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Abstract
One of the main obstacles to the treatment of Chagas disease is the genetic and phenotypical variance 
displayed by T. cruzi strains, resulting in differences in morphology, virulence, pathogenicity and drug 
susceptibility. To better understand the role of glycoconjungates in Chagas disease, we performed the 
molecular characterization of the O-linked chains from mucins and glycoinositolphospholipids (GIPLs) 
of the Silvio X10 clone 1 strain. We demonstrated the presence of a β-galactofuranose (β-Galf) unity 
linked to the O-4 position of the α-N-acetylglucosamine (α-GlcNAc)O-4 in Tc-mucins. GIPLs analysis 
showed that the lipidic portion is exclusively composed of ceramide and the PI-oligossacharidic portion 
contains the Man4(AEP)GlcN-Ins-PO4 core, substituted by ethanolamine-phosphate (EtNP) on the third 
distal mannose from inositol, which may or may not have a terminal β Galf unity. These results confirm 
the classification of the Silvio X10/1 strain in group T. cruzi I. Again, it is noted that the study of T. cruzi 
surface glycoconjugates confirm the molecular results and the hypothesis that surface glycoconjugates 
may be interesting biomarker for the differentiation of trypanosomatid strains.
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Introduction

Discovered in the early 20th century by the 
celebrated brazilian scientist Carlos Chagas, the 
parasitic disease bearing his name is caused by 
the protozoa Trypanosoma cruzi (Chagas 1909). 
Epidemiological data show that around nine million 
people are infected by T. cruzi in the world, with 
most cases in Latin America. Nonetheless, there 

is an increasing number of cases in non-endemic 
regions due to human migration (Rassi Jr et al. 
2010, Bern 2015). Chagas disease is considered 
neglected, despite having the greatest socio-
economic impact in Latin America among parasitic 
diseases, with productivity losses estimated at 
about 1.2 billion dollars a year (WHO 2012).

Chagas disease has different clinical manifes-
tations, with most patients developing the asymp-
tomatic indeterminate form in the chronic phase. 
However, around 45% of chronic patients present 
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severe clinical manifestations, including cardiomy-
opathy or/and digestive dysfunctions. The variable 
degrees of severity for the chronic disease pres-
ent substantial challenges, representing significant 
problems for potential drug trial candidate mole-
cules, since there are no suitable determinants of 
endpoints of efficacy. The only two drugs currently 
available for treatment can have substantial side 
effects and variable efficacy (Le Loup et al. 2011, 
Zingales et al. 2014). The diversity observed for 
symptoms and severity shows significant variation 
correlating to endemic data. Whether these differ-
ences stem from characteristics derived from the 
host, environment, parasite strain or a sum of such 
components, it is still a matter of contention (Mace-
do et al. 2004, Coura and Borges-Pereira 2010). 

T. cruzi strains present a large biochemical and 
genetic variability (Gomes et al. 2003, Macedo et 
al. 2004), leading to astounding differences in terms 
of morphology, tissue tropism, virulence and drug 
susceptibility (de Diego et al. 1998, Andrade and 
Magalhães 1997). Such different characteristics 
stimulated a search for new molecular markers that 
allow the correlation between protozoan genotype 
and clinical manifestations, leading to a more 
complete diagnosis and better treatment protocols. 
The most up to date classification splits T. cruzi 
strains into six major lineages or discrete typing 
units (DTU)s, named T. cruzi I to VI according 
to genetic and molecular markers (Zingales et al. 
2009, Costales et al. 2015). 

The Silvio X10 clone 1 strain is a member 
of the T. cruzi I group that finds frequent use in 
research models, both in vivo and in vitro (Marinho 
et al. 2009, Messenger et al. 2012). It was originally 
isolated from a Rodnius prolixus bug used in 
a xenodiagnosis test to a Chagas disease patient 
from the State of Pará in Brazil (Silveira et al. 
1979). As TcI group member, it is related to human 
disease in Amazonia, the Andean countries, Central 
America, and Mexico, and clinical manifestations 
include cardiomyopathy. In these regions, chagasic 

megaoesophagus and megacolon are absent or very 
rare (Zingales et al. 2012, Miles et al. 2009). A 
recent study showed that this clone is resistant to 
traditional drug therapy due to the presence of an 
ABC transporter (Franco et al. 2015). 

