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Abstract : Besides increasing the amount of data that can be used in a fi tting process, 
the Regional Frequency Analysis (RFA) also assesses the quality of weather station 
networks. This technique assumes that it is possible to form homogeneous groups of 
meteorological series presenting independent and identically distributed data. Based 
on the hypothesis that such homogeneous groups can be formed under tropical-
subtropical conditions, this study applied the RFA to assess the probability of one-day 
annual maximum rainfall in the State of São Paulo, Brazil. Critical limits used in previous 
studies to declare a region/group as ‘acceptable homogeneous’ (H≤1.00) or to select a 
distribution (|Z|≤1.64) were evaluated through Monte Carlo simulations. While the limit 
H≤1 is appropriate, the limit |Z|≤1.64 may lead to unacceptably high rates of rejecting a true 
null hypothesis. This statement is particularly true for the general logistic distribution. 
A computational algorithm allowing the selection of critical limits corresponding to pre-
specifi ed probabilities of rejecting a true null hypothesis is provided. Considering the 
new critical limits, data from one of the largest weather station networks of the State 
have been pooled into four homogeneous groups. Both generalized logistic and extreme 
value distributions are recommended for the probabilistic assessment of such groups.

Key words: Extreme value, fitting process, generalized logistic, homogeneous groups, 
tropical-subtropical region.

INTRODUCTION

Improving the probabilistic assessment of 
extreme rainfall events has been a common 
goal for many statistical studies because such 
events pose serious hazards to human activities, 
human health, and the environment. However, 
estimating the probability of such events is a 
difficult task because - by definition - they 
occur at long return periods (>100 years), which 
usually surpass the available length of at-sites 
rainfall records (Goudenhoofdt et al. 2017). On 
such context, parametric distributions, such as 
the generalized extreme value distribution (GEV), 
the Pearson type III distribution (PE3) and the 

generalized logistic (GLO), are frequently used to 
estimate the probability of such extremes (Khan 
et al. 2017). The parameters of these probabilistic 
functions are usually estimated from rainfall 
data recorded at individual weather stations, 
the so-called ‘at-site approach’. 

 Regardless the parameter estimation 
procedure (e.g. maximum likelihood or 
L-moments), the above-mentioned approach 
is associated with relatively high levels of 
uncertainties that varies with the data availability. 
In general, the small the data availability, the 
larger the uncertainty level of both parameters 
and quantile estimates. Thus, increasing the 
amount of rainfall data that can be used to fi t 
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the parameters of such parametric distributions 
is a key-step to improve the assessment of 
the probability of extreme rainfall events. On 
such context, the pooling of several at-sites 
rainfall series, which transfers information 
from nearby weather stations/sites to a target 
point, is an interesting alternative to reduce the 
uncertainty associated with the limited number 
of data at a single site (Svensson & Jones 2010, 
Goudenhoofdt et al. 2017). In other words, 
it is now well accepted that such a pooling – 
known as regional frequency analyses (RFA) - 
improves the evaluation of extreme weather 
events in respect to those based on at-site 
records because it increases the amount of data 
available for a fitting process.

Different statistical procedures, such as the 
index flood (Dalrymple 1960, Guttman 1993), may 
be used within the framework of RFA (Bradley 
1998). This procedure establishes homogeneous 
groups, in which all sites/weather stations 
forming such groups are expected to present 
identical probability distributions, apart from a 
site-specific scaling factor (Hosking & Wallis 1997). 
These homogeneous groups can be established 
by means of group/regional L-moments, 
which are calculated as weighted average of 
sample L-moments for the sites forming each 
group (e.g. Hosking & Wallis 1997). By forming 
these homogeneous set of sites, a pooling of 
information (data) from all weather stations 
forming the groups can be gathered together in 
order to allow the estimation of the probability 
of rainfall events when individual series are 
too short to provide their reliable assessment 
(Fowler & Kilsby 2003). The distribution fitted 
from the group/regional L-moments is referred 
as to ‘the regional distribution’. 

For identifying a homogeneous group under 
the framework of the RFA, initial clusters of sites 
must be proposed in such a way as to allow the 
calculation of the following summary statistics 

(Hosking & Wallis 1997): Discordancy measure 
(D), heterogeneity measure (H) and goodness-of-
fit measure (Z). Several approaches can be used 
for such purpose (Basu & Srinivas 2013); among 
then, the cluster analysis is frequently applied 
(Hosking & Wallis 1997). The initial clusters 
can be established taking into account only 
geographical information (e.g. latitude, longitude 
and altitude; Sung et al. 2018), descriptive 
statistics (e.g. mean, median or standard 
deviation), or both. When the cluster analysis 
is based only on geographical information, 
the above-mentioned summary statistics – 
particularly the H measure – may be used as an 
independent test of group homogeneity. In other 
words, while the cluster analysis can be used to 
set the initial number of groups, both D and H 
measures can be used to objectively evaluate 
the outcomes of this cluster analysis (Hosking 
& Wallis 1997) and to set the final number of 
homogeneous groups (this procedure is further 
described in next sections). The Z measure is 
used to select candidate distribution capable 
of describing the true underlying frequency 
distribution for a homogeneous group (Hosking 
& Wallis 1997).

