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Abstract: Detrended fluctuation analysis and detrended cross-correlation analysis are
used in this study to identify and characterize correlated data. The objective of these
two techniques is to separate different fluctuations from the contributions due to
external trends by evaluating the autocorrelation and cross-correlation exponents, in
order to determine if scale properties persist with the size of the series. Two new
methodologies were extended from cross-correlation coefficients for local analysis, which
we call the automatic search procedure and correlation map. The simulations using the
Weierstrass-Mandelbrot functions enabled us to identify several properties inherent to
the magnitude, signal and original series. Also, the methodologies were applied to verify
the existence of scale property in these data.

Key words: Detrended fluctuation analysis, detrended cross correlation analysis, local
analysis, Weierstrass-Mandelbrot functions.

INTRODUCTION

In many situations, an observable variable is measured in successive intervals of time or space, which
forms a data series. To determine if the series exhibits a complex behavior, such as self-affinity, we
can express the autocorrelation by a power law. One possible analysis is the study of scale properties
of the fluctuations in the series, which allows the verification of correlations present in a signal
(autocorrelation) or across two distinct signals (cross-correlation).

Several mathematical tools that investigate and interpret the scale property fluctuations in
space/time series have been developed. Hurst (1951), was the first to identify a power law in a time
series. His study involved the problem related to water storage of the Nile River through rescaled (R/S)
analysis. He found that many of these records could be described by a relation of the type R/S ∼ νH,
where ν is the time scale used and H is the Hurst exponent, which determines the level of persistence
of the physical parameter of interest.

Peng et al. (1994) described the DFA - detrended fluctuation analysis, to quantify correlation
properties in non-stationary physiological time series. The application of this technique provided
evidence of a crossover phenomenon associated with a change in short and long range scale
exponents.
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Podobnik & Stanley (2008) developed an extension of DFA, the DCCA - detrended cross correlation
analysis, which is capable of investigating cross-correlations between different non-stationary
temporal series that are recorded simultaneously.

Zebende (2011) proposed a new method that is capable of quantifying the level of
cross-correlation between non-stationary time series, the CCC (cross-correlation coefficient), which
relates the coefficients according to the scale used. This function was defined in terms of the DFA and
DCCA methods and was initially applied to climate time series.

Two new methodologies are presented in this work for local analysis, the automatic search
procedure and the correlation map, which indicate the dependence of the coefficients with the scales
used and the number of records. Through the Weierstrass-Mandelbrot Functions we present several
properties of the original, signal and magnitude series, and show how each can be applied in different
situations. The original and signal series have linear properties and are related to fluctuations, which
are useful for global analysis, whereas the magnitude series have nonlinear properties and is related
to signal intensification, which is useful for local analysis.

We also used spectral analysis, which allowed us to observe that the equation b = 2α + 1, Voss
(1988), where b is the spectral exponent and α is the DFA exponent that is applied to the original series,
can also be applied to the signal series.

DFA - DETRENDED FLUCTUATION ANALYSIS

Introduced by Peng et al. (1994), DFA is a method of scale analysis used to estimate exponents that

characterize long-range correlations. Consider the input integrated series yk =
k∑
i=1

xi, where xi =

yk+1 – yk and i, k ∈ {1, 2, ...,N}. The integrated series yk is divided into Mν windows of sizes equal to ν
for the calculation of the average or the linear trend in each window. Figure 1 illustrates this procedure.
The fluctuations around the average are showed in Figure 1(a) and the fluctuations around the trend
in Figure 1(b). The red lines represent, for each window m of size ν, the local averages in Figure 1(a)
and the local trends in Figure 1(b).

Figure 1. Example for autocorrelation analysis procedure: (a) fluctuation around the average and (b) fluctuations
around the trend. yk is the original input series (equivalent to the integrated series) and red lines represent, for
each windowm of size ν, the local averages in (a) and the local trends in (b).
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Figure 2. Example of transforming the series of successive differences into the integrated series: (a) the input series

yk; (b) the series of successive differences of yk, that is, xi = yk+1 – yk. The integrated series yk =
k∑
i=1

xi, where

i, k ∈ {1, 2, ...,N}, is obviously equal to (a).