T. cruzi surface is coated by a layer of glycocon-
jugates that play a role in many biological processes 
like survival, infectivity and parasite permanence 
in the host (Mendonça-Previato et al. 2013, 2008). 
Most glycoproteins and glycolipids are attached to 
the bilayer through glycophosphatidylinositol (GPI) 
anchors (Previato et al. 2004, Ferguson 1999) and 
are organized into large groups: glycoinositolphos-
pholipids (De Lederkremer et al. 1991, Previato et 
al. 1990a), T. cruzi mucins (Tc-mucins) (Previato et 
al. 1994, 1995) and trans-sialidases (Previato et al. 
1985, Schenkman et al. 1991).

Tc-mucins were described for the first time in 
1975 as glycoproteins A, B and C from the epimas-
tigote form of the γ strain (Alves and Colli 1975). 
Several years later, our group showed that those 
molecules bear resemblance to mammal mucins 
(Previato et al. 1994). Tc-mucins protect the para-
site against the attack from proteases present in the 
intestinal tract of triatomines (Mortara et al. 1992). 
They also play pivotal roles in adhesion and inva-
sion of mammal host cells, being the only possible 
acceptors of sialic acid in the parasite surface and 
thus trans-sialidase substrates (Ruiz et al. 1993, 
Previato et al. 1994).

Here, we describe for the first time, the 
structure of the main oligosaccharide molecules 
present in the surface of the epimastigote form of 
the T. cruzi Silvio X10/1 strain. 

Materials and Methods

Reagents

All solvents were purchased from Tedia (Fairfield, 
OH, USA). Resins and columns were acquired 
from BioRad (Richmond, CA, USA), and Restek 
(Bellefonte, PA, USA). Other chemical reagents 
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were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Gas chromatography coupled with 
mass spectrometry (GC-MS) experiments were 
run in a Shimadzu GC-17A GC coupled with a 
Shimadzu GCMS-QP5050A mass spectrometer.

NMR experiments for the analysis of Tc-
mucins and GIPL structures were carried out on 
a Bruker Ascend 500 MHz spectrometer equipped 
with a 5 mm BBI gradient probe at the Centro 
Nacional de Ressonância Magnética Nuclear, 
UFRJ, Brazil. 

Parasite Culture

Epimastigote forms of the Silvio X10 clone 1 strain 
of T. cruzi (kindly provided by Dr. Bianca Zingales, 
Instituto de Química, USP, SP, Brasil) were kept 
in LIT (Liver Broth Infusion) medium (Camargo 
1964), supplemented with hemin (10 µg/mL), folic 
acid (20 µg/mL), 10% fetal bovine serum (FBS) and 
gentamycin (25 µg/mL) at 28 ºC for seven days. 

A pre-inoculum of 100 mL of LIT medium 
containing 10 mL of the T. cruzi culture described 
above was cultivated for 5 days at 28 °C and 
inoculated into 1L of the same medium (with 5% 
SFB) and kept under the same conditions for 5 more 
days. The parasites were then centrifuged for 10 
minutes at 6000 g, washed thrice with 0.9% NaCl 
and the pellet, frozen. The wet weight obtained was 
approximately 90 g.

Total Carbohydrate Analysis

Approximately 2 x 107 parasites were washed with 
phosphate-buffered saline (PBS) and lyophilized. 
The material was subsequently submitted to a 
metanolisys reaction (18 hours at 80 °C), extracted 
with heptane and derivatized with 1:1 (v/v) mixture 
of N,O-bis(trimethylsilyl)trifluoroacetamide 
(BSTFA) and pyridine (1hour at room temperature). 
For the GC-MS analysis a DB-1 (30 m x 0.25 
mm) column was used with Helium as carrier at a 
temperature range from 120 to 240 °C (2 °C/ min). 