From the statistical viewpoint, the RFA is 
carried out under the assumption that the data 
to be used to fit the regional distributions are 
independent and identically distributed (iid 
data; Buishand 1984). In other words, the RFA 
assumes that (i) the at-site records are randomly 
distributed (e.g. there is no serial correlation 
nor trends) and that (ii) there is no significant 
spatial correlation/dependence among the 
extreme data obtained from the sites forming a 
particular homogeneous group (Basu & Srinivas 
2013). Regarding the RFA calculation algorithm, 
a group of weather station/sites is deemed 
homogeneous when the between site variability 
of the L-moments is statistically equal to that 
expected from homogeneous groups. In other 
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words, apart from a scaling factor, the sample 
L-moments of the sites forming a homogeneous 
group can only differ from each other due to 
sample variabilities. More specifically, a group 
of sites has been considered homogeneous 
when its H measure is equal to or lower than 1 
(e.g. Hosking & Wallis 1997, Bradley 1998, Basu & 
Srinivas 2013, Sung et al. 2018). This critical limit 
(H≤1) was initially proposed by Hosking & Wallis 
(1993). It was based on data from a climatic 
division of the continental US (North Cascades). 
However, such a limit has been used with little 
or no evaluation of its suitability in the different 
regions of the world. This latter statement also 
holds true for the Z measure.

Besides increasing the amount of data 
that can be used in a fitting process, the RFA 
also assesses on a regional basis the quality 
of data obtained from each weather station 
(see next section). Naturally, this latter feature 
emphasizes the importance of applying the RFA 
in regions where the availability and quality of 
historical records are a matter of concern. On 
such context, a review on the RFA literature 
indicates that although this technique has 
been widely used in several parts of the World 
(Burn 1990, Hosking & Wallis 1997, Bradley 1998, 
Fowler & Kilsby 2003, Santos et al. 2011, Basu & 
Srinivas 2013, Sung et al. 2018), its application on 
tropical or subtropical regions of Brazil is yet to 
be properly evaluated. 

Based on the hypothesis that under South 
America tropical-subtropical climate conditions 
it is possible to establish homogeneous groups 
in which the above-mentioned iid assumption 
is meet, this study applied the RFA to assess 
the probability of occurrence of one-day annual 
maximum rainfall in the State of São Paulo, 
Brazil. Considering that there is no universally 
superior approach for setting the initial number 
of clusters (Hosking & Wallis 1997), this study 
proposed an interactive technique that sets 

such a number by calculating two statistics of 
the RFA (D and H) along with a cluster analysis 
based only on geographical information. 
Finally, the critical limits often used to declare 
a group as homogeneous (H≤1.0) and to select 
a candidate distribution (|Z|≤1.64) have been 
evaluated through Monte Carlo simulations 
experiments. A computational algorithm that 
allows the users to select new critical limits for 
H and Z measures according to a pre-specified 
probability of rejecting a true null hypothesis 
(type I error) has been provided. 

MATERIALS AND METHODS

The state of São Paulo is situated within the 
coordinates 19oS and 26oS latitude and 53oW 
and 44oW longitude (crossed by the Tropic of 
Capricorn). The rainy season occurs during the 
austral summer and it is associated with the 
South Atlantic Convergence Zone (SACZ). In the 
winter season, the South Atlantic high-pressure 
system predominates (Vera et al. 2006). The 
daily rainfall data have been obtained from a 
weather station network belonging to the Centre 
of Agrometeorological information (CIIAGRO) 
of the Agronomic Institute of Campinas (IAC/
APTA/SAA). Only series presenting more than 10 
years of continuous records have been selected. 
Consequently, although the CIIAGRO’s network 
presents more than 150 weather stations, 
only 84 have been considered in this study 
(Figure 1a). The length of the selected rainfall 
series varied from 10 to 60 years. The series 
presenting length of records equal to 60 years 
are Campinas, Jundiaí, Mococa, Monte Alegre do 
Sul, Pariquera_Açu, Pindorama, Ribeirão Preto 
(Table I). These weather stations are situated 
at experimental farms of the Department of 
Agriculture of the State of São Paulo (APTA/SAA) 
and have been routinely used in both academic 
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and operational mode (Blain et al. 2017). Any 
missing daily record has been replaced by data 
extracted manually from pluviographs or from 
automatic weather stations situated at the 
same site. The percentage of missing records in 
each of these eight series is no greater than 2%. 
The other series (Figure 1a) present length of 
record ranging from 10 to 27 years. For each of 
these 77 series, we selected the largest possible 
continuous period of record presenting no more 
than 2% of missing data. From each rainfall 
series, the one-day maxima observed in each 
year have been collected generating 84 block 
maxima series. In other words, the so-called 
block maxima approach, as described in several 
studies (e.g. Coles 2001), was adopted in this 
study. As further described, all block maxima 
series have been subjected to a data quality 

assessment based on the discordance measure. 
Therefore, we decided not to fill the missing 
records of the series presenting length of record 
between 10 and 27 years. 

