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ABSTRACT
In this paper we generalize and extend to any Riemannian manifold maximum principles for
Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.
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1 INTRODUCTION

In this paper we generalize and extend to any Riemannian manifold maximum principles for
hypersurfaces of the Euclidean space with vanishing curvature function, obtained by Hounie-Leite
(1995 and 1999). In order to state our results, we need to introduce some notations and consider
some facts. Given an hypersurfadé of a Riemannian manifolty"+1, denote by (p), . . ., k,(p)

the principal curvatures o¥f” at p with respect to a unitary vector that is normalM@ at p. We

always assume that(p) < k2(p) < --- < k,(p). Therth mean curvature H,(p) of M" at p is

defined by

1
Hr(p) = Tar(kl(p)v"'skn(p))v (l)

()

whereo, : R" — Risthe rth elementary symmetric function. Itis easy to seesthistpositive on
the positive con®” = {(x1, ..., x,) € R" : x; > 0,Vi}. Denote by, the connected component
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of {0, > 0} that contains the vectdL, ..., 1) € R". Itwas proved in Garding (1959) thAt is an
open convex cone and that

rh>ro>---or,. (2)

Moreover onl",, 1 <r < n, it holds that (see Caffarelli et al. 1985, Proposition 1.1)

do,
Bxi

>0, 1<i<n. 3)

As it was observed in Hounie-Leite (1995), the suljset= 0} can be decomposed as the union of
r continuous leaveg,, ..., Z,, beingZ, the boundaryTI', of the cond",. Furthermore each leaf
Z; may be identified with the graph of a continuous function defined in the plafre- - +x, = 0.
Following Hounie-Leite(1995), we say that a paint (x1, ..., x,) € R" has rank- if exactly r
components of do not vanish.

As in Fontenele-Silva (2001), givgne M" and a unitary vectay, that is normal to” at p,
we can parameterize a neighborhoodwf containingp and contained in a normal ball of"+*
as

P(x) = exXpy(x + 1 (x)1,), 4

where the vectar varies in a neighborhooW of zero in7, M andu : W — R satisfies.(0) = 0
andVu(0) = 0, beingV the gradient operator in the Euclidean spdg@/. Choosing a local
orientationn : W — T;(W)M of M™ with n(0) = n,, we denote byH, (x) the rth mean curvature
of M" ate(x) with respect to;(x).

Given hypersurfaces/ and M’ of N"*! that are tangent gt and a unitary vecton, that
is normal toM at p, we parameterizé/ and M’ as in (4), obtaining correspondent functions
w:W — Randu' : W — R, defined in a neighborhood of zero inT,M = T,M’'. As in
Fontenele-Silva (2001), we say thet remains aboveé/’ in a neighborhood op with respect to
no If w(x) > w'(x) for all x in a neighborhood of zero. We say thet remains on one side of
M’ in a neighborhood op if either M is aboveM’ or M’ is aboveM in a neighborhood op.
Finally, denote by?) (p) = (ka(p), ..., k,(p)) and by?(p) = (ky(p), ..., k,(p)) the principal
curvature vectors gi of respectivelyM andM’.

We can now state our results:

THEOREM 1.a. Let M and M’ be hypersurfaces of N"+1 that are tangent at p, with normal vectors
pointing in the same direction. Supposethat M remainson onesideof M’ andthat H, (x) = H/(x)
in a neighborhood of zero in 7,M, for somer, 1 <r < n. If r > 2, suppose further that 7(p)
and 7(}7) belong to same leaf of {0, = 0} and the rank of either 7(}7) or 7(}7) isat least r.
Then, M and M’ must coincide in a neighborhood of p.

THEOREM 1.b. Let M and M’ be hypersurfacesof N1 with boundariesd M and 9 M’, respectively,
and assume that M and M’, aswell asaM and dM’, aretangent at p € dM N aM’, with normal
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vectors pointing in the same direction. Suppose that M remains on one side of M’ and that
H,(x) = H/(x) in aneighborhood of zero in T,M, for somer, 1 <r < n. Ifr > 2, suppose
further that 7(;9) and 7(p) belong to same leaf of {0, = 0} and the rank of either 7(p) or
7(19) isat least r. Then, M and M’ must coincide in a neighborhood of p.
As a consequence of Theorems 1.a and 1.b, we obtain the following corollaries, that extend
Theorem 0.1 in Hounie-Leite (1995) to any Riemannian manifold.

