modes I, II, and III. The interaction integral has been used to compute
Stress Intensity Factors (SIFs) using appropriate auxiliary fields that must be chosen. These fields
should be defined to include the quantities to be determined, such as KI, KII, and KIII (Yau et al. 1980).
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The FEM is advantageous for calculating the SIF, particularly for complex geometries that differ from
those used in standardized tests (Montezuma 2022, Galic et al. 2018, Zienkiewicz 1994, Yang 1986). Finite
Element Method (FEM) is a technique where the system domain is divided into simpler components,
and this makes it easier to obtain partial solutions, which are then combined to obtain an approximate
solution to the problem. FEM allows for modeling and analyzing structures with complex shapes, which
are challenging to analyze using analytical methods. The use of higher-order interpolation functions
in FEM allows for an accurate representation of material and geometry behavior. This feature is handy
in regions with high-stress gradients, such as at crack fronts, where precise results are required. With
the advancement of digital computers and CAE programs, solving discrete problems, such as those
found in FEM, has become feasible even with a large number of elements. Determining the SIF (Stress
Intensity Factor) distribution in crack growth analysis is crucial for predicting the remaining component
life. Thanks to the development of finite element techniques, this analysis can be performed using
Linear Elastic Fracture Mechanics (LEFM). Courtin et al. (2005) has discussed the significant methods
reported in the literature. However, the Ansys program employed in this study still cannot include the
effect of the stress ratio R in the crack growth calculations da/dN. The main objective of this work
was to present a numerical-experimental procedure for analyzing crack growth in SAE AMS 7475-T7351
aluminum alloy, loaded longitudinally (L-T). This procedure, proposed by the authors, utilizes the
Walker’s approach to investigate the effect of the stress ratio on the da/dN data, combining the finite
element method and LR of the stress intensity factor. The numerical SIF results were adjusted to
the Walker’s model to reflect the effect of the stress ratio R, using experimental data from constant
amplitude loads with a stress ratio of R = 0.8.

MATERIALS AND METHODS

Experimental procedures

The material for this study was provided by EMBRAER – Brazil and consists of a 60 mm thick SAE AMS
7475-T7351 aluminum alloy plate. A preferential microstructural orientation was observed along the L-T
direction, corresponding to the rolling direction. Crack identification planes for plastically deformed
plates are shown in (Fig. 2) by ASTM E399.

Compact Tension C(T) test specimens for fracture toughness and fatigue crack propagation were
machined using electrical discharge machining in the L-T orientation, as schematically represented in
Fig. 3.

The experimental procedures included tensile, fracture toughness, and fatigue tests, as reported
by Todaro et al. (2006). Four cylindrical specimens were removed and machined according to ASTM-8M
(2000) standard to obtain the monotonic tensile mechanical properties. An EMIC equipment was used
for this test at room temperature, with a deformation speed of 1 mm/min until yielding and 4 mm/min
until failure. The Tesc program version 1.10 was employed, where it was necessary to program the
test steps in the manufacturer’s specific Script language to obtain the stress vs. engineering strain
curve, subsequently converted into an actual stress vs. true strain graph. This process allowed yield
determination and ultimate strength, elongation, and reduction in area. The fracture toughness tests
followed ASTM E1820-01, and were conducted in air and at room temperature in the L-T orientation.
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Figure 2. Three-dimensional
assembly of microstructures
in the L, T, and S directions
(100x).

Figure 3. Schematic
representation of specimen
orientation used in fracture
toughness and fatigue crack
propagation tests.

The tensile tests were conducted under the same conditions, with a crosshead speed of 5 mm/min,
according to ASTM E8M-00. For fatigue crack growth (FCG), the tests followed ASTM E647-00, performed
in air and at room temperature, with constant load and stress ratios R of 0.1, 0.5, 0.7, and 0.8 at
approximately 15 Hz. Crack growth monitoring was done using the compliance technique.

Numerical procedures

A simulation of crack growth using the FEM was carried conducted outwith using the Ansys R19
program. The SMART Crack Growth module was used, presenting an approach to simulate fatigue
or static crack growth. Utilizing remeshing-based methodologies, SMART, an acronym for Separating,
Morphing, Adaptive, and Remeshing Technology, automatically employs a combination of techniques
to dynamically update mesh changes, enabling accurate simulation of static or fatigue crack
propagation during the solution process. This module updates the mesh automatically due to crack
growth at each solution step. For the simulation, on a Compact Tension C(T) specimen, with dimensions
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identical to those of the specimen used in the FCG tests has been used. The dimensions of the
specimen are shown in Fig. 4, considering a thickness of 25 mm.

Figure 4. Dimensions of the Compact Tension C(T) specimen with a thickness of 25 mm.