Glycoconjugates Purification

The defrosted cell mass was submitted to extraction 
according to Mendonça-Previato (Mendonça-
Previato et al. 1983). After the extraction, the 
phenolic phase was discarded along with the 
interface and the aqueous phase was collected 
and dialyzed (Spectra 45 mm x 29 mm) for 48 
hours in running water. The obtained material 
was lyophilized, solubilized in distilled water and 
applied to a Biogel P-10 (Bio-Rad, USA) column, 
being eluted with distilled water at a constant flow 
of 0.5 mL/min. Carbohydrate presence was detected 
through phenol/sulphuric acid assay (Dubois et al. 
1956). The fractions containing GIPLs and Tc-
mucins were collected, lyophilized and submitted 
to an extraction with a mix of chloroform, methanol 
and water (10:10:3) during 48 hours under heat 
and agitation. The insoluble TC-mucin rich part 
was filtered out, solubilized in distilled water and 
lyophilized. The soluble fraction containing GIPLs 
was concentrated in rotatory evaporator, washed 
with distilled water and lyophilized. 

The purification was evaluated by electropho-
resis in 15% polyacrylamide gel (SDS-PAGE) with 
a voltage of 90 V. 50 µg of the material were dilut-
ed in sample buffer (100 mM Tris-HCl pH 6.8; 2% 
SDS; 10% 2-β-mercaptoethanol; 0.012% glycerol 
and bromophenol blue), heated in boiling water for 
5 minutes and applied into the gel. The presence 
of carbohydrates was revealed by Schiff staining 
(Fairbanks et al. 1971). 

Tc-mucin Analysis

The material containing Tc-mucins was submitted 
to methanolysis with methanol-HCl at 80 °C for 18 
hours. After the reaction, the fatty acids were ex-
tracted with n-heptane and derivatized with BST-
FA/pyridine (1:1 v/v) for 1 h at room temperature. 
The products were analyzed by gas-liquid chroma-
tography (GC) on a fused silica column of DB-1 
(30 m × 0.25 mm.) using hydrogen as carrier gas. 



An Acad Bras Cienc (2016) 88 (3)

1522	 LEONARDO M. FONSECA et al.

The column temperature was programed from 120 
to 240 °C at 2 °C/min.

The release of O-linked carbohydrate 
chains from Tc-mucins was performed through 
β-elimination (Previato et al. 1994). After the re-
action, the material obtained was eluted through 
a Dowex 50WX8 ionic exchange column in hy-
drogen form of 100 mesh size. The material was 
thoroughly washed with methanol to remove boric 
acid, completely evaporated at 40 °C, solubilized 
in distilled water and applied through a Biogel P4 
column along with 14C-labeled glucose. Samples of 
300 µL were collected during the elution and mon-
itored with orcinol/sulphuric acid in silica plates 
(Humbel and Collart 1975) and liquid scintillation 
(Beckman 6000LL, Beckman, Brea, CA, USA).

Appropriate samples were re-fractioned 
by HPLC (Shimadzu LC-20AD) in a porous 
graphitized carbon (PGC) column according to a 
gradient of 30% acetonitrile in 45 minutes and a 
total flow of 1 mM/min. Detection was performed 
with an UV detector module at 220 and 260 nm 
(Shimadzu SPD-20A).

After permethylation of the O-linked oligosac-
charide alditols (Previato et al. 1990a), the samples 
were subjected to methanolysis (as described be-
fore). The obtained methyl glycosides were acety-
lated with acetic anhydride/pyridine (9:1 v/v) for 
24 hours at room temperature. The monosaccha-
rides were analyzed by gas chromatography (as 
described before) and identified by retention time.

GIPL Analysis

In order to separate PI-oligosaccharides from 
the lipid portion, 25 mg of intact purified GIPLs 
were submitted to alkaline degradation (Smith 
and Lester 1974). After adding chloroform and 
centrifuging the resulting mixture for 5 minutes at 
2800 g, the organic phase was collected in a new 
tube. The extraction was repeated three times for an 
efficient separation. The aqueous phase containing 
oligosaccharides was neutralized with acetic acid 

and applied into a Dowex 50WX8 ionic exchange 
column in hydrogen form of 100 mesh size. The 
unbound material was lyophilized, re-solubilized 
in ultrapure water and eluted through a Biogel P4 
column and 1 mL fractions were collected every 30 
minutes. Fractions were monitored by the orcinol 
test in silica plates for carbohydrate detection and 
the positive fractions were grouped and lyophilized.