CoroLLARY 1.a. Let M and M’ be hypersurfaces of N"*1 that are tangent at p, with normal
vectors pointing in the same direction and with both having r-mean curvature equal to zero for
somer, 1 <r < n. For r > 2, suppose further that 7(19) and 7(17) belong to same leaf of
{o, = 0} and therank of either 7(1)) or 7(19) isat least r. Under these conditions, if M remains
ononeside of M’, then M and M’ must coincide in a neighborhood of p.

COROLLARY 1.b. Let M and M’ be hypersurfaces of N+ with boundaries 9 M and 9 M’, respec-
tively, so that M and M’, aswell as oM and oM’, aretangent at p € aM N IM’, with normal
vectors pointing in the same direction. Assume that M and M’ have r-mean curvature equal to
zero for somer, 1 < r < n. For r > 2, suppose further that 7(19) and 7(p) belong to same
leaf of {o, = 0} and the rank of either 7(17) or ﬁ(p) isat least r. Under these conditions, if M
remains on one side of M’, then M and M’ must coincide in a neighborhood of p.

The extension of Theorem 1.3 in Hounie-Leite (1999) is given in the following theorems.

THEOREM 2.a. Let M and M’ be hypersurfaces of N+ that are tangent at p, with normal vectors
pointing in the same direction. Suppose that M remains above M’ and that H/ > 0 > H,, for
somer, 2 <r < n. uppose further that Hj’.(p) >0, 1<j<r—1 andeither H.1(p) #0or
H! 1(p) # 0. Then, M and M’ must coincide in a neighborhood of p.

TuEOREM 2.b. Let M and M’ be hypersurfacesof N+ with boundariesd M and d M’, respectively,
and assume that M and M’, aswell asdM and 0M’, aretangent at p € oM N aM’ with normal
vectors pointing in the same direction. Suppose that M remains above M’ and that H > 0 > H,,
for somer, 2 < r < n. Suppose further that ij(p) >0, 1<j<r-—1 andether H,_1(p) #0
or H/ ,(p) # 0. Then M and M’ must coincide in a neighborhood of p.
It will be clear from the proofs that in Theorems 2.a and 2.b we only need to rekixe >
H,(x), in a neighborhood of zero i,M, andH/(p) > 0 > H,(p) instead ofH > 0 > H,
everywhere. For = 1, it must be observed that, in Theorems 2.a and 2.b, we can assume only that
H/(x) > H,(x) and thatM remains abové/’ in a neighborhood of zero ifi, M (see Theorems
1.1 and 1.2 in Fontenele-Silva (2001)).

2 PRELIMINARIES

In this section we will present the necessary material for our proofs.
Following Hounie-Leite (1995), we say thate R”" is an elliptic root ofo, if o, (x) = 0 and
eitherg%(x) >0, j=1,...,n, org%j(x) <0, j=1,...,n. Itis easy to see that any root of
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o1 = O is elliptic. For 2< r < n, we have the following criterion of ellipticity (see Corollary 2.3
in Hounie-Leite (1995) and Lemma 1.1 in Hounie-Leite (1999)):

Lemma 1. Let x € R" and assume that o,(x) = 0 for some 2 < r < n. Then, the following
conditions are equivalent

(i) xiselliptic.
(i) therankof x isatleast r.
(iii) o,41(x) # 0.
For the proofs of our results, we will also need of the following lemmas:

LemmA 2. If y, w belongtoaleaf Z; ofo, =0, w —y belongs to the closure O of O and either
yor wisan éliptic root, then y = w.

LemMA 3. For 1 <r <n,if x € R" satisfieso;(x) >0,1< j <r,thenx € T,.