For the simulation, fracture toughness and tensile test data were used as input (Table II). The crack
propagation model employed an automatic mesh regeneration function updated at each solution
step due to crack growth, adopting the critical stress intensity factor KC as the criterion for crack
advancement. A mesh refinement process and analysis of the element quality at the crack front were
carried out to enhance the accuracy of fracture parameter calculations. The most critical region in
a fracture model is around the crack’s edge. For reliable results, the first row of elements around
the crack tip should have a radius of approximately a/8 or smaller (Narne et al. 2018), where a is
the length of the crack. An influence sphere with a radius of 14.0 mm and an element size of 1.2
mm (< 20.0 mm/8.0 mm) at the crack front was defined, and values were established after a prior
mesh convergence process. 58119 elements and 81765 nodes were employed, with 85% of the elements
exhibiting quality above 0.7, primarily in the region of interest at the crack tip. Fig. 5 displays only the
best-quality elements; the mesh element quality is shown in Fig. 6. The type of element used was
the higher-order tetrahedral SOLID187, defined by 10 nodes with three degrees of freedom at each
node, consisting of translations in the x, y, and z nodal directions. The element exhibits properties of
plasticity, hyperelasticity, creep, large deflection, and large deformation capacity (Ansys 2015).

Before starting the solution, the following boundary conditions were established: restriction
of three degrees of freedom at the nodes of elements on the rear face of the specimen (region
C-D); application of monotonic and counteracting loads on the faces of the fixing holes A and B, as
illustrated in Fig. 7.
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Figure 5. Mesh refinement at
the crack front with an
element size of 1.2 mm and
an influence sphere of 14.0
mm (visualization of the
best quality elements).

Figure 6. Mesh element quality.
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Figure 7. Application of
boundary conditions:
opposing loads at A and B
and displacement
constraints at C and D.

A methodology was proposed to analyze the stress intensity factor variation during crack growth,
using three levels of constant loads, P. Initially, a gradually increasing load, P, ranging from zero to 48.0
kN, as shown in Fig. 8, was applied to determine the critical load, Pc = 32.4 kN, responsible for initiating
crack propagation. Fig. 9 illustrates the crack growth for the progressively ramping load, emphasizing
the automatic mesh regeneration with crack advancement and the graphical solutions of the Von
Mises stress field (𝜎) from the simulations conducted in the Ansys program.

Subsequently, the concept was to apply constant loads exceeding the critical load Pc capable of
propagating the crack, allowing the mapping the SIF evolution concerning the increase in crack length
(K x a). The initial crack length was 20.0 mm, and the final length was 32.8 mm, which was defined for
future comparison with experimental results. The crack growth analysis was divided into 13 smaller
steps to ensure accuracy and convergence in the solution. The first step involved a linear solution,
while the subsequent 12 steps were non-linear. Each step corresponded to an increment Δa in the
crack length, allowing for the estimation of the number of cycles required for the crack to grow from
an initial size ai = 20.0 mm to a final size af = 32.8 mm. The numerical results were compared with
experimental data obtained at a stress ratio R = 0.8 for validation. A specific procedure was adopted to
analyze the phenomenon. The crack was propagated under three levels of constant load: P1 = 38.4 kN,
P2 = 48.0 kN, and P3 = 55.0 kN. For each step, the Δa increments and the values of the SIF during crack
growth were calculated between ai = 20.0 mm and af = 32.8 mm for all three loads. Subsequently, K x
P curves were established for the 13 solution steps at the three applied loads. Using the LR of these
curves, K values were estimated for the experimental fatigue test loads, Pmin = 4.0 kN and Pmax = 5.0
kN with R = 0.8. From the LR equations, Kmin and Kmax values were calculated for the mentioned loads
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Figure 8. Numerical crack initiation model for critical load calculation Pc.

Figure 9. Crack growth for
the gradually increasing
ramped load and automatic
mesh regeneration. a) P =
36.94 kN, 𝜎 = 269.0 MPa, K =
75.0 MPa

√
m, a = 24.0 mm; b)

P = 39.4 kN, 𝜎 = 310.0 MPa, K
= 95.0 MPa

√
m, a = 26.5 mm;

c) P = 44.3 kN, 𝜎 = 434.0 MPa,
K = 185.0 MPa

√
m, a = 30.6

mm; d) P = 46.8 kN, 𝜎 = 522.0
MPa, K = 241.0 MPa

√
m, a =

32.0 mm.
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in all 13 steps. ΔK values for use in the Paris equation and ΔK′ values for the Walker’s equation were
also determined. These equations calculated increase in the number of cycles in the Paris model ΔN
and increment in the number of cycles in the Walker’s modelΔN′ values for each step. AΔa/ΔN xΔK
finite element curve was developed and compared with the experimental da/dN x ΔK curve. Finally,
the crack growth curves a x N were compared using the Paris and Walker equations.

