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Height estimates and half-space theorems for
hypersurfaces in product spaces of the type
R×Mn
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Abstract: We obtain height estimates and half-space theorems concerning a wide class
of hypersurfaces immersed into a product space R×Mn , the so-called generalized linear
Weingarten hypersurfaces, which extends that one having some constant higher order
mean curvature.
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1 - INTRODUCTION

The last decades have seen a steadily growing interest in the study of a priori estimates for the
height function of constantmean curvature compact graphs or, more generally, compact hypersurfaces
with boundary having some constant higher order mean curvature. This problem has gained special
attention, being considered by several authors probably motivated by the fact that these estimates
turn out to be a very useful tool in order to investigate existence and uniqueness results for complete
hypersurfaces with constant higher order mean curvature, as well as to obtain information on the
topology at infinity of such hypersurfaces (see, for instance, Aledo et al. 2008, 2010, Alías & Dajczer
2007, Cheng & Rosenberg 2005, Espinar et al. 2009, Heinz 1969, Hoffman et al. 2006, Korevaar et al.
1992, 1989, Rosenberg 1993).

A height estimate of compact graphs with positive constant mean curvature in the Euclidean space
Rn+1 and boundary in a hyperplane, were first obtained by Heinz 1969. More specifically, denoting
by H the mean curvature, Heinz proved that the height of such a graph can rise at most 1/H. More
than twenty years after that, Korevaar et al. 1992 obtained a sharp bound for compact graphs and
for compact embedded hypersurfaces in the hyperbolic space Hn+1 with nonzero constant mean
curvature and boundary in a horosphere. More generally, given an arbitrary Riemannian manifold
Mn, height estimates in the product space R × Mn for constant mean curvature compact embedded
hypersurfaces with boundary in a slice were exhibited by Hoffman et al. 2006 and Aledo et al. 2008,
for n = 2, and by Alías & Dajczer 2007, for an arbitrary dimension n.

Regarding hypersurfaces having some constant higher order mean curvature, this was done
firstly by Rosenberg 1993, who proved height estimates for compact embedded hypersurfaces with

2010 Mathematics Subject Classification: Primary 53C42.

An Acad Bras Cienc (2021) 93(Suppl. 3)



EUDES L. DE LIMA & HENRIQUE F. DE LIMA HEIGHT ESTIMATES AND HALF-SPACE THEOREMS

zero boundary values either in the Euclidean space or in the hyperbolic space, generalizing the
previous estimates of Heinz and Korevaar. Later on, Cheng & Rosenberg 2005 were able to generalize
these estimates for compact graphs with some constant higher order mean curvature in the product
manifold R × Mn, with boundary in a slice. As application of their height estimates, they used
the Alexandrov’s reflection technique to prove that a noncompact properly embedded hypersurface
having constant higher order mean curvature inR×Mn, whereMn is a compact manifold with sectional
curvature bounded from below, has at least two ends or, equivalently, it cannot lie in a half-space.
The same technique was used by Hoffman et al. 2006 in order to obtain some information on the
topology at infinity of properly embedded surfaces of constant mean curvature in R × M2. More
recently, Rosenberg et al. 2013 showed that an entire minimal graph with nonnegative height function
in a product space R× Mn, whose base Mn is a complete Riemannian manifold having non-negative
Ricci curvature and with sectional curvature bounded from below, must be a slice.

Proceeding with the picture described above, in this paper our aim is to obtain height estimates
and half-space theorems of a wide class of hypersurfaces immersed into a product space R × Mn,
which extends that one having some constant higher order mean curvature. Precisely, we consider in
R × Mn generalized linear Weingarten hypersurfaces, by meaning that there exists a linear relation
involving some of the corresponding higher order mean curvatures (for more details, see Section 3).
We point out that our results offer improvements of those ones obtained in Alías & Dajczer 2007,
Alías et al. 2016, Cheng & Rosenberg 2005 and Hoffman et al. 2006. Furthermore, we are able to prove
half-space theorems for complete noncompact generalized linear Weingarten hypersurfaces inR×Mn,
generalizing some results of Cheng & Rosenberg 2005 and Hoffman et al. 2006. Recently, the authors
proved similar results for the case of hypersurfaces immersed into warped product manifolds (see de
Lima & de Lima 2018). However, as we will see, the results presented there do not contemplate those
obtained here.