As previously described, this study used 
parametric distributions to define ‘rainfall 
extremes’ associated with a particular return 
period (Fowler & Kilsby 2003). As previously 
described, the block maxima approach has been 
used so that the parametric distributions were 
fitted from one-day annual maxima series. This 
latter approach tends to remove the influence 
of auto-correlation and seasonality in the 
modelling of extreme events. Further information 
on this approach, including its advantages and 
drawbacks, can be found in several studies such 
as Coles (2001). 

Figure 1. a) Weather Stations belonging to the Agronomic Institute of Campinas and subjected to the regional 
frequency analysis. b) The weather stations forming four homogeneous groups. Within each group, the one-day 
annual maximum rainfall observed at each site present the same frequency distribution apart from a scaling 
factor. Statistics describing, in terms of regional L-moments, the coefficient of variation (L-CV) and the Sknewness 
(L-sknewness) of the pooling of series forming each group, is also presented.
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Trends and auto-correlation of the at-site 
series.
Independently and identically distributed data 
are expected to present significant trends 
nor serial correlations (Chandler & Scott 
2011). Therefore, the Mann-Kendall and Wald-
Wolfowitz Run test were applied to all extreme 
rainfall series. While the former test is widely 
used to check for the presence of trends in 
environmental series, the latter test is used 
to check for randomness or serial correlation. 
In this study, only series presenting no serial 
correlation nor trend were subjected to the RFA.

Regional Frequency analysis: Summary 
statistics and initial clusters

Discordancy Measure

Within a pre-specified region or group, the D 
measure can be used to identify sites presenting 
a vector of L-moments ratios (ui; L-CV, L-skewness 
or L-kurtosis) significantly different from the 
pooling group (Hosking & Wallis 1997). The D 
measure is calculated through the following 
steps:

1st - Calculate the regional L-moments, 
which is an unweighted group average (U) of the 
vectors ui obtained from each site of the group.

1

1

−

=

= ∑
N

i
i

U N u   (1)

Where in N is the number of i sites or 
weather station forming the group.

2nd - Calculate the sample covariate matrix 
according to equation 2.

( ) ( )1

1

1 ( )−

=

= − − −∑
N

T
i i

i

S N u U u U  (2)

Finally, the discordance measure for each i 
site can be calculated by equation 3.

11 ( ) ( )
3

−= − −T
i i iD u U S u U  (3)

Considering that the Ui; values were drawn 
from independent and identical multivariate 
normal distributions, critical values for D (Dcrit) 
can be approximated by equation 4.

( ) *

*

1
3,

( 4 3
α
α

 − =  − +  
Crit

N
D min

N
 (4)

Wherein α* is the upper (100 α/N) percentage 
of the F distribution with 3 and N-4 degrees of 
freedom. The D measure was applied in two steps 
of the study. First, at the outset of the study (i.e. 
before the initial clusters have been delimited) 
the D measure was used to flag those sites that 
may present gross errors (Hosking & Wallis 
1997). Later, the D measure was again applied 
within each pre-delimited group so that it was 
used to identify those weather stations that 
are discordant with the homogeneous group as 
a whole. Finally, it has to be emphasized that 
the D measure can only be properly interpreted 
for groups formed by seven or more sites (e.g. 
Santos et al. 2011). 

Heterogeneity Measure and initial clusters
As previously described, within a homogeneous 
group, all sites are expected to present identical 
probability distributions, apart from a site-
specific scaling factor. Therefore, the sample 
L-moments of the sites forming such a group are 
expected to differ from each other only because 
of sample variabilities (Hosking & Wallis 1997). 
On such background, a statistical test may be 
built by comparing, in terms of L-moments, 
the between-site variation with that expected 
for a homogeneous group. More specifically, 
consider a group with N weather stations. 
Also consider that each ith weather station/
site has record length equal to ni and at site 
sample L-CV denoted by t(i), t(i)

3,
 t(i)

4. The group 
average L-moment ratios (L-CV, L-skewness and 
L-kurtosis) can be calculated by equation 5. Note 
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that the contribution of each t(i) to the final value 
of tr is weighted according to each ni value.

( )
1

1

=

=

= ∑
∑

N i
iR i

N
ii

n t
t

n

 (5)

A measure of the between-site variation, in 
terms of L-CV, can be estimated by equation 6.

( )( )2

1

1

=

=

−
=
∑

∑

N i R
ii

N
ii

n t t
V

n
 (6)

Hosking & Wallis (1997) recommended 
the following steps to compare the between-
site variation with that expected for a real 
homogeneous group.