RESULTS AND DISCUSSION

This work suggests that the procedure could be used in problems with standardized complex
geometries after a numerical-experimental validation. The concept of similitude (Wang 1990, Anderson
2017), from fracture mechanics, can be applied in the solution, provided that the conditions at the
crack tip are determined exclusively by a single loading parameter, such as the SIF. Therefore, two
configurations would fail at the same critical value of Kc if an elastic singularity zone exists near the
crack tip. In some instances of variable amplitude loading, especially with occasional overloads, the
assumption of similitude may not be valid and other methods should be applied.

Chemical analysis

The chemical composition in Table I shows that the values are within those specified by the SAE AMS
2355 standard (2002).

Table I. Chemical analysis results (wt. %).

Zn Mg Cu Cr Fe Si Ti Al

5.79 1.95 1.76 0.24 0.07 0.05 0.05 Balance

Monotonic properties

The results of tensile tests and fracture toughness for the aluminum alloy SAE AMS 7475-T7351 in the
(L-T) orientation, along with the corresponding standard deviations (𝛿), are presented in Table II.

Table II. Tensile and fracture toughness results.

Orientation UTS, MPa Sys, MPa RA,% 𝜀𝜈,% KIC , MPa
√
m

L-T 469(13.3) 395(13.0) 19(3.4) 16(1.2) 50.5(0.9)

Note: the numbers in parenthesis refer to 𝛿 values; UTS, ultimate tensile strength; Sys, yield strength; 𝜀𝜈, strain corresponding to
tensile strength; KIC is the Mode I plane strain fracture toughness; RA is reduction of area.

Walker’s model

For the Fatigue tests, Table III displays the results of the Paris coefficients C and the exponent m for
the test specimens in the (L-T) orientation for various stress ratios R.
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Table III. Paris coefficient and exponent for (L-T) specimen orientations.

Parameter R=0.1 R=0.5 R=0.7 R=0.8

m 3.02 2.90 3.00 2.93

C(mm/cycle) 1.43E-7 3.17E-7 3.98E-7 4.21E-7

It was found that the Walker’s model successfully consolidated the fatigue crack propagation data
from test specimens in the (L-T) orientation conducted for different applied stress ratios, R. In Fig. 10a,
you can observe the da/dN xΔK curves without considering the effect of R, while in Fig. 10b, the curves
generated with the Walker’s model take into account the impact of the stress ratio, R. The Walker’s
model consolidated the fatigue crack propagation data at different applied stress ratios due to the
low R dependence on exponent m.

Figure 10. Crack propagation curves for various R values in the (L-T) orientation for the SAE AMS 7475-T7351
aluminum alloy. a) Paris Model, b) Curves consolidated in the Walker’s Model.

As a result, the Paris exponent,m, remains constant regardless of the stress ratio, R. Thus,m0 = m
and can be calculated by taking the average of the values at different R ratios. According to Table III,
the average value ofm = 2.96. To find the value of 𝛾w, a graph of logC x log(1−R) was first constructed,
using the data from Table IV:

Through an LR of the curve, the coefficients of the equation were found as shown in Fig. 11. The
coefficient of determination R2 was calculated and used to evaluate the quality of fit of the regression
model (R2 = 0.8627).

log C = −0.7118 (1− R) − 6.809 (10)

By comparing the coefficients of Eq. (10) with Eq. (4), it was possible to calculate 𝛾w . The term
−(1 − 𝛾w)2.96 = −0.7118, therefore, the calculated value of 𝛾w from experimental data was indeed
equal to 0.76.
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Table IV. Data for graph construction logC x log(1− R).

R 1− R C logC log(1− R)

0.1 0.9 1.43E-07 -6.84466 -0.04576

0.5 0.5 3.17E-07 -6.49894 -0.30103

0.7 0.3 3.98E-07 -6.40012 -0.52288

0.8 0.2 4.21E-07 -6.37572 -0.69897

Figure 11. Linear regression of the curve log C x log (1− R) for the calculation of 𝛾w .

Simulation results of stress intensity factor variation

The simulations allowed for observing of the stress intensity factor variation during crack growth
under three constant load levels, enabling the generation of curves that depict the evolution of SIF
as a function of crack growth (K x a), as illustrated in Fig. 12.

Linear regression of the stress intensity factor

The main objective of LR is to identify the most suitable equation for predicting the value of SIF based
on input values of P. It is important to note that K is a variable of interest and is being estimated based
on the applied loads P. The relationship between K and P is linear. On the other hand, the variation
of K with crack growth a is nonlinear. This nonlinearity of K does not influence the linear regression
process, as in this procedure, the crack size value is considered constant. In Fig. 13, the K x P curves are
presented to estimate K values through LR for the loads Pmin = 4.0 kN and Pmax = 5.0 kN. K x P curves for
the 13 steps (different crack lengths) for loads P1, P2, and P3 are shown. The equations for estimating
SIF obtained through LR are presented in Table V. The ΔK′ values are obtained after correcting the
numerically calculated ΔK by multiplying it by the factor (1− R)−(1−𝛾w) obtained experimentally.
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Figure 12. Curves of the variation of K with increasing crack size (K x a) using the FEM.