Lemma 2is a particular case of Lemma 1.3 in Hounie-Leite (1995) and Lemma 3 follows from
the proof of Lemma 1.2 in Hounie-Leite (1999).

Ford = (n(n + 1)/2) + 2n + 1, write an arbitrary poinp atR¢ as

p:(r117"' ,rlnarZZa---Fva~~- 7r(n—1)narnn,rlv~-- 7rnvz9xl’--- 7xn)

or, in short, agp = (rij,ri, 2, x) With1 <i < j < n,andx = (x1,...,x,). A C1-function
® : I' — R defined in an open s&tof R? is said to be elliptic inp e I if

n

0P

> o, (P)&i&; > 0 forallnonzero (¢, &, ... ,&) € R". (5)
r4.
i<j=1"""

We say thatb is elliptic in T if @ is elliptic in p for all p € I'. Given a functionf : U — R of

classC?, defined in an open sé&t C R”, andx € U, we associate a poimt( f)(x) in R¢ setting

A(H)x) = (fij(x0), fi(x), f(x), x), (6)
32 f af . : ,
wheref;;(x) and f; (x) stand forax o (x) andg(x), respectively. Saying that the functidn
i j i

is elliptic with respect tof means thai\ (f)(x) belongs tal” and® is elliptic in A(f)(x) for all
x € U. For elliptic functions it holds the following maximum principle(see Alexandrov 1962):

MaxiMuM PRINCIPLE. Let f, g : U — R be C2-functions defined in an open set U of R" and let
® : ' c RY — R beafunction of class C*. Supposethat @ iselliptic with respect to the functions
L—1)f +1tg, t €0, 1]. Assume also that

AN X)) = P(A(®(X) ,VxeU, (7
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andthat f < gonU. Then, f < gonU unless f and g coincide in a neighborhood of any point
x, € U suchthat f(x,) = g(x,).

Consider now a hypersurfagé” ¢ N"*+1, apointp € M and a unitary vectay, that is normal
to M" at p. Fix an orthonormal basis,, ..., e, in T,M and introduce coordinates if,M by
settingr = ) _/_, x;e; forallx € T, M. Parameterize a neighborhoodpoih M as in (4), obtaining

: 0
a functionu : W ¢ T,M — R. Recall that(0) = 0 and—M(O) =0, foralli,1<i <n.
Choose a local orientation : W — T (W)M of M™ with n(O) = 1, and denote bW, the

second fundamental form af” in the directiony(x). Denote byy; (x) the vector%(x) and by
A(x) = (a;;(x)) the matrix ofA,, in the basisp; (x). In Fontenele-Silva (2001), it is proved the
existence of am x n-matrix valued functiold defined in an open s@®¢+1/2+n « N c R4,
beingN an open set aR”*1, containing the origin oR? such that

AAW @) = A(x), xeW. (8)

Moreover, we have (r,;, r;, z, x) diagonalizable for alir;;, r;, z, x) € R""+D/2+1 5\ Consider
the function®d, : R**+D/2+7 » N — R defined by

cI)r:%a,o)\oA, 9)
()
wherer(A(w)) = (A(Aw)), ..., A, (Aw)) for all w € ReC+D/D+n 5 N, Hereri(A(w)) <
.+ < A (A(w)) are the eigenvalues af(w). It follows from (1), (8) and (9) that

H,(x) = ©,(A(w)(x)) , xeW. (10)

The proof of Proposition 3.4 in Fontenele-Silva (2001) gives

n

Z Iree (rij,0,0,0) && = Z > (A((rij,O, 0,0))) &ée. (11)

k<t=1 k. t=

for all (;;, 0,0, 0) € R,
We also make use of the following lemma

Lemma 4. If A, € M"(R) is symmetric and £ (3.(4,)) > 0 (< 0) forall 1 <i < n,then
“. 9(o, 0 A
320 0M) 46k >0 (<0), VE= (... 8 £ 0 (12)

0A;;
ij=1 Y

The proof of Lemma 4 follows from the proof of Lemma 3.3 in Fontenele-Silva (2001).

