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A SAS code to estimate phenotypic-
genotypic covariance and correlation 
matrices based on expected value of 
statistical designs to use in plant breeding
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Abstract: Phenotypic-genotypic covariance and correlation have been useful in crop 
and animal breeding programs. In the study of diversity of natural populations and 
different cultivars of plants that are examined based on statistical design, estimation 
of genotypic-phenotypic covariance through expected value of statistical designs mean 
square is hard and time-consuming when the number of studied traits is high. Moreover, 
the lack of a program in this fi eld and manual calculations make the estimation more 
complicated. Therefore, in this study, one program was developed in SAS that can be 
used to calculate the genotypic-phenotypic covariance matrix through the fi rst part of 
the program based on the expected value of applied statistical designs mean square. 
Then, based on the covariance matrix computed from the previous design model, their 
correlation matrix was calculated using the second part of the program based on the 
interactive matrix language (IML) of SAS. The phenotypic-genotypic covariance matrices 
of the 12 studied traits of rice are calculated based on this code. This program could 
compute phenotypic-genotypic covariance and correlation matrices based on the 
expected value of any statistical designs.

Key words: Computer program, covariance matrix, estimation, genetic correlation, plant 
breeding, statistical design.

INTRODUCTION

Diversity in plant species is extremely important 
in plant breeding because it provides the basis 
for effective selection of cultivars. The overall 
diversity within a population (phenotypic 
diversity) is due to the effects of genotype and 
environment (Govindaraj et al. 2015). Phenotypic 
changes are the visible variation in a trait 
within a population. This variation consists of 
two elements of environmental and genotypic 
variation and therefore its value differs in 
different environmental conditions. On the 
other hand, genotypic variation is related to 
genotypic difference between individuals within 

a population and is a major objective in plant 
breeding (Hermisson & Wagner 2004, Lewontin 
2008).

Phenotypic variance (Vp) or observed 
variance is composed partly of genetic or 
heritable (Vg) and partly of non-heritable 
(Ve) variation. The ratio of the total genotypic 
variation to total phenotypic or observed 
variation is termed as coeffi cient of heritability 
in broad sense (Hill et al. 1998, Mather & Jinks 
1977).

Phenotypic correlations between two traits 
can be infl uenced by inheritance, environment, 
or both. When the correlation is mainly genetic, 
genetic advancement is of more signifi cance in 



MEHDI RAHIMI & MATEO V. HERNANDEZ  SAS CODE TO ESTIMATE COVARIANCE MATRICES

An Acad Bras Cienc (2022) 94(1) e20200001 2 | 9 

breeding programs. Genetic correlations indicate 
the amount of covariance of two similar genes 
or strong linkage in two different traits and the 
correlation of the environment is due to this 
fact that an environment can cause different 
variances in the both traits (Sultan 2000, Wolf 
et al. 1998).

One of the most important aims in plant 
breeding is to increase the yield per unit area. 
Finding suitable indices considering relationship 
between yield and important agricultural traits 
can play a significant role in selection plans for 
improving yield (Sölkner et al. 2008). In plant 
breeding, correlation between traits is also 
important because it measures amount and 
type of genetic and non-genetic relationship 
between two or more traits. Genotypic and 
phenotypic correlations between different traits 
may help the breeder in indirect selection for 
important traits through less complex traits 
that can be easily measured (Crossa et al. 2014, 
Stinchcombe et al. 2012).

In study of chilli (Capsicum spp.) based 
on morphological traits were used genetic 
and phenotypic correlations and by using 
these correlations, traits affecting chilli yield 
were identified through path analysis (Deepo 
et al. 2020). Also, in a study on seventy seven 
rice genotypes, phenotypic and genotypic 
correlations, genetic parameters and coefficients 
of genotypic and phenotypic variation were 
estimated by expected value of mean square of 
sources of variation for the traits and used to 
identify important traits (Parimala et al. 2020). In 
other study on wheat, genetic and phenotypic 
correlations were used to identify traits affecting 
yield, and through these correlations an effective 
step was taken to improve wheat yield (Kumari 
et al. 2020).

Perhaps the most important activity in all 
plant breeding programs is selection. Selection 
plans such as mass selection, progeny selection 
and recurrent selection are considered according 

to crop pollination method, gene action type and 
breeding purpose. The selecting action takes 
place in both pure and segregated populations 
(Acquaah 2009, Moreno-Gonzalez & Cubero 
1993). Selection efficiency depends largely on 
the genetic diversity of the population and 
inheritance of the studied trait. The variation 
can be obtained from estimated variance 
components of a sample from total variance 
(Hallauer 2007). To achieve this purpose, one of 
the methods is to use evaluation of different 
traits of individuals or different genotypes based 
on repeated statistical designs and estimation 
of phenotypic, genotypic and environmental 
variance-covariance matrices through 
expected value of desired statistical designs. 
The phenotypic, genotypic and environmental 
correlation matrices are estimated through 
the above matrices (Roff 1997, Zeng et al. 1999). 
Many studies have shown that plant breeders 
have used phenotypic-genotypic variance-
covariance and correlation for direct and indirect 
improvement of traits in different plants (Akhtar 
et al. 2011, Malik et al. 2005, Munir et al. 2007, 
Seyoum et al. 2012, Tripathi et al. 2011).