Figure 13. Estimating of SIF values for the loads Pmin = 4.0 kN and Pmax = 5.0 kN by linear regression of the SIF
calculated at each simulation stage for the loadings P1, P2, and P3. It’s important to note that the variation of K with
the crack growth is nonlinear. On the other hand, the variation of K for the same crack length is linear.

The Fig. 14 displays the results of FEM simulation for the da/dN x ΔK′ curve, comparing them with
experimental results. Both utilized the Walker’s model with an exponent 𝛾w = 0.76 and stress ratio R
= 0.8. It was observed that the numerical results adequately represented the experimental results,
confirming the numerical validation of the model.

To compare the effectiveness of the Paris and Walker’s models for life prediction, Fig. 15 presents
the FEM simulation results of crack growth curves, a x N. The first curve uses the Walker’s model,
and the second uses the Paris model; the latter does not consider the effect of the stress ratio R.
Without considering the impact of the load ratio R, the results showed that life estimation through

An Acad Bras Cienc (2024) 96(Suppl. 1) e20231400 13 | 17



MARCOS FÁBIO V. MONTEZUMA et al. PREDICTING FATIGUE LIFE IN ALUMINUM ALLOY

Figure 14. Results of FEM simulation and experimental data for the da/dNxΔK′ curve using the Walker’s model
(𝛾w = 0.76) and stress ratio R = 0.8 for the SAE AMS 7475-T7351 aluminum alloy.

Table V. Equations for estimating K obtained through linear regression of the SIF.

Step a(mm) Δa(mm) Equations ΔK′ MPa
√
m ΔN (cycles)

(Paris)
ΔN’ (cycles)

(Walker)

0 20.0 - - - - -

1 20.8 0.8 K = 2E+06P + 627.95 1.47 1874561 604016

2 21.7 1.7 K = 2E+06P - 627183 2.94 276728 89167

3 22.6 2.6 K = 2E+06P + 12931 2.94 291820 94030

4 23.6 3.6 K = 2E+06P - 3E+06 2.94 301687 97209

5 24.6 4.6 K = 2E+06P + 561788 2.94 306418 98733

6 25.6 5.6 K = 3E+06P - 696440 2.94 312549 100709

7 26.6 6.6 K = 3E+06P + 902966 4.41 95850 30885

8 27.6 7.6 K = 3E+06P - 7E+06 4.41 97462 31404

9 28.6 8.6 K = 4E+06P + 4E+06 4.41 97490 31413

10 29.6 9.7 K = 4E+06P + 2E+06 5.89 41819 13475

11 30.7 10.7 K = 4E+06P + 4E+06 5.89 42051 13550

12 31.7 11.7 K = 5E+06P - 3E+06 5.89 42088 13561

13 32.8 12.8 K = 5E+06P - 3E+06 7.36 22048 7104
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Figure 15. Results of FEM simulation for crack growth curves, axN. The first curve uses the Walker’s model with R=0.8
and 𝛾w =0.76, and the second uses the Paris model.

the integration of the Paris equation, becomes very conservative and is not suitable for life prediction.
The number of cycles using the Paris model (ΔN/ΔN′) was 3.1 times greater than in theWalker’s model.

CONCLUSIONS

The objective of this study was to introduce an original numerical-experimental procedure for
analyzing crack growth in SAE AMS 7475-T7351 aluminum alloy subjected to longitudinal loading in
the L-T rolling orientation. This innovative approach, developed by the authors, integrates Walker’s
model and the Finite Element Method (FEM) to investigate the influence of stress ratio on da/dN
data. Combining the finite element method with linear regression of the stress intensity factor (SIF),
the numerical SIF results were aligned with Walker’s model, incorporating the effect of stress ratio
R, using experimental data obtained from constant amplitude loads with a stress ratio of R = 0.8.
The developed numerical-experimental procedure, integrating Walker’s approach, FEM, and LR of SIF,
demonstrated effectiveness in representing experimental data. Comparative analysis of life prediction
models revealed that Walker’s model, incorporating the effect of stress ratio R, outperformed the
Paris-Erdogan model, resulting in less conservative life estimates. Based on literature and applying
concepts of similitude in fracture mechanics, the numerical validation of the model indicates that
this methodology can accurately predict fatigue life in scenarios with complex geometries, where
calculating the fracture parameter K is challenging, and the finite element method proves effective.
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