Step 1: Fit a “highly flexible” distribution 
to the regional average L-moments ratios. With 
“highly flexible” Hosking & Wallis (1997) meant 
a function capable of mimicking a range of 
different distributions, such as the generalized 
extreme value, the Pearson type III and the 
generalized logistic distributions, which are 
usually used to fit extreme rainfall data. As 
previously described, the four-parameter Kappa 
distribution fitted through the L-moments 
method is widely used for such a purpose 
(Hosking & Wallis 1997, Bradley 1998, Santos et 
al. 2011, Basu & Srinivas 2013, Sung et al. 2018).

Step 2: Use the Kappa distribution to 
simulate a large number of extreme rainfall 
series. The number and length of the simulated 
series must be same as those of the sites/
weather stations forming the group. Since 
all synthetic series were generated by the 
same (Kappa) distribution their pooling is, by 
definition, homogeneous. They also present no 
serial nor cross correlations.

Step 3: Use equation 6 to calculate the 
mean ( .µV SIM) and the standard deviation ( .σV SIM) 
of all  values of the simulated group of series. 
The V.SIM values are obtained from equation 6. 
The H measure is then calculated by equation 7.

µ
σ
−

= v

v

VH  (7)

A group of series is regarded ‘acceptably 
homogeneous’  when H<1 .0 ;  ‘possible 
heterogeneous’ if 1<H<2 and ‘definitely 
heterogeneous’ when H>2 (Hosking & Wallis 
1997). Although it is possible to use the H 
statistic as a formal hypothesis test, accurate 
significance levels can only be obtained if the 
iid assumption of the series is meet and the 
true ‘regional distribution’ is Kappa (Hosking & 
Wallis 1997). As previously described, the critical 
limit H≤1.0 has been largely used to declare a 
region or group as ‘acceptable homogeneous’. 
The suitability of such a limit has been 
evaluated through Monte Carlo Simulation 
(described below). Finally, alternative measure 
of between-site dispersion can also be used. 
For instance, equation 7 may also be based on 
the relationship between L-CV and L-skewness 
or between L-skewness and L-kurtosis. 
However, such alternative measures lack power 
to discriminate between heterogeneous/
homogeneous groups (Hosking & Wallis 1997), 
hence they were not considered in this study.  

The initial number of groups were 
established through an interactive procedure 
that took into account cluster analyses (CA) 
and both D and H measures. The CA has been 
performed by using latitude, longitude and 
altitude of each weather station and the Ward’s 
hierarchical method (Hosking & Wallis 1997). All 
geographical information has been normalized. 
Finally, the spatial dependence of the sites 
forming the homogeneous groups has been 
assessed for all pairs of sites through Kendall’s 
tau (Genest & Favre 2007). 

Goodness-of-fit measure (Z)
Within a homogeneous group, the Z measure was 
used to evaluate the hypothesis that a candidate 
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distribution is the true underlying frequency 
distribution for such a group. Considering a 
three-parameter distribution fitted by the 
L-moments method the quality of such a fit may 
be evaluated by the following equation.

4 4 4

4

τ
σ

− +
=

Rt BZ  (8)

Where 4
Rt  is the group average L-Kurtosis;  is 

the L-Kurtosis of the candidate distribution and  
is the bias of 4

Rt . 
Once the iid assumption is meet, the Z 

measure is expected to present a standard 
normal distribution under the hypothesis 
that the candidate model is the true ‘regional 
distribution’ (Hosking & Wallis 1997, Sung et 
al. 2018). Therefore, a candidate distribution 
is frequently selected when |Z|≤1.64, which is 
expected to correspond to the 10% significance 
level (Sung et al. 2018). The following widely 
used three-parameter distributions have been 
considered in this study: Generalized Extreme 
Value distribution (GEV), the Pearson type III 
distribution (PE3) the Generalized Logistic 
(GLO) and the Generalized Pareto (GPA). The 
assumption that, under H0, the distribution 
of Z follows the standard normal distribution 
was also evaluated through sets of Monte Carlo 
simulations experiments.

Assessing uncertainties and constructing the 
‘regional/group growth curve’
Although the Z measure had been designed 
to identify candidate distributions capable of 
yielding accurate quantile estimates for the sites 
composing a homogeneous group, it does not 
give an estimate of uncertainties in quantile/
return-period predictions of the ‘pooled 
growth curve’. Thus, an estimate of uncertainty 
in return-period predictions is required for 
providing a measure of confidence in the use of 
the ‘regional distribution’ (Fowler & Kilsby 2003). 

The pooled uncertainty measure (PU; Robson & 
Reed 1999) quantifies the differences between 
each site growth curve factor and the pooled 
growth factor (equation 9). In this study, the PU 
has been calculated for the following return-
periods: 2, 5, 10, 20, 50, 100 and 1000 years. It was 
also multiplied by the group average of the AM 
series to reflect the group average uncertainty in 
millimetres (Fowler & Kilsby 2003) (equation 9).