So far, no simple program has been 
available to estimate these matrices through 
the expected value of design. Therefore, the 
aim of this research was to develop a SAS 
program for estimating phenotypic, genotypic 
and environmental variance-covariance and 
correlation matrices through expected value of 
desired statistical designs.

MATERIALS AND METHODS
Formulas for combined analysis based on 
randomized complete block design (RCBD)
There are different designs to estimate 
phenotypic and genotypic covariance based 
on expected value of statistical designs such 
as completely randomized designs (CRD), 
randomized complete block design (RCBD), 
and split-plot designs in one or several 
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environments. Here, estimation of phenotypic 
and genotypic covariance is explained based 
on combined analysis for randomized complete 
block design and its formulas. However, based 
on the expected value of other designs, this 
covariance can also be calculated. In order to 
estimate phenotypic and genotypic variance of 
one trait, expected value of combined analysis 
was used according to Table I and the following 
relationships.

 (1)

 (2)

 (3)

W where is the phenotypic variance (Vp), 
genotypic variance (Vg), genotype × 

environment interaction variance (Vge) and  
environmental variance (Ve).

Moreover, phenotypic and genotypic 
covariance of two traits was calculated according 
to Table II and the following relationships based 
on the expected value of combined covariance 
analysis.

 (4)

 (5)

 (6)

where is the phenotypic covariance 
(COVp), genotypic covariance (COVg), 

genotype × environment interaction 
covariance (COVge) and  environmental 
covariance (COVe). Combined variance analysis 
was performed for all the traits. If the effects 
of the treatment and treatment×environment 
interaction for all of them are significant, the 
traits are used to estimate phenotypic, genotypic 
and environmental variance-covariance matrices 
through expected value of the proposed design.

Development of a SAS code for phenotypic- 
genotypic covariance and correlations 
matrices
Here, we reported the development of a new SAS 
macro which computes phenotypic and genetic 
covariance as well as correlation matrices for 
several traits based on combined analysis 
(Supplementary Material-Table SI). Although 
this program is written for combined analysis 
of variance, it can be used for any statistical 
designs with some changes in the program. As 

Table I. The combined variance analysis table and 
expected values of sources of variation for the trait x.

S.O.V. DF. SSx MSx E(MSx)

Env e-1 SSEnv. MSEnv.

Rep(Env) e(r-1) SSr MSr

Trt t-1 SSg MSg

Trt×Env (t-1)×(e-1) SSge MSge

Error e×(t-1)×(r-1) SSe MSe

S.O.V.= sources of variation, DF.= degrees of freedom, SSx=sum 
of squares of trait x, MSx= mean squares of trait x, E(MSx)= 
Expected value of MS, Env= environment, Rep=replication, 
Trt= treatment, e= number of environment, r= number of 
replication, t= number of treatment.

Table II. The combined covariance analysis table and 
expected value of sources of variation for the trait x 
and y.

S.O.V. DF. SPxy MPxy E(MPxy)

Env e-1 SPEnv MPEnv

Rep(Env) e(r-1) SPr MPr

Trt t-1 SPg MPg

Trt×Env (t-1)×(e-1) SPge MPge

Error e×(t-1)×(r-1) SPe MPe
S.O.V.= sources of variation, DF.= degrees of freedom, SPxy= 
sum of the products for the trait x and y, MPxy= mean of the 
products for the trait x and y, E(MPxy)=Expected value of 
MP, Env= environment, Rep=replication, Trt= treatment, e= 
number of environment, r= number of replication, t= number 
of treatment.
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an example, this macro has been done based 
on a randomized complete block design (Table 
SII) and is presented with combined analysis 
of variance SAS macro. Thus, researchers, by 
comparing the program), could be able to modify 
this SAS macro based on their desired statistical 
designs (Table SI and SII).

General features of the program: an example
In this study, the data of 12 measured traits of 
30 rice lines were used which were performed in 
a randomized complete block design with three 
replications in two separate experiments, i.e., 
normal and drought stress conditions (Table 
SIII). Users can bring data in CVS Excel format like 
sample data (Figure 1, Table SIII). General linear 
models were used for analyzing experimental 
design. In the INFILE section, path and name 
of data must be specified and changed based 
on user data (Figure 1). In the INPUT statement 
of the program, the variables namely ENV, REP, 
TRT and X1-Xn were internal to the program and 
showed the environment, replication, treatment, 
and number of traits (from one to n), respectively 
(Figure 1). Data input can be changed based on 
desired statistical designs and number of traits. 
In the phenotypic covariance and correlation 
matrices section, it should be specified that the 
number of traits for Var and Format statement 
such as Var x1-x12. Moreover, the ‘Proc export’ 

must specify the path for saving phenotypic 
covariance matrix and phenotypic correlations 
matrix (Figure 2).