This manuscript is organized in the following way: In Section 2 we introduce some basic facts
and notations that will appear in the proofs of our results. In particular, we recall some geometric
conditions which guarantee the ellipticity of the linearized operator of the higher order mean
curvature (see Lemmas 2 and 3). In Section 3, we establish our first main results concerning height
estimates of compact generalized linear Weingarten hypersurfaces in R × Mn (see Theorems 1 and
2). In Section 4, as application of our height estimates, we prove half-space theorems related to
noncompact generalized linear Weingarten hypersurface immersed in R × Mn, supposing that the
fiber Mn is compact (see Theorems 3 and 4). Finally, when Mn is not necessarily compact, using a
generalized version of the Omori-Yaumaximum principle for trace type differential operators, we prove
other half-space theorem, which is of independent interest by itself (see Theorem 5).

2 - PRELIMINARIES

In this section we will introduce some basic facts and notations that will appear along the paper.
In this sense, along this work we will always consider Mn a (connected) n-dimensional Riemannian
manifold and I ⊂ R an open interval in R. Let us denote by Mn+1

= I × Mn the product manifold
endowed with the Riemannian metric

〈 , 〉 = π∗I (dt
2) + π∗M(〈 , 〉M),
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where πI and πM denote the canonical projections from I×Mn onto each factor, 〈 , 〉M is the Riemannian
metric on the fiber Mn and I is endowed with the metric dt2. Observe that ∂t is a unitary vector field
globally defined on Mn+1

= I×Mn, which determines on Mn+1 a codimension one foliation by totally
geodesic slices {t}× M.

Throughout this paper, we will study (connected) two-sided hypersurfaces ψ : Σn → Mn+1

immersed into the product Riemannian manifold Mn+1
= I × Mn, which means that there exists a

unitary normal vector field N globally defined on Σn. As usual, we also denote by 〈 , 〉 the metric of Σn

induced via ψ. In this setting, we consider two particular functions naturally attached to the two-sided
hypersurface Σn, namely, the (vertical) height function h = πR ◦ ψ and the angle function Θ = 〈N, ∂t〉.

Let us denote by A : X(Σ) → X(Σ) the shape operator (or Weingarten endomorphism) of Σn in
Mn+1

= I × Mn with respect to N, which is given by AX = –∇XN, where ∇ stands for the Levi-Civita
connection of Mn+1. A fact well known is that the curvature tensor R of the hypersurface Σn can
be described in terms the shape operator A and of the curvature tensor R of the ambient space
Mn+1

= I× Mn by the Gauss equation given by

R(X, Y)Z = (R(X, Y)Z)> + 〈AX, Z〉AY – 〈AY , Z〉AX (2.1)

for every tangent vector fields X, Y , Z ∈ X(Σ), where ( )> denotes the tangential component of a vector
field in X(Mn+1

) along Σn.
Associated with the shape operator A there are n algebraic invariants, which are the elementary

symmetric functions Sr of its principal curvatures κ1, . . . , κn, given by

Sr = Sr(κ1, . . . , κn) =
∑

i1<...<ir

κi1 · · · κir , 1 ≤ r ≤ n.

As it is well known, the r-mean curvature Hr of the hypersurface Σn is defined by(
n
r

)
Hr = Sr(κ1, . . . , κn).

In particular, when r = 1,
H1 =

1

n
∑
i
κi =

1

n
tr(A) = H

is just the mean curvature of Σn. When r = 2, H2 defines a geometric quantity which is related to the
(intrinsic) scalar curvature S of the hypersurface. For instance, when the ambient space has constant
sectional curvature c, it follows from the Gauss equation that S = (n – 1)(c + H2). In general, it
also follows from Gauss equation of the hypersurface that when r is odd Hr is extrinsic (and its sign
depends on the chosen orientation), while when r is even Hr is an intrinsic geometric quantity.

It is a classical fact that the higher order mean curvatures satisfy a very useful set of inequalities,
usually alluded as Newton’s inequalities. For future reference, we collect them here. A proof can be
found in Hardy et al. 1989.

Lemma 1. Let ψ : Σn → Mn+1 be a two-sided hypersurface immersed into a product space Mn+1
=

I× Mn. For each 1 ≤ r ≤ n, if H1, . . . ,Hr are nonnegative on Σn, then:

(a) HrHr+2 ≤ H2r+1;
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(b) H1 ≥ H1/22 ≥ . . . ≥ H1/rr ,

and equality holds only at umbilical points.