( )21
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= −

=

=
∑
∑

P
t Ti

N

i i lnx ln

T N
ii

n
PU

n

 
(9)

Where i is the ith site, N is the number of 
sites within the homogeneous group, ni is the 
record length (years), XT is the T-year growth 
factor and P

TX  is the T-year pooled growth factor. 
By definition, the quantile function q(F) of the 
‘regional distribution’ – called regional growth 
curve – may be regarded as a dimensionless 
function common to all sites forming the 
homogeneous group. The quantile function of 
each site i, can be calculated by:

( ) ( )µ=i iQ F q F  (10)

Where µ is the index flood of the ith site, which 
usually assumes the value of the corresponding 
sample mean. 

Null-distributions of the H and Z measures: 
Monte Carlo simulations and R-codes
As previously described, the critical limit H≤1.0 for 
declaring a group as ‘acceptable homogeneous’ 
was initially proposed by Hosking & Wallis (1993) 
and it has been applied to different regions 
of the world with little or no evaluation of its 
suitability. This lack of evaluations is also 
true for the assumption that under H0 the 
distribution of the Z measure approaches the 
standard normal distribution. Therefore, the 
following Monte Carlo simulation experiment 
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is proposed to evaluate the suitability of both 
critical limits by constructing null distributions 
for H and Z measures.

Step 1: Select one of the three-parameter 
distribution used in this study.

Step 2: Use the selected distribution to 
simulate homogeneous groups of at-site extreme 
rainfall series. The number of homogeneous 
groups, the number of at-site series forming the 
groups and the length of each series considered 
in the sets of Monte Carlo simulations were 
the same as those obtained from the CIIAGRO 
(Figure 1b, next section). 

Step 3: Calculate both H and Z measures for 
each homogeneous groups. 

Step 4: Repeat steps 2 and 3 a large number 
of times (e.g. 10000 trials in each Monte Carlo 
experiment).

Step 5: From the results of step 4 calculate 
the percentage in which H<1.0 and the percentage 
in which Z selected the same distribution used 
in step 2.

Step 6: Select another three-parameter 
distribution and repeat steps 2 to 5. 

The use of the information depicted in 
Figure 1b in the step 3 of the Monte Carlo 
simulation facilitates the comparison between 
the simulated results and those found from 
the real data of the State of São Paulo. The 
simulated group that used the information 
from group 1 (2, 3 or 4) was named group A (B, 
C or D). Q-Q plots (Wilks 2011) have also been 

Figure 2. Computational algorithm allowing the selection of critical limits corresponding to pre-specified 
probabilities (α) of rejecting a true null hypothesis. 
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Figure 3. Null Distribution of the 
Heterogeneity Measure (H). The 
vertical and horizontal lines indicate 
the 90th percentile of the null 
distributions, which in a formal 
hypothesis test would correspond 
to 10% a significance level. The null 
distributions have been constructed 
considering four different three-
parameter distributions and 
different number of weather 
stations forming the homogeneous 
groups.

constructed to evaluate the departures of the 
null distribution of the Z measure from the 
normal standard distribution. Finally, since 
these controlled simulations follow the main 
steps proposed by Hosking & Wallis (1997), they 
can be easily applied in other regions or to new 
datasets. Thus, we present an R-code (Figure 
2 and Supplementary Material - Appendix) 
that may be used to perform all steps of the 
Monte Carlo simulations and, consequently, to 

construct null-distributions for both H and Z 
measures. The R-software is a free widely used 
computational environment (www.r-project.org). 

RESULTS AND DISCUSSION
Trends, serial correlations and the first use of 
the D measure
The Mann-Kendall test has been widely used 
in both meteorological and agrometeorological 



GABRIEL C. BLAIN et al. REGIONAL FREQUENCY ANALYSIS

An Acad Bras Cienc (2021) 93(1) e20190406 12 | 19 

studies to detect trends (Chandler & Scott 
2011). However, from a strictly mathematical 
standpoint, the rejection of its null hypothesis 
can only be taken as an evidence that the data 
are not independent and identically distributed 
(Chandler & Scott 2011). Therefore, of the 84 
series depicted in Figure 1a, 16 series (~15%) did 
not meet the iid assumption, according to the 
MK test. On the other hand, and considering that 
block maxima series are expected to present no 
serial correlation nor seasonality, of the 84 series 
depicted in Figure 1a, 68 can be regarded as free 
from trends at both 5 and 10% significance level 
(Chandler & Scott 2011). These 68 series can also 
be regarded as free from serial correlation, since 
the null hypothesis of the Wald-Wolfowitz Run 
test could not be rejected for any of them. 

As previously described, the D measure can 
also be applied before forming the homogeneous 
groups to flag those sites presenting gross 
errors (Hosking & Wallis 1997). Two out of these 
70 series presented D measures larger than the 
critical value. As previously described, when 
applied at the outset of the analysis, i.e. before 
forming the homogeneous groups, this latter 
measure of discordance can be used to flag 
sites, which may present gross errors. Hence 
the RFA were applied to the remaining 70 series 
(Figure 1b; next section).