From the series of successive differences or steps, one can obtain two additional series, one of
the magnitudes and one of the signals, respectively, defined by M = |xi| and S = sign (xi) Ashkenazy

et al. (2001). Then, the corresponding integrated series yMk and ySk are calculated using yk =
k∑
i=1

xi.

Figure 2 shows an example of transforming the series of successive differences into an integrated
series. A given input series yk is shown in Figure 2(a), the series of successive differences of yk, that

is, xi = yk+1 – yk, is shown in Figure 2(b). The integrated series yk =
k∑
i=1

xi, where i, k ∈ {1, 2, ...,N},

will be obviously the same of Figure 2(a). Then, one can compute the series of successive difference
magnitudes, |xi|, shown in Figure 3(a) and the series of successive difference signals, sign (xi), where
sign (xi) = 1, if xi > 0; sign (xi) = 0, if xi = 0 and sign (xi) = –1, if xi < 0, shown in Figure 3(b).
Then, these last two series are integrated: Figure 3(c) shows the integrated series of magnitudes, yMk =
k∑
i=1

|xi| and Figure 3(d) shows the integrated series of signals, ySk =
k∑
i=1

sign (xi). The decomposition

of the original series yk into magnitude and signal series represents a useful strategy that can lead
to a better characterization of the data under study. Each of these elements may exhibit different
behaviors that are mixed in the fluctuations of the original series.

The integrated series yk is then subtracted from the average or local trend for each window of
size ν, with the purpose to obtain the autocorrelation f for each window described by the pair of
parameters (m, ν), with 1 ≤ m ≤ Mν. There are two types of autocorrelation measures:

f 2DFA0 (m, ν) =
1

ν

Imax(m,ν)∑
k=Imin(m,ν)

[yk – ȳk (m, ν)]
2, (1)
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Figure 3. (a) the series of successive difference magnitudes, |xi|; (b) the series of successive difference signals,
sign (xi), where sign (xi) = 1, if xi > 0; sign (xi) = 0, if xi = 0 and sign (xi) = –1, if xi < 0; (c) the integrated series of

magnitudes, yMk =
k∑
i=1

|xi|; (d) the integrated series of signals, ySk =
k∑
i=1

sign (xi).

where the subscript 0 stands for the average, and

f 2DFA1 (m, ν) =
1

ν

Imax(m,ν)∑
k=Imin(m,ν)

[yk – pk (m, ν)]
2, (2)

for the trend, denoted by the subscript 1. In equation (1), the parameter ȳk (m, ν) is the average value
of yk in the window (m, ν), bounded by Imin(m,ν) and Imax(m,ν). In equation (2) pk (m, ν) = a (m, ν) zk+
b (m, ν) is the first-order polynomial evaluated by the least squares method that expresses the linear
local trend of the series in the window (m, ν).

Finally, we calculate the average of the fluctuations, expressed by FX , for all m – th windows of
size ν:

F2X (ν) =
1

Mν

M(ν)∑
m=1

f 2X (m, ν) , (3)

where the subscript X can be DFA0 or DFA1. From the integrated series the previous steps are repeated
for other window sizes ν. The calculation for several window sizes is to obtain a relation between FX
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and ν. If the series has a scale property, we expect it to follow a power law given by FX ≈ να. For
a self-similar fractal process, FX increases with ν. This function can be linearized through a log-log
graph, where the value of α represents the angular coefficient of the best-fit straight line.

The increments are anti-correlated or anti-persistent if 0 < α < 0.5, which indicates that the values
or phenomena tend to revert in the future. The increments are uncorrelated if α = 0.5, that is, the
series equals to white noise, which is a random sign that has a constant power spectral density. The
increments are correlated or persistent if 0.5 < α < 1.0, which indicates that the values or phenomena
tend to maintain their courses in the future.

The signs are often corrupted causing trends, and such trends should be well distinguished and
eliminated from the fluctuations, allowing us to investigate the scaling behavior of these fluctuations.
DFA is capable of determining the scale behavior of the data within possible trends without knowing
its origin and form.