For each 0 ≤ r ≤ n, one defines the r-th Newton transformation Pr : X(Σ) → X(Σ) of the
hypersurface Σn by setting P0 = I (the identity operator) and, for 1 ≤ r ≤ n, via the recurrence
relation

Pr =

(
n
r

)
HrI – APr–1,

Equivalently,

Pr =
r∑
j=0

(
n
j

)
(–1)r–jHjA

r–j,

so that the Cayley-Hamilton theorem gives Pn = 0. Observe also that when r is even, the definition of
Pr does not depend on the chosen unitary normal vector field N, but when r is odd there is a change
of sign in the definition of Pr . Moreover, it is easy to see that each Pr is a self-adjoint operator which
commutes with shape operator A, that is, if a local orthonormal frame on Σn diagonalizes A, then
it also diagonalizes each Pr . More specifically, if {E1, . . . , En} is such a local orthonormal frame with
A(Ei) = κiEi, then

Pr(Ei) = μi,rEi,

where
μi,r =

∑
i1<···<ir ,ij 6=i

κi1 · · · κir .

It follows from here that for each 0 ≤ r ≤ n – 1, we have

tr(Pr) = crHr , with cr = (n – r)

(
n
r

)
= (r + 1)

(
n

r + 1

)
.

Let ∇ stand for the Levi-Civita connection of the two-sided hypersurface Σn. Associated to each
Newton transformation Pr , one has the second order linear differential operator Lr : C∞(Σ) → C∞(Σ)

for r = 0, 1, . . . ,n – 1, defined by
Lru = tr(Pr ◦ hess u),

where hess u : X(Σ) → X(Σ) denotes the self-adjoint linear operator metrically equivalent to the
Hessian of u, Hess u, which are given by

hess u(X) = ∇X∇u and Hess (X, Y) = 〈hess u(X), Y〉,

respectively, for all X, Y ∈ X(Σ). In particular, L0 = ∆, the Laplacian of Σn, which is always an elliptic
operator in divergence form. More generally, it is well known that the operator Lr is elliptic if and only
if Pr is positive definite.

For our applications, it will be useful to have some geometric conditions which guarantee the
ellipticity of Lr when r ≥ 1. For r = 1, the next lemma assures the ellipticity of L1 (see Lemma 3.10 of
Elbert 2002).
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Lemma 2. Let ψ : Σn → Mn+1 be a two-sided hypersurface immersed into a product space Mn+1
=

I × Mn. If H2 > 0 on Σ, then L1 is elliptic or, equivalently, P1 is positive definite (for an appropriate
choice of the orientation N).

When r ≥ 2, the following lemma give us sufficient conditions to guarantee the ellipticity of Lr .
The proof is given in Proposition 3.2 of Cheng & Rosenberg 2005 (see also Proposition 3.2 of Barbosa
& Colares 1997).

Lemma 3. Let ψ : Σn → Mn+1 be a two-sided hypersurface (with or without boundary) immersed into
a product space Mn+1

= I×Mn with Hr+1 > 0 on Σn, for some 2 ≤ r ≤ n – 1. If there exists an interior
point p of Σn such that all the principal curvatures at p are nonnegative, then for all 1 ≤ k ≤ r the
operator Lk is elliptic and the (k+ 1)-mean curvature Hk+1 is positive.

Next, we close this section with the following formulas, which will be essential for the proofs of
our main results (for more details see Proposition 6 and Lemma 27 of Alías et al. 2013).

Proposition 1. Let ψ : Σn → Mn+1 be a two-sided hypersurface immersed into a product space
Mn+1

= I× Mn. For every r = 0, . . . ,n – 1:

(a) The height function satisfies

Hess h(X, Y) = Θ〈AX, Y〉 and Lrh = crΘHr+1,

where cr := (n – r)
(n
r
)
= (r + 1)

( n
r+1

)
.

(b) The angle function satisfies

LrΘ = –
cr

r + 1
〈∇Hr+1,∇h〉 –

crΘ
r + 1

(nH1Hr+1 – (n – r – 1)Hr+2)

– Θ
n∑
i=1

μi,rKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2,

where {E1, . . . , En} is an orthonormal frame on Σn diagonalizing A, KM denotes the sectional
curvature of the fiberMn, μi,r stands for the eigenvalues of Pk and, for every vector field X ∈ X(M),
X∗ is the orthogonal projection on TM.