The initial number of groups required to 
initialize a cluster analyses (CA) is always an 
arbitrary choice. In this study, this initial number 
was set to seven. Nevertheless, as described 
below, the RFA can objectively address the 
outcome of the CA. Thus, it provides a statistical 
basis for setting the final number of clusters/
groups in which the weather stations will be 
grouped. This initial number (seven) formed 
groups representing less than seven weather 
stations. Since the summary statistics of the RFA 
should only be applied to groups/regions with 
more than seven weather stations (Santos et al. 

2011), the CA was again initialized with the rainfall 
series clustered into six groups. Again, this latter 
number formed groups with less than seven 
weather stations. The CA was again performed 
with the rainfall series clustered into five 
groups. Since all clusters presented more than 
seven weather stations both D and H measures 
could be applied to objectively evaluate the 
outcomes of the CA. Although all groups could 
be regarded as ‘acceptably homogeneous’, two 
groups presented negative H values (Group 1: 12 
sites H=-0.33; Group 2: 30 sites H=0.23; Group 3: 
9 sites -0.15; Group 4: 7 sites H=0.60 and Group 5: 
10 sites H=0.36). This suggests that there is less 
dispersion among at-site sample L-CVs values 
than what is expected from homogeneous 
groups composed by iid series (Hosking & Wallis 
1997). Thus, the CA was again performed with 
the rainfall series clustered into four groups. All 
clusters presented more than seven weather 
(Table I) and all groups may be regarded as 
‘acceptably homogeneous’ since all of them 
presented H<1 (positives values). The D measure 
identified no discordance site within the groups 
(Table I). Therefore, testing the validity of the 
critical limit (H<1) proposed by Hosking & Wallis 
(1993) becomes the final step to declared these 
four groups as ‘acceptable homogeneous’. 

As previously described the suitability of 
the H≤1 limit was assessed by constructing null 
distributions for this heterogeneity measure. 
As exemplified in Figure 3a, b for groups B (that 
presents the highest number of weather stations; 
30) and C (that presents the lowest number 
of weather stations; 8), the critical limit H≤1 is, 
in general terms, a strict threshold regardless 
the true underlying regional distribution. This 
statement is supported by the fact that such 
critical value always fell before commonly 
used probability levels of rejecting a true null 
hypothesis - the 90th or 95th percentile of the 
null distributions, which in a formal hypothesis 
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test would correspond to 10 or 5% significance 
level (Wilks 2011; Figure 3a, b). In addition, the 
probability of falsely rejecting the hypothesis 
of homogeneity reaches its highest levels when 
the series forming the homogeneous group 
comes from a GLO distribution (Figure 3a, b). 
For this latter distribution, the null hypothesis 
was falsely rejected at rates of 32, 36, 28 and 
30% (H>1.0; Groups A to D; respectively). These 
rates are higher than those observed for the 
other distributions, such as the GEV: 27, 28, 
21, and 25% (GEV; Groups A to D; respectively). 
Since the results depicted in Figure 3a, b also 
holds true for the other two groups (A and D), 
we may assume that, at least for the state of 

São Paulo, the critical limit H≤1 is a conservative 
threshold for declaring a group of extreme-
rainfall series as ‘acceptably homogeneous’. It 
is also worth mentioning that the H measures 
of the four groups (Figure 1b and Table I) fell 
close to the central part of the null distribution 
regardless the three-parameter function used 
to simulate the homogeneous groups. Naturally, 
this latter feature has increased our confidence 
that the groups presented in Figure 1b are 
indeed homogeneous. Finally, the Kendall’s tau 
correlation indicated the presence of no spatial 
dependence among the sites forming each of 
the four groups. Therefore, we may assume 
that the series depicted in Figure 1b meet the 

Figure 4. Pooled uncertainty (mm) for different return periods and for different parametric distributions: 
generalized extreme value (GEV), generalized logistic (GLO), generalized normal (GNO) and Pearson type III (PE3). 
Groups 1 to 4 are presented in Figure 1.
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iid assumption (Basu & Srinivas 2013) and, 
considering both D and H measures, they can be 
pooled together into four homogeneous groups 
(Figure 1b). 

With regards to regional L-moments, the 
analysis of Figure 1b also suggests that the 
temporal variability of the one-day extreme 
rainfall data of groups 1, 2 and 3 are similar 
to each other, since the L-CV values found for 
these three groups are close to each other (0.17, 
0.15, 0.16, respectively). However, among these 
three groups, group 1 experienced more intense 

rainfall events than groups 2 and 3. This latter 
statement is based on the fact that, among 
these three groups, the highest L-sknewness 
value (0.25) was found in group 1 (Fowler & Kilsby 
2003). As expected, the group formed by weather 
stations situated in the coastal area of the State 
presented, among the four groups, the highest 
L-CV and L-skewness value. In other words, this 
latter region experienced the highest temporal 
variability of the one-day extremes with the 
most intense rainfall events.