DCCA - DETRENDED CROSS CORRELATION ANALYSIS

DCCA was introduced by Podobnik & Stanley (2008), as a generalization of DFA, and it can be used in the
analysis of two non-stationary series to verify cross-correlations and long-range memory. Consider
two sets of data series, yk and y

′

k, of the same size N, with increments xi and x
′

i respectively. The
integration of these two series is given by,

yk =
k∑
i=1

xi and y
′

k =
k∑
i=1

x
′

i , (4)

where k = 1, 2, ...,N.
Each integrated series yk is now divided into Mν windows of size ν. In each window, described by

the pair of parameters (m, ν), with 1 ≤ m ≤ Mν, we calculate the fluctuation measure with three types
of cross-correlation estimators:

f 2DCCA0 (m, ν) =
1

ν

Imax(m,ν)∑
k=Imin(m,ν)

[yk – ȳk (m, ν)][y
′

k – ȳ
′

k (m, ν)], (5)

f 2DCCA1 (m, ν) =
1

ν

Imax(m,ν)∑
k=Imin(m,ν)

[yk – pk (m, ν)][y
′

k – p
′

k (m, ν)], (6)

f 2|DCCA1| (m, ν) =
1

ν

Imax(m,ν)∑
k=Imin(m,ν)

|[yk – pk (m, ν)][y
′

k – p
′

k (m, ν)]|. (7)

In equations (5), (6) and (7), ȳk and ȳ
′

k are the average values of, respectively, yk and y
′

k in the box
(m, ν) that is bounded by Imin(m,ν) and Imax(m,ν). Additionally, pk (m, ν) = a (m, ν) zk + b (m, ν) and
p
′

k (m, ν) = a
′
(m, ν) z

′

k + b
′
(m, ν) are the first-degree polynomials. The subscript |DCCA1| in equation

(7) uses the absolute value of the local fluctuations of each series.
In the sequence, the fluctuation function is calculated for each width ν by the equation (3), where

the subscript X indicates the method to be used, i.e., X = DFA0,DFA1,DCCA0,DCCA1 or |DCCA1|. If
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the series presents a scale property related to the cross-correlations, we expect it to follow a power
law FX ≈ νλ, where the exponent λ represents the measure of the cross-correlation between the two
analyzed series. In the case of autocorrelation analysis, the exponent λ = α also becomes equivalent
to the Hurst (1951) exponent or roughness, which is generally indicated by H. Its main advantage is to
allow the identification of the self-affinity and the long-range correlations in series with polynomial
tendencies that can hide correlations. The value of λ indicates the type of correlation between the
series, that is, as the exponent H, λ is related to the concept of persistence and antipersistence, as
was seen for α.

The DCCA cross-correlation coefficient σDCCA was proposed to quantify the cross-correlation
between two nonstationary series, Podobnik et al. (2011) & Zebende (2011). This coefficient is defined
for the analysis of each scale ν (width of the windows) through the ratio

σDCCA1 (ν) =
F2DCCA1 (ν)

FDFA1 (ν) F
′
DFA1 (ν)

. (8)

where σDCCA1 is a dimensionless quantity that varies in the range –1 ≤ σDCCA1 ≤ 1. Similar to the
standard correlation coefficient, σDCCA1 = 1 indicates a perfect cross-correlation, while σDCCA1 = –1
indicates a perfect anticorrelation. If σDCCA1 = 0, there is no cross-correlation between the series.
Since the DCCA coefficient is a function that depends on the scale ν, it is possible to observe how the
cross-correlation between the series behaves for different scales and to determine, for example, if
a high cross-correlation is valid for all scales or if there is a change of intensity in cross-correlation
depending on the scale.

SPECTRAL ANALYSIS

The discrete Fourier transform of the sequence fn of N terms is given by,

Fm =
1

N

N∑
n=0

fne–i2π
m
N n (9)

where 0 ≤ m ≤ N – 1 and 0 ≤ n ≤ N – 1. The power spectrum is expressed as,

Pm = [Re (Fm)2 + Im (Fm)2]
1
2 . (10)

The power spectrum of a completely random series is constant, that is, it does not exhibit any
spectral structure. Therefore, when analyzing the spectrum of any series we are interested in detecting
and interpreting the peaks that may exist and the frequencies to which they are associated. Many
physical variables have a certain behavior that can be predicted. In this direction, we can obtain a
certain proportionality of the power spectrum:

P (f ) =
1

fb
, (11)

or y = –bx, where y = log[P (f )] and x = log (f ), where b is the angular coefficient which is related to
the spectral exponent.