The genotypic covariance and correlation 
matrices section is used to estimate the 
genotypic covariance and correlation matrices, 
whose class and model statement must be 
specified based on the desired statistical 
designs for proc GLM (Figure 3). In the Data DoF, 
the degrees of freedom are determined for the 
sources of variation based on type of statistical 
designs (Figure 3). In this section, some sources 
of variation should be added or decrease based 
on type of statistical designs used (Figure 3).

In the macro calculation section, the drop 
column should be changed based on the 
number of traits (Figure 4). In the next section, 
the true variance of the sources of variation is 
calculated based on the statistical designs used. 
In next part of this section, these variances 
need to be modified according to the desired 
statistical designs (Figure 4). After that in the IML 
section, the Read all var {} part must be changed 
according to the number of traits. Moreover, 
the TraitNames and Format parts should be 
changed according to number of traits. Finally, 
a path should be specified in the proc export to 
save the genetic covariance matrix and genetic 
correlations matrix.

Figure 1. The prepared and saved data for use in the program.
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Figure 2. The phenotypic covariance and correlations matrix section.

Figure 3. The model section of used statistical design.
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RESULTS

The SAS macro is shown for estimating 
variance-covariance matrix for 12 traits based 
on combined analysis. This recommendation 
can be changed for any number of traits as well 
as for any experimental design. This program 
stores the phenotypic and genotypic covariance 
and correlations matrices based on desired 
statistical designs and store it in a CVS Excel 
format for any number of traits measured in the 
path given to the program. The results are also 
shown in the result viewer or output section of 
the SAS program (Figure 5 and Table SIV to SVII). 
Researchers can use the information stored in 
Excel format for their breeding program. This 
program as well as data and output files are 
included in the supplemental data.

In first section of Figure 5, the phenotypic 
covariance matrices of the 12 studied traits are 
shown, and the same information is shown 
in Table SIV. In the next section of Figure 5, 
the correlation matrix of the 12 studied traits 
is shown and in Table SV, the phenotypic 
correlation matrix of 12 traits is stored in Excel 
format. Also, in the following sections of Figure 
5, the genotypic covariance matrix and then the 
genotypic correlation matrix of the traits are 
shown. The genotypic covariance matrix and 
genotypic correlation matrix traits are stored in 
Table SVI and SVII in Excel format, respectively.

DISCUSSION

The phenotypic and genotypic correlation 
matrices are shown in Table SV and SVII, 

Figure 4. The macro calculated section for genotypic covariance and correlation matrices.
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respectively. These correlations can be used in 
correlational studies as well as path analysis 
(Anilkumar et al. 2019, Jhanavi et al. 2019, Mishra 
& Nandi 2018, Nirmal Raj & Gokulakrishnan 2018, 
Shivakumar et al. 2018) to identify important 
traits and used them in breeding programs. 
Also, the phenotypic and genotypic covariance 
matrices are shown in Table SIV and SVI, 
respectively that the variances are located in the 
diameter and covariance are placed outside the 
diameter. These variances can be used selection 

index (Almeida et al. 2019, Ghosh et al. 2018, 
Kour et al. 2018) studies as well as heritability of 
traits (Banik et al. 2018, Kumar et al. 2019, Raval 
et al. 2018).

In plant breeding programs, selection of 
traits based on genetic correlations is more 
beneficial because genotypic variance is passed 
on to the next generation. Heritability was also 
calculated based on the genotypic / phenotypic 
variance ratio. Traits that have higher heritability 
are easier to select. Evaluation of variability 

Figure 5. The output results.
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components and inheritance of traits help plant 
breeders to improve crop. Breeders can use the 
knowledge of genetic variability available among 
and between crops as a guide to improving crop. 
Genetic and phenotypic correlations for plant 
breeding have been used in many researches 
in recent years. The SAS program for calculating 
genetic or phenotypic variance-covariance and 
genetic or phenotypic correlation can be a 
useful aid to plant and animal breeders and it 
will prevent mistakes in manual calculation.

CONCLUSION

The SAS program reported here was easy to 
use and the outputs were easy to understand 
and user-friendly. This program could 
compute phenotypic-genotypic covariance and 
correlation matrices based on the expected 
value of any statistical designs. The goodness 
and attraction of this program is that it doesn’t 
need to know the language of the SAS program 
and the users can easily analyze data with this 
program. The program is not computationally 
intensive and should therefore run-on slower 
computers. Users are advised against making 
any changes to the program code based on your 
need and your statistical design.
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