Figure 5. Null Distribution of the goodness-of-fit (Z) Measure. a) The vertical and horizontal solid lines represent 
the percentiles of the null distributions associated with the original critical value (1.64). The vertical and 
horizontal dashed lines represents the 90th percentile of the null distribution, which in a formal hypothesis 
test would correspond to 10% a significance level. The null distributions have been constructed considering 
two different three-parameter distributions; b) and c) depict the Q-Q plot for Z values drawn from these two 
distributions.
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Regional distribution: the null distribution of 
the Z measure 
As previously described, once the iid assumption 
of the series forming a homogeneous group is 
meet, the Z measure is expected to follow the 
standard normal distribution under H0 (Sung 
et al. 2018). Consequently, the largely used 
|Z|≤1.64 critical limit is expected to represent 
the acceptance of the candidate distributions 
at the 10% significance level (Sung et al. 2018). 
According to this original limit the GEV is the 
only distribution that can be used to assess 
the probability of the rainfall series in the four 
groups (Table I). However, the GLO presented 
the lowest Z values for three groups (1, 2 and 
4). In addition, these two distributions (GEV 
and GLO) presented similar performances in 
respect to their pooled uncertainties measures 
in all groups (Figure 4a-d). Moreover, the GLO 
consistently presented the lowest PU values 
in all groups (including group 3 in which such 
distribution has been rejected by the original 
limit |Z|≤1.64). Naturally, this strongly suggests 
that the assumption that the Z measure always 
follows the standard normal distribution may 
not hold true. In other words, this feature 
suggests that the critical value (Z=1.64) may not 
be a suitable limit for evaluating the fit of the 
GLO distribution within the framework of the 
RFA. On the other hand, the PU values depicted 
in Figure 4a-d also suggests that such a critical 
limit is suitable for the other three distributions 
(GEV, GNO and PE3). This inference is based on 
the fact that the highest PU values is always 
observed for those distributions presenting 
|Z|>1.64. Finally, as observed in studies such as 
Ghiaei et al. (2018) and Sung et al. (2018), the GPA 
distribution performed poorly for all groups and 
was no longer considered in this study. 

Figure 5a depicts the null distribution of the 
Z measure for both GEV and GLO distributions. 
Although Figure 5a has been construct using 

data from group A, its results are equivalent to 
those found for the other three groups. As can 
be noted for the GLO distribution, the |Z|≤1.64 
limit leads to a number of false rejections 
considerably high (~ 2000 trials or 20%) than 
what would be expected for an experiment 
carried out at the 10% significance level (1000 
trials). On the other hand, by using the same 
limit |Z|≤1.64, the other three distributions (GEV, 
GLO and PE3) were rejected at rates consistent 
with such a significant level (~1000 trails or 10%; 
Figure 5a). These results can be further evaluated 
by a Q-Q plot constructed from |Z| values drawn 
from the GLO and GEV (Figure 5b, c). For the GLO 
distribution, the Q-Q plot clearly describes a 
remarkable departure from the quantiles of the 
standard normal distribution (Figure 5b, also in 
absolute values). Such a departure is particularly 
notable for |Z|≤0.80. However, when the |Z| 
values drawn from the GEV are used to construct 
the Q-Q plot (Figure 5c), this departure becomes 
notable only for |Z|≥2.50. This latter feature can 
also be observed for the other two distributions 
(GNO and PE3; not shown here for the sake of 
brevity) and it explains why the critical limit 
initially proposed by Hosking & Wallis (1993) 
|Z|=1.64 led to rejection rates close to 90% (95%) 
only for the GEV, GNO and PE3 distributions. This 
latter feature strongly suggests that the type of 
the distribution (GLO or GEV, GLO or GNO and 
GLO or PE3) is the key-factor defining the null 
distribution of the Z values. 

Finally, it becomes worth emphasizing that 
the null distributions depicted in Figure 5a - 
which presents a departure from the normally 
assumption - were constructed by means of the 
R-code described in this study. Therefore, such 
a code can be used to drawn critical values for 
both H and Z measure replacing the original 
values suggested by Hosking & Wallis (1993). By 
using this code, the new critical limit for the GLO 
distribution –associated with a 10% probability 
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of falsely rejecting a true H0 - is ~2.25. Therefore, 
we assume that both GEV and GLO can be used 
to assess the probability of the rainfall series in 
the four groups depicted in Figure 1b, with the 
GLO presenting the best performance. Naturally, 
the iid assumption has always to be meet.

The GEV-parameters (location, scale and 
shape) of each ‘regional distribution’ are, 
respectively: 0.85, 0.22 and -0.12 (group 1); 0.86, 
0.21 and -0.06 (group 2); 0.88, 0.25 and 0.10 
(group 3) and, 0.81, 0.26 and -0.15 (group 4). Apart 
from group 3, all groups presented negative 
shape parameters, which describe heavy-tailed 
distributions common to hydrological data 
(Gilroy & Mccuen 2012). The shape parameter 
assumed its lowest value within group 4 what 

indicates that, among all groups, this latter 
group presents the largest quantiles as the 
cumulative probabilities approach 1 (Wilks 
2011). As also expected for this pool of weather 
stations situated in the coastal area of the 
State, the scale parameter, which is analogue to 
the variance of a normal distribution (Delgado 
et al. 2010), assumed its highest value (0.26). 
Naturally, the parameters of the GLO distribution 
describe similar features for the four groups. 
For instance, the growth curve of group 4 (3) 
presents the highest (lowest) quantiles for each 
corresponding return-period. The growth curves 
(Figure 6) are also consistent with the L-CV and 
L-Skewness values presented in Figure 1b. For 
instance, the group presenting the highest 