Fatty Acids and Long-Chain Base Analysis by GC-MS

The chloroformic fraction, gathered after the 
alkaline degradation described in the previous 
section, was washed with ultrapure water to 
remove salt and resuspended in chloroform. 100 µL 
of this material was evaporated under N2 flow and 
submitted to methanolysis. The obtained methyl 
esthers were N-acetylated with acetic anhydride 
and the fatty acids extracted with heptane for 
separate analysis. After derivatization with BSTFA 
and pyridine as described previously, the samples 
were analyzed by GC-MS in a DB-1 column (30 
m x 0.25 mm) with an oven temperature from 
180 to 240 °C (3 °C/ min). In order to confirm 
our findings, the samples were also analyzed by 
MALDI-TOF in a Voyager DE-PRO MALDI-TOF 
spectrometer (Applied Biosystems/MDS Sciex, 
Toronto, Canada), equipped with 337 nm nitrogen 
laser. The instrument was operated in the negative 
ion reflectron mode at 20 kV accelerating voltage 
with time-lag focusing enabled in the University 
of Lille, France. The samples were resuspended in 
500 µL of methanol, mixed with DHB (10 mg/mL 
in methanol) in a 1:1 ratio and 1 µL was spotted on 
the stainless steel plates.

O-Oligosaccharide Alditols and PI-
Oligosaccharides Analysis by NMR Spectroscopy

The purified O-linked oligosaccharide alditols and 
the PI-oligosaccharides were subjected to D2O 
exchange three times and finally resuspended in 
500 µL of D2O. Acetone was added as an internal 
standard. 
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All experiments were recorded for 2 - 5 mg of 
T. cruzi polysaccharides in 0.5 mL of D2O at 25 °C 
using Bruker AVANCE II 600 and 800 MHz and 
Varian Inova UNITY 500 MHz spectrometers in the 
NMR facilities of Centro Nacional de Ressonância 
Magnética Nuclear, Rio de Janeiro, Brazil, with 
standard pulse sequences for 1D proton, COSY, 
TOCSY (with mixing times of 60, 100 and 160 
ms), ROESY (mixing time 300 ms) and HSQC. 
Spectra analysis was performed on Topspin 
software (Bruker Biospin) according to chemical 
shifts previously described (Previato et al. 1994, 
Carreira et al. 1996, Todeschini et al. 2001, Jones 
et al. 2004).

Results and Discussion

The purification of Tc-mucins was verified by 
HPLC and Schiff coloration (data not shown). 
After β-elimination, the O-linked glycans present 
in the Tc-mucins were purified and fractioned by 
HPLC. The carbohydrates fractions were analyzed 
by NMR spectroscopy. Figure 1 shows the 1D-1H 
spectra for those fractions. We are able to discern 
five different oligosaccharides with progressively 
higher molecular weight through the addition 
of β-Gal units from the presence of anomeric 
peaks. From top to bottom, we can observe a 
monosaccharide alditol with characteristic signals 
for the anomeric proton and β-galactofuranose 
(β-Galf) at 5.10 ppm and for the acetyl group of 
N-acetylglucosaminitol (2.01 ppm); a disaccharide 
alditol with the additional anomeric signal of a 
β-galactopyranose (β-galp) at 4.36 ppm and the 
subsequent additions of β-galp residues (4.49; 
4.84; 4.60 ppm) compounding the structures of tri, 
tetra and pentasacharide alditols.

Given the results provided by the 1D spectra, 
the next step was performing 2D experiments 
in order to further identify the oligosaccharides. 
The sequence of the carbohydrate residues was 
established through TOCSY, ROESY and HSQC. 

