INTRODUCTION

An Acad Bras Cienc (2022) 94(1): €20200001 DOI 10.1590/0001-3765202220200001

Anais da Academia Brasileira de Ciéncias | Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 | Online ISSN 1678-2690

www.scielo.br/aabc | www.fb.com/aabcjournal

CELLULAR AND MOLECULAR BIOLOGY

A SAS code to estimate phenotypic-
genotypic covariance and correlation
matrices based on expected value of
statistical designs to use in plant breeding

MEHDI RAHIMI & MATEO V. HERNANDEZ

Abstract: Phenotypic-genotypic covariance and correlation have been useful in crop
and animal breeding programs. In the study of diversity of natural populations and
different cultivars of plants that are examined based on statistical design, estimation
of genotypic-phenotypic covariance through expected value of statistical designs mean
square is hard and time-consuming when the number of studied traits is high. Moreover,
the lack of a program in this field and manual calculations make the estimation more
complicated. Therefore, in this study, one program was developed in SAS that can be
used to calculate the genotypic-phenotypic covariance matrix through the first part of
the program based on the expected value of applied statistical designs mean square.
Then, based on the covariance matrix computed from the previous design model, their
correlation matrix was calculated using the second part of the program based on the
interactive matrix language (IML) of SAS. The phenotypic-genotypic covariance matrices
of the 12 studied traits of rice are calculated based on this code. This program could
compute phenotypic-genotypic covariance and correlation matrices based on the
expected value of any statistical designs.

Key words: Computer program, covariance matrix, estimation, genetic correlation, plant
breeding, statistical design.

a population and is a major objective in plant
breeding (Hermisson & Wagner 2004, Lewontin

Diversity in plant species is extremely important
in plant breeding because it provides the basis
for effective selection of cultivars. The overall
diversity within a population (phenotypic
diversity) is due to the effects of genotype and
environment (Govindaraj et al. 2015). Phenotypic
changes are the visible variation in a trait
within a population. This variation consists of
two elements of environmental and genotypic
variation and therefore its value differs in
different environmental conditions. On the
other hand, genotypic variation is related to
genotypic difference between individuals within

2008).

Phenotypic variance (Vp) or observed
variance is composed partly of genetic or
heritable (Vg) and partly of non-heritable
(Ve) variation. The ratio of the total genotypic
variation to total phenotypic or observed
variation is termed as coefficient of heritability
in broad sense (Hill et al. 1998, Mather & Jinks
1977).

Phenotypic correlations between two traits
can be influenced by inheritance, environment,
or both. When the correlation is mainly genetic,
genetic advancement is of more significance in
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breeding programs. Genetic correlations indicate
the amount of covariance of two similar genes
or strong linkage in two different traits and the
correlation of the environment is due to this
fact that an environment can cause different
variances in the both traits (Sultan 2000, Wolf
et al. 1998).

One of the most important aims in plant
breeding is to increase the yield per unit area.
Finding suitable indices considering relationship
between yield and important agricultural traits
can play a significant role in selection plans for
improving yield (Solkner et al. 2008). In plant
breeding, correlation between traits is also
important because it measures amount and
type of genetic and non-genetic relationship
between two or more traits. Genotypic and
phenotypic correlations between different traits
may help the breeder in indirect selection for
important traits through less complex traits
that can be easily measured (Crossa et al. 2014,
Stinchcombe et al. 2012).

In study of chilli (Capsicum spp.) based
on morphological traits were used genetic
and phenotypic correlations and by using
these correlations, traits affecting chilli yield
were identified through path analysis (Deepo
et al. 2020). Also, in a study on seventy seven
rice genotypes, phenotypic and genotypic
correlations, genetic parameters and coefficients
of genotypic and phenotypic variation were
estimated by expected value of mean square of
sources of variation for the traits and used to
identify important traits (Parimala et al. 2020). In
other study on wheat, genetic and phenotypic
correlations were used to identify traits affecting
yield, and through these correlations an effective
step was taken to improve wheat yield (Kumari
et al. 2020).

Perhaps the most important activity in all
plant breeding programs is selection. Selection
plans such as mass selection, progeny selection
and recurrent selection are considered according

SAS CODE TO ESTIMATE COVARIANCE MATRICES

to crop pollination method, gene action type and
breeding purpose. The selecting action takes
place in both pure and segregated populations
(Acquaah 2009, Moreno-Gonzalez & Cubero
1993). Selection efficiency depends largely on
the genetic diversity of the population and
inheritance of the studied trait. The variation
can be obtained from estimated variance
components of a sample from total variance
(Hallauer 2007). To achieve this purpose, one of
the methods is to use evaluation of different
traits of individuals or different genotypes based
on repeated statistical designs and estimation
of phenotypic, genotypic and environmental
variance-covariance matrices through
expected value of desired statistical designs.
The phenotypic, genotypic and environmental
correlation matrices are estimated through
the above matrices (Roff 1997, Zeng et al. 1999).
Many studies have shown that plant breeders
have used phenotypic-genotypic variance-
covariance and correlation for direct and indirect
improvement of traits in different plants (Akhtar
et al. 2011, Malik et al. 2005, Munir et al. 2007,
Seyoum et al. 2012, Tripathi et al. 2011).