Figure 6. Group quantile function fitted to weather stations situated in the State of São Paulo, Brazil. The groups 
have been formed under the framework of the regional frequency analysis with critical values adapted to this sub-
tropical region. The one-day rainfall values presented in each graph correspond to the following return period (in 
years): 2, 5, 10, 20, 50, 100 and 1000. The dashed lines represent the 95% confidence interval estimated by means 
of a parametric bootstrap procedure, based on the generalized logistic distribution.
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L-Skewness value (0.30; Group 4; Figure 6d) is 
that which presents, in general, the highest 
one-day rainfall totals for each return period 
considered in Figure 6. In addition, the range 
of the confidence intervals (CI) observed in 
each group do not vary monotonically among 
the different return periods (TR). For instance, 
considering groups 1 to 4, the range of the CI 
for TR =100 years are: 39 mm [176: 215] (Figure 
6a), 25 mm [169: 194] (Figure 6b), 33 mm [146: 
179] (Figure 6c) and 87 mm [194: 281] (Figure 6d), 
respectively. For TR =1000, these ranges are 137 
mm [274: 411] (Figure 6a), 87 mm [255: 342] (Figure 
6b), 87 mm [181: 268] (Figure 6c) and 324 mm [317: 
641] (Figure 6d). Future studies may evaluate the 
reasons leading for such behaviour of the CI 
values. Factors related to the different number of 
weather stations with different length of records 
(Table I), distinct inter-station distances and, 
naturally, the rainfall patterns observed within 
each group, may provide some explanation for 
such behaviour. The average (avg) and standard 
deviation (st) of the inter-stations distances 
observed within each group are: group 1 (avg=201 
km, st=69 km), group 2 (avg=243 km, st=59 km), 
group 3 (avg=119 km, st=36 km), group 4 (avg=203 
km, st=109 km).

As previously described, the growth curve 
for each weather station can be constructed 
by using the information depicted in Figure 
6a-d [q(F)] in equation 10 (the index flood are 
presented in Table 1; mean value of each at-site 
series). The GLO-parameters are: 0.93, 0.15, -0.25 
(group 1); 0.95, 0.15, -0.21 (group 2), 0.97, 0.15, -0.10 
(group 3) and 0.90, 0.19, -0.29 (group 4). 

CONCLUSION

The Regional Frequency Analysis can be used 
to assess the probability of daily-extremes of 
rainfall events in the State of São Paulo, Brazil. 

By means of this technique, data belonging to 
one of the largest weather station networks of 
the State have been pooled together into four 
homogeneous groups. The Generalized Extreme 
Value and the Generalized Logistic distributions 
can be used to assess the probability of such 
extremes within the four groups. 

Since there were a lack of studies addressing 
the use of the RFA under the climate conditions 
of the State of São Paulo, the suitability of 
the critical limits often used to declare a 
region/group as ‘acceptable homogeneous’ 
(H≤1.00) or to select a candidate distribution 
(|Z|≤1.64) has been evaluated. The limit H≤1.00 
is an appropriate (conservative) threshold for 
declaring a group of extreme-rainfall series as 
‘acceptably homogeneous’ in the State of São 
Paulo. However, particularly for the Generalized 
Logistic distribution, the limit |Z|≤1.64, which is 
expected to correspond to the 10% significance 
level, led to rejection rates of a true null 
hypothesis considerable higher than 20%. A 
further investigation of this feature indicated 
that Z values drawn from this latter distribution 
present a remarkable departure from the 
quantiles of the standard normal distribution, 
which in turn has been used to drawn critical 
values for this heterogeneity measure. Therefore, 
a new critical limit (|Z|≤2.25) – corresponding 
to a probability of 10% of falsely reject a true 
null hypothesis – has been drawn from null 
distributions constructed from sets of Monte 
Carlo simulations. These simulations were 
based on the climatic conditions of the State 
of São Paulo. For the other three distributions 
subjected to the above-mentioned investigation 
(Generalized Extreme Value, Generalized Normal 
and Pearson Type III), the limit |Z|≤1.64 leads to 
rejection rates of a true null hypothesis close 
to 10%. The Z values drawn from each of these 
distributions approach the quantiles of the 
standard normal distribution for |Z|≤2.50. In 
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other to facilitate the use of the RFA in future 
studies, an R-code (R-software; www.r-project.
org) capable of building null distributions for 
both H and Z measures has also been provided. 
Once the iid assumption is met, such a code 
may be used to drawn critical values for both H 
and Z measures derived from three-parameter 
distributions such as Generalized Logistic, 
Generalized Extreme Value, Generalized Normal 
Pearson Type III and Generalized Pareto.
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