In this study the power spectrum was generated as a function of frequency through a FFT (Fast
Fourier Transform) algorithm. To reduce data dispersion, we smoothed the spectrum by calculating
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half of the spectral value at a point by summing the residuals of the previous and posterior values, that
is, P∗ (f ) =

1

4
P (f – 1) +

1

2
P (f ) +

1

4
P (f + 1), this smoothing is known as the Tukey-Hanning window.

Voss (1988) related the exponents b and α through the relation b = 2α + 1, where b is the spectral
exponent and α the DFA exponent.

WEIERSTRASS-MANDELBROT FUNCTION

The Weierstrass-Mandelbrot function, used in this study, is defined as,

f (x) =
∞∑

n=–∞
b–nα[1 – cos

(
bnx

)
], (12)

where b > 1 and 0 < α < 1. The function is continuous and has no derivative at any point. Ten curves
(with α varying from 0.1 to 1.0) were constructed with 5000 samples each. Figure 4 shows a subset of
these series, the first 300 samples. The original series are showed in Figures 4(a) and 4(b), where one
can see that the fluctuations attenuate with the increase of the exponent α, that is, the greater the
value of the exponent α, the smoother the resulting curve will be. For the sake of notation, we call the
function with α = 0.1 as W1, α = 0.2 as W2, and so on.

To achieve a better understanding of the global analysis through the determination of exponents
by DFA and DCCA, as well as to verify the reliability of the algorithm used, tests were performed to
obtain the same α exponents presented in the curves in Figures 4(a) and 4(b). For the fluctuations
analysis, a minimum window value ν = 5 was chosen, and this value was gradually increased.

The behavior of the fluctuations in the signal series (Figures 4(c) and 4(d)) is very similar to the
original series. Figures 4(e) and 4(f) show the magnitude series, where we can see that they exhibit few
fluctuations and have a different behavior compared to the curves for the signal and original series.
However, the magnitude series curves are similar to the original and signal series when the exponent
α is greater than 0.8.

Figure 5 illustrates the DFA0 and DFA1 curves that are related to the autocorrelation for functionW2
(α = 0.2). The original series is displayed in Figure 5(a), the signal series in Figure 5(b) and magnitude
series in Figure 5(c). The curves in Figures 5(a) and 5(b) tend to be parallel, which indicates that the
exponents α for both techniques are similar. However, the curves of the magnitude series shown in
Figure 5(c) have a different behavior; the DFA0 curve is linear, while the DFA1 curve shows ripples. The
analysis was performed for all of the series presented in Figure 4, and similar results were obtained.

Figure 6 shows the fluctuation analysis of the cross-correlation between the functions W3
(α = 0.3) and W7 (α = 0.7), where a similarity is observed with the curves in Figure 5. Like in Figure 5,
the original series is presented in Figure 6(a), the signal series in Figure 6(b) and the magnitude series
in Figure 6(c). The cross-correlation analyses were conducted for all pairs, for which similar results
were obtained. We chose the functions W3 and W7 to illustrate because they are not very close, like
for example the functions W2 and W3.

We plotted the best-fit straight lines for the points on the curves shown in Figures 5 and 6 to
obtain the autocorrelation and cross-correlation exponents presented in Table I. The exponents αO
that were obtained for the autocorrelation in W2 and W3 were practically identical to those shown
in Figure 4, validating the algorithm used. For the function W7, the obtained αO (0.644) through DFA1
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Figure 4. Records of 300 samples of the Weierstrass-Mandelbrot function: original series in (a) and (b) with various
α exponent, signal series in (c) and (d) and magnitude series in (e) and (f). The numbers from (1) to (10) indicate the
order in which each signal and magnitude series was obtained from the original series. For example, series (3) was
obtained from the original series with α = 0.3.