The ROESY spectra revealed inter-residue cross 
peaks between anomeric protons and linkage 
carbons (data not shown). The HSQC spectra of 
all five alditols (Figures 2-6) showed the expected 
pattern for a furanose ring with C4 being strongly 
deshielded and also confirmed the substitution 
positions hinted at by the ROESY experiments. 
The chemical shifts observed for these samples 
were compared with the ones found for the 
Colombian, Dm28 and G strains (Previato et al. 
1994, Todeschini et al. 2009, Agrellos et al. 2003).

Figure 1 - 1H NMR spectra of O-glycans released 
from mucins of T. cruzi strain Silvio X10/1. a- 
monosaccharide alditol; b- disaccharide alditol; c- 
trisaccharide alditol; d- tetrasaccharide alditol and e- 
pentasaccharide alditol. 1. Galf-β-1-4-GlcNAc-ol; 2. 
Galp-β-1-6-GlcNAc-ol; 3. Galp-β-1-2-Galp; 4 Galp-
β-1-3-Galp; 5. Galp-β-1-2-Galf.
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Confirmation of the structure predicted by NMR 
spectroscopy was provided through methylation 
analysis. Oligosaccharides were permethylated, 
methanolyzed and finally acetylated with acetic 
anhydride and analyzed by GC-MS. The results 
shown in Table I corroborate the structure of the 
oligosaccharides, since they identify the linkage 
positions for galactose and N-glucosamine residues.

Taking into account the results shown thus 
far, Figure 7 shows the expected structure for the 
oligosaccharides present in the O-linked glycan 
that make up the carbohydrate portion of the mucin 
molecules of the epimastigote form of the Silvio 
X10/1 T. cruzi strain.

Figure 2 - 1H-13C HSQC spectrum of the monosaccharide 
alditol from epimatigotes of T. cruzi strain Silvio X10/1 (CH 
black, CH2 red). 1. Galf-β-1-4-GlcNAc-ol.

Figure 3 - 1H-13C HSQC spectrum of the disaccharide al-
ditol from epimatigotes of T. cruzi strain Silvio X10/1 (CH 
black, CH2 red). 1. Galf-β-1-4-GlcNAc-ol; 2. Galp-β-1-6-
GlcNAc-ol.

Figure 4 - 1H-13C HSQC spectrum of the trisaccharide alditol 
from epimatigotes of T. cruzi strain Silvio X10/1 (CH black, 
CH2 red). 1. Galf-β-1-4-GlcNAc-ol; 2. Galp-β-1-6-GlcNAc-
ol; 3. Galp-β-1-2-Galp.

Figure 5 - 1H-13C HSQC spectrum of the tetrasaccharide 
alditol from epimatigotes of T. cruzi strain Silvio X10/1 (CH 
black, CH2 red). 1. Galf-β-1-4-GlcNAc-ol; 2. Galp-β-1-6-
GlcNAc-ol; 3. Galp-β-1-2-Galp; 4 Galp-β-1-3-Galp.

Figure 6 - 1H-13C HSQC spectrum of the pentasaccharide 
alditol from epimatigotes of T. cruzi strain Silvio X10/1 (CH 
black, CH2 red). 1. Galf-β-1-4-GlcNAc-ol; 2. Galp-β-1-6-
GlcNAc-ol; 3. Galp-β-1-2-Galp; 4 Galp-β-1-3-Galp; 5. Galp-
β-1-2-Galf.
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Next, we analyzed the structure of the GIPLs 
from the epimastigote surface. The glycan portion 
was analyzed by GC, after permethylation, metha-
nolyzation and acetylation, showing the presence 
of mannose and galactose (in pyranose and fura-
nose rings) in a 2:1 ratio (data not shown). The 
samples were also subjected to NMR analysis (Fig-
ure 8), showing the presence of two different struc-
tures: one of them containing a terminal residue of 
Man (1→2), while the other portrays a Galf (1→3) 
linked to this residue as shown in Figure 9. 