So far, no simple program has been
available to estimate these matrices through
the expected value of design. Therefore, the
aim of this research was to develop a SAS
program for estimating phenotypic, genotypic
and environmental variance-covariance and
correlation matrices through expected value of
desired statistical designs.

MATERIALS AND METHODS

Formulas for combined analysis based on
randomized complete block design (RCBD)

There are different designs to estimate
phenotypic and genotypic covariance based
on expected value of statistical designs such
as completely randomized designs (CRD),
randomized complete block design (RCBD),
and split-plot designs in one or several

An Acad Bras Cienc (2022) 94(1) €20200001 2|9



MEHDI RAHIMI & MATEO V. HERNANDEZ

environments. Here, estimation of phenotypic
and genotypic covariance is explained based
on combined analysis for randomized complete
block design and its formulas. However, based
on the expected value of other designs, this
covariance can also be calculated. In order to
estimate phenotypic and genotypic variance of
one trait, expected value of combined analysis
was used according to Table | and the following
relationships.

o2 () = 292 5 )
CT; (X) = w (2)
o (X)=a}(X)+ aj,(X)+ o] (3)

W where a?f is the phenotypic variance (Vp),
a;,genotypic variance (Vg), g2, genotype x
environment interaction variance (vVge) and g2,
environmental variance (Ve).

Moreover, phenotypic and genotypic
covariance of two traits was calculated according
to Table Il and the following relationships based
on the expected value of combined covariance
analysis.

MPge — MPe

T

(4)

o(x¥)ge =

Table I. The combined variance analysis table and
expected values of sources of variation for the trait x.

S.0V. DF. ss, = MS, | E(MS)
Env e-1 SSEnv. | MSEnv.
Rep(Env) e(r-1) SSr MSr
Trt t-1 SSg MSg
TrtxEnv (t-1)x(e-1) SSge | MSge

Error ex(t-1)x(r-1) SSe MSe

S.0.V.= sources of variation, DF.= degrees of freedom, SS =sum
of squares of trait x, MS = mean squares of trait x, E(MS )=
Expected value of MS, Env= environment, Rep=replication,
Trt= treatment, e= number of environment, r= number of
replication, t= number of treatment.

SAS CODE TO ESTIMATE COVARIANCE MATRICES

MPg— MPge

o (xy), = o(xy), + o(xy),, +o(xy), (6)

where o (xy), is the phenotypic covariance
(covp), a(xy),. genotypic covariance (Covg),
g(x};]gs,genotype x environment interaction
covariance (COVge) and a(xy),, environmental
covariance (COVe). Combined variance analysis
was performed for all the traits. If the effects
of the treatment and treatmentxenvironment
interaction for all of them are significant, the
traits are used to estimate phenotypic, genotypic
andenvironmentalvariance-covariance matrices
through expected value of the proposed design.

Development of a SAS code for phenotypic-
genotypic covariance and correlations
matrices

Here, we reported the development of a new SAS
macro which computes phenotypic and genetic
covariance as well as correlation matrices for
several traits based on combined analysis
(Supplementary Material-Table Sl). Although
this program is written for combined analysis
of variance, it can be used for any statistical
designs with some changes in the program. As

Table IIl. The combined covariance analysis table and
expected value of sources of variation for the trait x
andy.

S.OV. DF. SP, | MP_, | E(MP)
Env e-1 SPEnv | MPEnv
Rep(Env) e(r-1) SPr MPr
Trt t-1 SPg | MPg
TrtxEnv (t-1)x(e-1) SPge MPge

Error ex(t-1)x(r-1) SPe MPe

S.0.V.= sources of variation, DF.= degrees of freedom, SP¥=
sum of the products for the trait x and y, M, y= mean of the
products for the trait x and y, E(MP, )=Expected value of

MP, Env= environment, Rep=replication, Trt= treatment, e=
number of environment, r= number of replication, t= number
of treatment.
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an example, this macro has been done based
on a randomized complete block design (Table
SIl) and is presented with combined analysis
of variance SAS macro. Thus, researchers, by
comparing the program), could be able to modify
this SAS macro based on their desired statistical
designs (Table SI and SlI).