was a little far from the theoretical (0.7). The DFA0 and DFA1 curves provided similar exponents αS for
the functions W2 and W3, but not for the function W7. As expected, both the DFA0 and DFA1 estimates
confirmed that W2 and W3 are anti-persistent and W7 is persistent. Also, the relation λ ≈

(
α+ α

′)
/2

of Podobnik & Stanley (2008) was confirmed, where α and α
′
indicate the autocorrelation exponents of

the analyzed series. To be specific, for the original series, using the DFA0 estimate: (0.304 + 0.725) /2 =

0.514 ≈ 0.517 = λO and using the DFA1 estimate: (0.289 + 0.664) /2 = 0.477 ≈ 0.478 = λO. And, for
the original series, using the DFA0 estimate: (0.435 + 0.720) /2 = 0.578 ≈ 0.590 = λS and using the
DFA1 estimate: (0.384 + 0.644) /2 = 0.514 ≈ 0.504 = λS.
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Figure 5. DFA0 and DFA1 curves
for the autocorrelation of the
function W2. The original series
is showed in (a), the signal
series in (b) and the magnitude
series in (c).

Table I. Autocorrelation and cross-correlation exponents for W2, W3 and W7. αO and αS
are the autocorrelation exponents for the original and signal series, respectively,
while λO and λS are the cross-correlation exponents for the original and signal series,
respectively.

Exponents W2 W2 W3 W3 W7 W7 W3 & W7 W3 & W7

αO αS αO αS αO αS λO λS

DFA0 or DCCA0 0.199 0.460 0.304 0.435 0.725 0.720 0.517 0.590

DFA1 or DCCA1 0.194 0.392 0.289 0.384 0.664 0.644 0.478 0.504

For the local analysis we used the coefficients DFA1 and DCCA1 with a sliding box. This procedure
is illustrated for an arbitrary function in Figure 7(a). In this operation we move a box S, which is a series
subset, of a certain size N

′
along with the series. We calculate σDCCA1 for this same box S of size N

′
. As

can be seen in Figure 7(b), the box S is then divided into Mν = 5 windows, each one with size ν = 20.
From this, we calculate F to obtain, through equation (8), the autocorrelations and cross-correlation
of yk and y

′

k in the interval N
′
.

After calculating this coefficient, the box S is moved one step forward, maintaining the same
number Mν of windows and calculating a new coefficient σDCCA1 . This analysis is repeated until the
entire series of size N is surveyed with the same box S. Finally, the box of the same size N

′
is returned

to the beginning of the series of size N to make the same analyzes using other window values ν. With
this procedure we extended the methodology of analysis of the scale coefficients, where, by relating
the window ν to time (or space), we can obtain the coefficients σDCCA1 as a function of the scale ν and
the time t (or space z). This will result in the correlation map.

From the sliding box technique we also extended another methodology, which we call automatic
search procedure, in which the algorithm searches the average σ̄ of the coefficients σ, calculated for
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Figure 6. DCCA0 and DCCA1
curves for cross-correlation
between the functions W3 and
W7. The original series is
showed in (a), the signal series
in (b) and the magnitude series
in (c).

all window sizes ν in a single box S of size N
′
. This is performed by limiting the interval of σ̄. From the

initial position of box S we obtain the first value of σν, that is, σ1. The second value of the coefficient,
σ2, is obtained by creating a new division of the box S for other values of windows ν. This procedure
is repeated for various window sizes ν in the same box S in the same position. The same procedure as
before is followed by moving the box S one step forward, until the entire series of size N is surveyed.
The purpose here is to obtain the value of σ̄. This methodology is unique, because it can be performed
for all of the relative displacements between the series. The size of the box is an important parameter;
it should be small enough to allow local analysis, and at the time, large enough to ensure the statistical
significance of the fluctuation analysis.