3 - HEIGHT ESTIMATES OF GENERALIZED LINEAR WEINGARTEN HYPERSURFARCES

This section is devoted to establish our results concerning to estimates of the height function h of a
wide class of two-sided hypersurfaces immersed into a product Riemannian manifoldMn+1

= R×Mn,
which extends that one having some constant higher ordermean curvature. Specifically, let us consider
ψ : Σn → Mn+1 a two-sided hypersurface immersed into a product space Mn+1

= R × Mn. We say
that Σn is (r, s)-linear Weingarten, for some 0 ≤ r ≤ s ≤ n–1, if there exist nonnegative real numbers
br , . . . , bs (at least one of them nonzero) such that the following linear relation holds on Σn:

s∑
k=r

bkHk+1 = d ∈ R. (3.1)
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Thus, naturally attached to a (r, s)-linear Weingarten two-sided hypersurface we have the constant
d given by (3.1). We note that the (r, r)-linear Weingarten two-sided hypersurfaces are exactly the
two-sided hypersurfaces having d = Hr+1 constant. On the other hand, if the ambient space has zero
sectional curvature and taking into account that in this case S = H2, where S stands for the normalized
scalar curvature ofΣn, we observe that the (0, 1)-linear Weingarten two-sided hypersurfaces are called
simply linear Weingarten two-sided hypersurfaces. Throughout this paper, we will always denote by d
the constant given by equation (3.1).

Now, we are in position to state and prove our first main result. More precisely, we will establish
an estimate for the height function concerning (r, s)-linear Weingarten two-sided hypersurface in a
product space R× Mn.

Theorem 1. Let Mn+1
= R × Mn be a product space whose the fiber Mn has nonnegative sectional

curvature KM. Let ψ : Σn → Mn+1 be a compact (r, s)-linear Weingarten two-sided hypersurface with
(s + 1)-mean curvature Hs+1 6= 0 on Σn, for some 0 ≤ s ≤ n – 1, and boundary ∂Σn contained into
the slice {t0} × Mn for some t0 ∈ R. Suppose that the angle function Θ does not change sign on Σn.
Then,

(a) Either maxh 6= t0 and

Σn ⊂
[
t0, t0 +

1

min |H1|

]
× Mn,

(b) or minh 6= t0 and

Σn ⊂
[
t0 –

1

min |H1|
, t0
]
× Mn.

Proof. First of all it is clear from our hypothesis on the (s+1)-mean curvature that either maxh 6= t0
or minh 6= t0. So, we begin by assuming that maxh 6= t0 and let us choose an interior point p0
of Σn such that the height function reaches its maximum and the orientation so that Θ ≤ 0. Then,
Proposition 1 yields

0 ≥ Hess h(p0)(v, v) = Θ(p0)〈Av, v〉(p0), ∀v ∈ Tp0Σ,

that is, at p0 all the principal curvatures are nonnegative. Since we are assume that Hs+1 6= 0 on Σn,
we must have Hs+1 > 0 on Σn. In particular, we can apply Lemma 3 (or Lemma 2 if s = 1) to guarantee
the ellipticity of the operator Lk for every k = r, . . . , s and Hk+1 is positive on Σn for every 0 ≤ k ≤ s.
So, for instance, we have

Lsh = csΘHs+1 ≤ 0

and, consequently, by the weak maximum principle we obtain that h ≥ t0 on Σn.
Now let us consider on Σn the smooth function ϕ = ch + Θ, where c ∈ R is a positive constant

to be chosen in an appropriate way. Then Proposition 1 gives

Lkϕ = –
ck

k+ 1
〈∇Hk+1,∇h〉 –Θ

(
n

k+ 1

)(
nH1Hk+1 – (n – k – 1)Hk+2

–(k+ 1)cHk+1

)
–Θ

n∑
i=1

μi,kKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2, (3.2)
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where {E1, . . . , En} is an orthonormal frame on Σn diagonalizing A with PkEi = μi,kEi, for every i =
1, . . . ,n and k = r, . . . , s, and X∗ denotes the orthogonal projection on TM.

Since Hk+1 is positive for every k = 0, . . . , s, from Lemma 1 we get

H1Hk+1 – Hk+2 ≥ H1Hk+1 – H
2
k+1H

–1
k =

Hk+1

Hk

(
H1Hk – Hk+1

)
.

By using once more Lemma 1 it follows from here that

H1Hk+1 – Hk+2 ≥
Hk+1

Hk

(
H1Hk – H

(k+1)/k
k

)
= Hk+1(H1 – H

1/k
k ) ≥ 0.

Then, the previous inequality implies that

nH1Hk+1 – (n – k – 1)Hk+2 – (k+ 1)cHk+1 = (k+ 1)Hk+1(H1 – c)

+ (n – k – 1)(H1Hk+1 – Hk+2)

≥ (k+ 1)Hk+1(H1 – c) ≥ 0, (3.3)

provided that c := minH1.
On the other hand, since the operator Lk is elliptic for every k = r, . . . , s or, equivalently, Pk is

positive definite, we get that its eigenvalues μi,k are all positive on Σn. Then, by our assumption on
the sectional curvature KM of the fiber Mn we have

n∑
i=1

μi,kKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2 ≥ 0,

Hence, by using (3.3) and taking into account thatΘ ≤ 0, we infer from (3.2) and the previous inequality
that

Lkϕ ≥ –
ck

k+ 1
〈∇Hk+1,∇h〉. (3.4)

Proceeding, we introduce the following second order linear differential operator L : C∞(Σ) →
C∞(Σ) defined by

L =
s∑
k=r

(k+ 1)c–1k bkLk

= tr (P ◦ hess) ,

where the tensor P : X(Σ) → X(Σ) is given by

P =
s∑
k=r

(k+ 1)c–1k bkPk.