Table I
Ratio to GlcNAc-ol

Partially acetylated and methylated glicosides Oligo 1 Oligo 2 Oligo 3 Oligo 4 Oligo 5
2,3,5,6-Galf 0.5 0.5 0.5 0.4 0.0
2,3,4,6-Galp 0.5 0.5 1.0 1.6
3,5,6-Galf 0.7
2,4,6-Galp 0.7 0.0
4,6-Galp 0.7 1.0
1,2,3,5-GlcNAc-ol 1.0 1.0 1.0 1.0
1,2,3,5,6-GlcNAc-ol 1.0

Figure 7 - Representation of O-glycan structures from mucins of epimastigotes from T. cruzi strain Silvio X10/1. a- 
monosaccharide alditol; b- disaccharide alditol; c- trisaccharide alditol; d- tetrasaccharide alditol and e- pentasaccharide 
alditol.

Figure 8 - 1H-13C HSQC spectrum of the PI-oligosaccharide 
isolated of GIPLs from epimastigotes of T. cruzi strain Silvio 
X10/1 (CH black, CH2 red).
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The methyl esters obtained from the lipidic 
portion of the GIPL molecules were analyzed by 
GC-MS (Figure 10), revealing the presence of hexa 
and octadecanoate; as well as tetra, penta and hexa-
cosanoate methyl esters with a predominance of 
the C24:0 structure corresponding to the ceramide 
formed by sphinganine and lignoceric acid. This 
result was further confirmed by MALDI-TOF mass 
spectrometry (Figure 11) and conforms to struc-
tures described by our group for other strains (Pre-
viato et al. 1990b). 

The major O-glycan structures found in Tc-
mucins contain Galf, much like the ones displayed 
by the Dm28c and Colombian strains (Agrellos et 
al. 2003, Buscaglia et al. 2006).

The GIPL molecules exhibit two different 
saccharidic structures, one of them containing Galf, 
while the lipidic portion is composed mainly by a 
sphinganine long chain and lignoceric acid.

The T. cruzi GIPLs find no counterpart in the 
mammal hosts and that is also valid for the Galf 
present in the parasite mucins, making them, as 
well as their biosynthesis pathways, potential ther-
apeutic targets. Unfortunately, there is currently no 
experimental data based on GIPL-deficient T. cruzi 
strains.

Figure 10 - GC analysis of methyl esthers from GIPLs fatty 
acids from epimastigotes of T. cruzi Silvio X10/1 strain.

Figure 9 - Representation of PI-oligosaccharide structures isolated from GIPLs of epimastigotes from T. cruzi strain Silvio 
X10/1.

Figure 11 - Negative mode MALDI-TOF mass spectrometry 
analysis of GIPLs ceramide of epimastigotes of Silvio 
X10/1 T. cruzi strain. 1. N-palmitoylsphinganine; 2. 
N-stearylsphinganine; 3. N-lignoceroylsphinganine; 4. 
N-pentacosanoylsphinganine; 5. N-hexacosanoylsphinganine.
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GIPLs and mucin-like molecules are abundant 
in the membrane of parasitic protozoa that are com-
mon etiologic agents of medical and veterinary dis-
eases (Ferguson 1997, Mendonça-Previato et al. 
2013, Giorgi and De Lederkremer 2011, Buscaglia 
et al. 2006, DosReis et al. 2002, Lederkremer and 
Bertello 2001). Although it has been known that 
structural differences exist in the composition of 
such molecules among different strains of T. cruzi 
(Mendonça-Previato et al. 2013, Acosta-Serrano et 
al. 2001, Frasch 2000, Lederkremer and Bertello 
2001), there is scarce information regarding its im-
munobiological functions following the course of 
infection. In addition, so far, no one has described 
the relationship between the glycan composition vs. 
the biological effect of such parasitic glycoconju-
gates. Certainly, the identification of receptors and 
signaling pathways triggered by glycan structures 
expressed by specific T. cruzi strains might provide 
new insights for the development of therapies that 
inhibit detrimental immune responses or potenti-
ate beneficial immune responses observed during 
infection. This kind of information, besides extend-
ing our knowledge about parasite molecules that 
stimulate/regulate the host immune system during 
T. cruzi infection, may also reveal interesting bio-
markers for the differentiation of trypanosomatid 
strains. Further efforts are needed in this lively area 
to better understand the biology of T. cruzi. 
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