In the automatic search procedure we evaluated the cross-correlation coefficients for the
magnitude, signal and original series for the Weierstrass-Mandelbrot functions. For example, for the
functions W2 and W3, with a sliding box of size N

′
= 200 points, Figures 8(a) and 8(b) show the

procedure considering σ̄ > 0.75 and σ̄ > 0.80, respectively. According to Figure 8(a), it is possible to find
values of σ̄ > 0.75 for the three series with a relative displacement DR = 0. For different displacements
between the functions W2 and W3 we noticed that the magnitude series identified a greater number of
coefficients, compared to the signal and original series. However, Figure 8(b) shows that some points
in the magnitude series have been lost, whereas there is no record for DR 6= 0 in both the signal
and original series. These results showed that the magnitude series is more favorable to determine
correlations with high-valued coefficients. Other tests were performed with different types of series
with similar results.

One can notice that Figure 8(a) has many points, for the magnitude series, because the function
W2 and W3 are close. However, if the functions are not very close, the diagram would be much less
populated. For instance, Figure 9 shows, only for themagnitude series, the automatic search procedure
for the average coefficient σ̄ between the functions W1 and W3. The condition σ̄ > 0.75 is shown in
Figure 9(a) and the condition σ̄ > 0.80 in Figure 9(b).
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Figure 7. Procedure for the local analysis procedure: (a) Two series, yk and y
′

k, with a moving box S with size N
′
. (b)

Detail of the same moving box S, now divided into Mν = 5 windows, that is,m varying from 1 to 5, with ν = 20 in
each sample.

To validate the automatic search algorithm we propose to find the same points highlighted in
Figure 8(b) for the magnitudes series using the correlation map, in order to analyze the coefficients
σν that are related in the calculation of each σ̄. We generate a map where the vertical axis shows
the variation of window ν, which ranges from 10 to 60 points. The horizontal axis shows the number
of samples and the colors indicate the values of the coefficient σν, in the range from the minimum
value (black) to the maximum value (red). In Figure 10(a) we show the graph of the automatic search
procedure and the map of correlations is presented in Figure 10(b). It is important to mention that in
Figure 10(b), the values of σν over the entire N extension of the series are associated in Figure 10(a)
to the condition DR = 0, again over the entire N extension. For any value of N, it is observed in Figure
10(b) that σ10, σ11, ..., σ60 are all greater than 0.8. The high correlations indicate that the subseries
contained in a box S have similar properties.

Similarly, Figure 11(a) shows three points or regions concentrated at DR = 190 with σ̄ > 0.80. This
information can be seen in more detail in Figure 11(b) as three regions, for different values of σν under
the condition σ̄ > 0.80. The correspondence between Figures 11(a) and 11(b) is indicated by dashed
black arrows. Negative correlations indicate that fluctuations in this interval tend to revert for values
of ν < 15. On the other hand, the banding pattern indicates a change in correlation σν for a fixed
window ν, for most of the range of 4000 analyzed points.

The third region in Figure 8(b), with DR = 690 under the condition σ̄ > 0.80 is detailed in Figure
12. In Figure 12(a) the single point is associated in Figure 12(b) with the region with the whole range
of values of σν. The few high correlations seen in Figure 12(b) indicate the bands given by the box S
where the subseries have similar properties. To be specific, the single point at N = 2300 and σ̄ > 0.80
in Figure 12(a) is associated with the region in Figure 12(b) with N between 2300 and 2500 with σ̄ > 0.79,
or if we extend the range, with the region with N between 2200 and 2700 points with σ̄ > 0.68.

With the automatic search procedure and the correlationmap we obtain new information showing
that the magnitude series identify local correlations that the signal and original series are not able to
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Figure 8. Automatic search procedure for the average coefficient σ̄ between the functions W2 and W3, as a function
of the series size N and the relative displacement DR. (a) With the condition σ̄ > 0.75. (b) With the condition σ̄ > 0.80
in (b). The magnitude series is displayed in (1), the signal series in (2) and original series in (3).

Figure 9. Automatic search
procedure for the average
coefficient σ̄ between the
functions W1 and W3 as a
function of the series size N and
the relative displacement DR,
only for the magnitude series.
(a) With the condition σ̄ > 0.75.
With condition σ̄ > 0.80. Notice a
much less populated diagram in
this figure when compared to
Figure 8. This is due to the fact
that now the two functions are
less close.

identify. As previously mentioned, the magnitude series is related to the intensification of the original
information, while the signal series is related to the direction of the information.