General features of the program: an example

In this study, the data of 12 measured traits of
30 rice lines were used which were performed in
a randomized complete block design with three
replications in two separate experiments, i.e.,
normal and drought stress conditions (Table
Sll1). Users can bring data in CVS Excel format like
sample data (Figure 1, Table SlII). General linear
models were used for analyzing experimental
design. In the INFILE section, path and name
of data must be specified and changed based
on user data (Figure 1). In the INPUT statement
of the program, the variables namely ENV, REP,
TRT and X1-Xn were internal to the program and
showed the environment, replication, treatment,
and number of traits (from one to n), respectively
(Figure 1). Data input can be changed based on
desired statistical designs and number of traits.
In the phenotypic covariance and correlation
matrices section, it should be specified that the
number of traits for Var and Format statement
such as Var x1-x12. Moreover, the ‘Proc export’

DetaCombined RCED ¢V " Wicrosal .

SAS CODE TO ESTIMATE COVARIANCE MATRICES

must specify the path for saving phenotypic
covariance matrix and phenotypic correlations
matrix (Figure 2).

The genotypic covariance and correlation
matrices section is used to estimate the
genotypic covariance and correlation matrices,
whose class and model statement must be
specified based on the desired statistical
designs for proc GLM (Figure 3). In the Data DoF,
the degrees of freedom are determined for the
sources of variation based on type of statistical
designs (Figure 3). In this section, some sources
of variation should be added or decrease based
on type of statistical designs used (Figure 3).

In the macro calculation section, the drop
column should be changed based on the
number of traits (Figure 4). In the next section,
the true variance of the sources of variation is
calculated based on the statistical designs used.
In next part of this section, these variances
need to be modified according to the desired
statistical designs (Figure 4). After that in the IML
section, the Read all var {} part must be changed
according to the number of traits. Moreover,
the TraitNames and Format parts should be
changed according to number of traits. Finally,
a path should be specified in the proc export to
save the genetic covariance matrix and genetic
correlations matrix.

TR
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Figure 1. The prepared and saved data for use in the program.
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B 595 545 Coe o el B T o o o e i —

@ File Edit View Tools Run Solutions Window Help

v - NSFEISAI B HUXXOS

*%% Phenotvpic Covariance & Correlation Matrices *#%% ;

Title2 'Phenotypic Covariance & Correlation Matrices';

EProc Corr Data = Raw nosimple cov noprob outp=CovCorrMatr noprint ;
Var x1 - x12 :* ¥You need to change here according to the number of traits ;

Run;
ElData Covar; Set CovCorrMatr ; if Type = "COV"; Drop Type !
EData Correl; Set CovCorrMatr ; if Type = "CCRR"; Drop TIvpe ;

Title2 'Phenotypic Covariance Matrix':

ElProe print data = Covar noobs;
Format X1-X12 8.3; * You need to change here according to the number of traits ;
Run;
Title2 'Phenotypic Correlation Matrix';
ElProc print data = Correl noobs;

Format X1-X12 8.3; * You need to change here according to the number of traits ;
Run;
R R R R R R R R R R KRR AR R R R R AR R R AR AR AR AR AR AR AR AR AR AR
* Writing Results at a EXCEL File, you need to change the route and name *
B of the file according to vour own specific Data 3

Eproc export data=Covar
outfile='D:\paper\paper-2019\A 5AS program to estimated phenotypic\sas-macro\New folder\Phenotypic Covariance Matrix.csv'
dbms=csv replace;

Flproe export data=Correl
outfile='D:\paper\paper-2019\A S5AS program to estimated phenotypic\sas-macro\WNew folder\Phenotypic Correlations Matrix.csv'
dbms=csv replace;

Run;
]
Qutput - (Untitled) | E] Log - (Untitled) | [E SAS Code for Phenoty... @ Results Viewer - SAS Ou...
Autosave complete & Di\paver\naper-2019\A SAS oroaram to esti

Figure 2. The phenotypic covariance and correlations matrix section.

83 SAS - [SAS Code for Phenotypic & Genetic Covariance & Correlations Matrices(Combined-RCBD design).SAS] s

[ﬁ File Edit View Toecls Run Solutions Window Help

Do dl &AL

o DR kX Q@

L M

dbms=csv replace;

*%% Genotypic Covariance & Correlation Matrices #¥%#% »

Elproc glm Data = Raw ocutstat=xl noprint;
class ENV EEP GEN; ***based on the desired design***;
model x1-x12 = ENV REP (ENV) GEN GEN*ENV / ss3; ***model should be based on the desired design**#*;

run;

FElData DoF ; Set X1; Keep source DF;

EData Error ; S5et DoF: If source = "ERROR": DFE0 = DF:; FKeep DFEO:
FDbata G ; Set DoF; If =ource = "GEH"; DFGO = DF; Keep DFGO;
EData GE ; S5et DoF: If source = "ENV*GEN"; DFGED = DF; Keep DFGEOD;
FData DF;