3 PROOFSOF OUR RESULTS

We will prove only Theorems 1.a and 2.a, since the proofs of Theorems 1.b and 2.b are analogous.
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Proor orF THEOREM l.a. Ifr = 1, the theorem follows from Theorem 1.1 in Fontenele-Silva
(2001). Thus, we assume that2r < n. The assumptiot/, (x) = H/(x) in a neighborhoodV
of zero inT, M and (10) imply that

P, (AW (X)) = @, (A(W)(x)), x eW. (13)

On the other hand,_k)(p) and 7(]?) are both roots o6, = 0 and one of them is elliptic by
our hypothesis and Lemma 1. The fact tlidtremains on one side o¥’ implies that either
— — — — — . — —

k (p) — k' (p)or k' (p) — k (p) belongs td)d”. Since k (p) and k' (p) belong to same leaf of
{o, = 0} by assumption, it follows from Lemma 2 that

- -7
k(p)= K (p). (14)
For each € [0, 1], if we consider the hypersurfadé;, parameterized by

p(x) =exp,(x + (L= +1u)(x)n,) , x € W, (15)

we have thatM, is tangent to botiWf and M’ in p and thatM, is betweenM and M’ in a

neighborhood op. Using (14), we conclude that the principal curvature vectdepét p is equal
%

to 7(p) = k' (p), forallr € [0, 1]. This implies, by (8), that

~ % ﬁ
do AL = AW + tAW)O) = K (p) = K (p), (16)

forallr € [0, 1]. Since?)(p) = 7(17) is elliptic, it follows from (11) and Lemma 4 that eithér.

or —®, is elliptic along the line segment — t) A (1) (0) + tA(u')(0) C R*#+D/2+7 5 N  RY,
Since ellipticity is an open condition, restrictirg if necessary, we conclude by continuity and
by the compactness of [0,1] that eithey or —®, is elliptic in (1 — ) A(u)(x) + tA(u')(x), for

allz € [0, 1] andx € W. Consequently eitheb, or —®, is elliptic with respect to the functions
AL-0pHu+tu, t €[0,1]. So, by (13), we can apply the maximum principle to conclude that
w andy coincide in a neighborhood of zero. Therefoké,and M’ coincide in a neighborhood
of p. O

Proor oF THEOREM 2.a. By our assumptions it holds thdf(x) > H,(x) for x € W. This and
(10) imply that

P, (A(H(X) = D, (A(W(x)) =0, xeW. 7)

Since M remains abové/’, we have k. (p) — ?(p) e O". It follows from our assumptions
and Lemma 3 thaW(p) e T',. We claim that?(p) € aT,. Otherwise, by Lemma 4.1 in
Fontenele-Silva (2001), we would have tH_a>t(p) e I',, which is a contradiction sincé, (p) < 0.

So ?(p) € Z; = oT,. We can use Lemma 4.1 in Fontenele-Silva (2001) to conclude that
7(p) € Z, = daT,. Asin the proof of Theorem 1.a, we can use Lemmas 1 and 2 to obtain that
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— ) 00, . — — . _
k (p) = k' (p). Slncea— >0 onl',, 1<i=<n, k(p)= Kk (p)isanellipticrootofo, =0
Xi

— —
and k (p) = k' (p) € aT",, we deduce that

0o, —

Bx-(k(p))>0’ Vi=1,...,n. (18)

Now, proceeding as in the proof of Theorem 1.a, we concludelth& elliptic with respect to the
functions(1 — r)u + tu/, t € [0, 1]. It follows from (17) and the maximum principle thatand
' coincide in a neighborhood of zero. Therefak€andM’ coincide in a neighborhood ¢f. [
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RESUMO

Neste trabalho nés generalizamos e estendemos para uma variedade Riemanniana arbitraria principios dc
méaximo para hipersuperficies comgsima curvatura média zero no espaco Euclidiano, obtidos por Hounie-
Leite.

Palavras-chave: principio do maximo, hipersuperficie;ésima curvatura média.
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