For the Weierstrass-Mandelbrot function W3, the non-smoothed power spectrum for the signal
series is shown in Figure 13(a) and the smoothed one in Figure 13(b). For the original series, the
non-smoothed power spectrum is displayed in Figure 14(a) and the smoothed one in Figure 14(b).
We applied the Tukey-Hanning filtering in both spectra. There is a clear linear behavior even after
smoothing, which is shown in the lower graphs. Therefore, it was possible to draw the best-fit straight
line for the points to obtain the spectral exponent b. We could confirm the Voss relation, b = 2α+1, by
comparing the spectral exponents indicated in each graph in Figures 13 and 14 with the autocorrelation
exponents listed in Table I. For the signal series, Table I provided b = 2 (0.435) + 1 = 1870,
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Figure 10. Analysis between the functions W2 and W3 for the relative displacement DR = 0 point. In (a) the vertical
axis represents the series size N and the horizontal axis represents the relative displacement DR between the
series for the condition σ̄ > 0.80. In (b) the vertical axis represents the window variation ν and the horizontal axis is
the size of the series N . The colors represent the values of σ. The solid black arrow indicates that the map of
correlations was generated from the automatic search procedure for DR = 0.

Figure 11. Analysis between the functions W2 and W3 for the relative displacement DR = 190 points. In (a) the
vertical axis represents the series size N and the horizontal axis represents the relative displacement DR between
the series for the condition σ̄ > 0.80. In (b) the vertical axis represents the window variation ν and the horizontal
axis represents the size of the series N. The colors represent the values of σ. The solid black arrow indicates that
the map of correlations was generated from the automatic search procedure for DR = 190. Each black dashed arrow
shows the relationship between the coefficients σν > 0.80 in (b) with the average σ̄ of these coefficients in (a).

An Acad Bras Cienc (2021) 93(4) e20200859 13 | 16



EULER B.S. MARINHO et al. EXTENDED METHODOLOGY FOR DFA AND DCCA

Figure 12. Analysis between the functions W2 and W3 for the relative displacement DR = 690 points. In (a) the
vertical axis represents the series size N and the horizontal axis represents the relative displacement DR between
the series for the condition σ̄ > 0.80 . In (b) the vertical axis represents the window variation ν and the horizontal
axis represents the size of the series, N . The colors represent the values of σ. The solid black arrow indicates that
the map of correlations was generated from the automatic search procedure for DR = 690. The black dashed arrow
shows the relationship between the coefficients σν > 0.80 in (b) with the average σ̄ of these coefficients in (a).

Figure 13. Power spectrum of
the function W3 for the signal
series, with the non-smoothed
spectrum at the top and the
smoothed one at the bottom.
The values obtained for the
spectral exponent b are
indicated at lower left of each
panel.
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Figure 14. Power spectrum of
the function W3 for the original
series, with the non-smoothed
spectrum at the top and the
smoothed one at the bottom.
The values obtained for the
spectral exponent b are
indicated at lower left of each
panel.

whereas b = 1800 resulted from Figure 13(a). And, for the original series, we obtained, respectively,
b = 2 (0.304)+1 = 1608 and b = 1770. Thus, the signal series yielded more accurate results than the
original series.

CONCLUSIONS

We have extended two methodologies for the local analysis of the coefficients: the automatic search
procedure and the correlation map, which are able to provide more detailed information about
the dependence of the coefficients with the size of the series and the used window. The main
characteristics inherent to the original, magnitude and signal series were presented, and the results
indicated that they have their own scaling properties. We note that very small and very large windows ν
are not suitable for fluctuation analysis. The autocorrelation exponents yielded DFA0 ≈ DFA1, for both
the signal and original series. On the other hand, the exponents for the magnitude series cannot be
considered for the global analysis, but they are essential for the local analysis. Through simulations
using the Weierstrass-Mandelbrot functions, the relation λ ≈

(
α+ α

′)
/2 was confirmed, where α

and α
′
indicate the autocorrelation exponents of the analyzed series and λ is the cross-correlation

exponent. Also, the spectral analysis showed that the relation b = 2α + 1 is valid for the signal and
original series.
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