Merge Error G GE:

call symput ('DFE0',DFEQ} ;
%let DFE = &DFEOQ;

Call sympuct ('DFGO',DFGO)
%Zlet DFG= &DFGO ;

Call symput ('DFGED',DFGEQ) :
%let DFGE = &DFGEQ ;

Figure 3. The model section of used statistical design.
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&5 SAS - [SAS Code for Phenotypic & Genetic Covariance & Correlations Matrices(Combined-RCBD design)SAS] =

@ File Edit View Tools Run Solutions Window Help

v - DBR&nl 2@ o

mEl X O&

E #Macro calculate:
data x4;

Data ¥4;
Merge X3 DF:

Declare here the global macro variables:
nt : number of traits ,

nrep : number of replications ,

ENvVErepn

%Flet nt = 12;***number of traits ***;
%let nrep = 3;¥*¥¥*pnumbher of replication *#*¥;

Fdo j = 1 %to &nt;
f$let k = Zewval (&j+(3%&nt)):
%$let m = Feval (&j+(4*&nt)):;

mse&j = col&j / &DFE ;
msg&j = colak / &DFG :
m=ge&i]j = coliam / &DFGE ;
ge&sj = (msgesj -msesj) [ &nrep ;
g&j = (msg&j-msges&]j) / &envxrep ;
p&j = g&jtgesjimses] ;

tend;

RESULTS

The SAS macro is shown for estimating
variance-covariance matrix for 12 traits based
on combined analysis. This recommendation
can be changed for any number of traits as well
as for any experimental design. This program
stores the phenotypic and genotypic covariance
and correlations matrices based on desired
statistical designs and store it in a CVS Excel
format for any number of traits measured in the
path given to the program. The results are also
shown in the result viewer or output section of
the SAS program (Figure 5 and Table SIV to SVII).
Researchers can use the information stored in
Excel format for their breeding program. This
program as well as data and output files are
included in the supplemental data.

set X3 (drop=coll3-col3é):;***dropb colum should be changed based on the number of traits **¥%;

: product of multiplying environments by replications

%let envxrep = &;***multiplication of replication=environment#®##¥;

4
Figure 4. The macro calculated section for genotypic covariance and correlation matrices.

In first section of Figure 5, the phenotypic
covariance matrices of the 12 studied traits are
shown, and the same information is shown
in Table SIV. In the next section of Figure 5,
the correlation matrix of the 12 studied traits
is shown and in Table SV, the phenotypic
correlation matrix of 12 traits is stored in Excel
format. Also, in the following sections of Figure
5, the genotypic covariance matrix and then the
genotypic correlation matrix of the traits are
shown. The genotypic covariance matrix and
genotypic correlation matrix traits are stored in
Table SVI and SVII in Excel format, respectively.

DISCUSSION

The phenotypic and genotypic correlation
matrices are shown in Table SV and SVII,
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Figure 5. The output results.
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index (Almeida et al. 2019, Ghosh et al. 2018,

respectively. These correlations can be used in
correlational studies as well as path analysis
(Anilkumar et al. 2019, Jhanavi et al. 2019, Mishra
& Nandi 2018, Nirmal Raj & Gokulakrishnan 2018,
Shivakumar et al. 2018) to identify important
traits and used them in breeding programs.
Also, the phenotypic and genotypic covariance
matrices are shown in Table SIV and SVI,
respectively that the variances are located in the
diameter and covariance are placed outside the
diameter. These variances can be used selection

An Acad Bras Cienc (2022) 94(1)

Kour et al. 2018) studies as well as heritability of
traits (Banik et al. 2018, Kumar et al. 2019, Raval
et al. 2018).

In plant breeding programs, selection of
traits based on genetic correlations is more
beneficial because genotypic variance is passed
on to the next generation. Heritability was also
calculated based on the genotypic / phenotypic
variance ratio. Traits that have higher heritability
are easier to select. Evaluation of variability
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components and inheritance of traits help plant
breeders to improve crop. Breeders can use the
knowledge of genetic variability available among
and between crops as a guide to improving crop.
Genetic and phenotypic correlations for plant
breeding have been used in many researches
in recent years. The SAS program for calculating
genetic or phenotypic variance-covariance and
genetic or phenotypic correlation can be a
useful aid to plant and animal breeders and it
will prevent mistakes in manual calculation.

CONCLUSION

The SAS program reported here was easy to
use and the outputs were easy to understand
and user-friendly. This program could
compute phenotypic-genotypic covariance and
correlation matrices based on the expected
value of any statistical designs. The goodness
and attraction of this program is that it doesn’t
need to know the language of the SAS program
and the users can easily analyze data with this
program. The program is not computationally
intensive and should therefore run-on slower
computers. Users are advised against making
any changes to the program code based on your
need and your statistical design.
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