Since (k + 1)c–1k bk > 0 for every k = r, . . . , s and each operator Lk is elliptic (equivalently, each Pk is
positive definite) we see that the operator P is positive definite and, consequently, the operator L is
elliptic too. So, equation (3.4) and the fact that Σn is (r, s)-linear Weingarten imply that

Lϕ ≥ 0.
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By using once more the weak maximum principle for the elliptic operator L we get

ϕ ≤ max
∂Σ

ϕ ≤ ct0,

that is,
c(h – t0) ≤ 1.

Therefore, we conclude that
h ≤ t0 +

1

minH1
.

This proves (a).
In the case minh 6= t0, we choose an interior point q0 of Σn satisfying minh = h(q0) and the

orientation so that Θ ≥ 0. Then,

0 ≤ Hess h(q0)(v, v) = Θ(q0)〈Av, v〉(q0), ∀v ∈ Tq0Σ,

that is, at q0 all the principal curvatures must be nonnegative. So, reasoning as in the previous case
we see that each operator Lk is elliptic for every k = r, . . . , s, Hk+1 is positive onΣn for every 0 ≤ k ≤ s
and h ≤ t0 on Σn.

Besides, keeping the notation of case (a), it follows that ϕ = ch+Θ satisfies, by equations (3.2),
(3.3) and our assumption on KM,

Lkϕ ≤ –
ck

k+ 1
〈∇Hk+1,∇h〉,

which implies that Lϕ ≤ 0. Therefore, by weak maximum principle we conclude that

ϕ ≥ min
∂Σ

ϕ ≥ ct0,

that is,
h ≥ t0 –

1

minH1
.

This finishes the proof of the theorem.

Remark 1. We observe that the estimate given in Theorem 1 is sharp in the sense that it is reached
by the hemisphere Σ+ = {x ∈ Sn ; x1 ≥ 0} of the standard sphere Sn in Rn+1. Indeed, it follows
easily that Σ+ is a totally umbilical hypersurface (in fact, it is a vertical graph) with H1 = 1, boundary
{0}× Sn–1 ⊂ {0}× Rn and has the maximum height 1.

We observe that Theorem 1 above does not follow from Theorem 1 of de Lima & de Lima 2018,
because there the authors just assume that Hs+1 > 0 and, with this constraint, it is not possible to
obtain item (b) above.

Let us also point out that when s = r, that is, the hypersurface has constant (r+1)-mean curvature
Hr+1, Theorem 1 improves the estimate obtained in Theorem 4.1(i) of Cheng & Rosenberg 2005. Indeed,
it is easy to see that the inequality

1

minH1
≤ 1

H1/(r+1)
r+1

holds for every r = 0, . . . ,n – 1. Moreover, this result is also an extension of Theorem 3.5 of Alías &
Dajczer 2007 (case α = 0) and Proposition 1 of Hoffman et al. 2006 (case τ = 0).
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It is still worth pointing out that the same argument done in the proof of Theorem 4.2 of Cheng
& Rosenberg 2005 by using the Alexandrov reflection technique, enable us to get the following
consequence of Theorem 1 concerning compact embedded (r, s)-linear Weingarten hypersurfaces:

Corollary 1. Let Mn+1
= R × Mn be a product space whose the fiber Mn has nonnegative sectional

curvature KM. Let ψ : Σn → Mn+1 be a compact embedded (r, s)-linear Weingarten two-sided
hypersurface with (s + 1)-mean curvature Hs+1 6= 0 on Σn, for some 0 ≤ s ≤ n – 1. Suppose that
the angle function Θ does not change sign on Σn. Then Σn is symmetric about some slice {t0}× Mn,
t0 ∈ R, and the extrinsic vertical diameter of Σn is no more than 2

min |H1|
.

Proceeding, we are able to relax the assumption on the sectional curvature KM of the fiber Mn

letting it be bounded from below by a negative constant. For this, we will assume that the mean
curvature satisfies a certain condition, which holds automatically when the sectional curvature of the
fiber is nonnegative. In what follows, we will denote by c = minH1. So, we get the following result.

Theorem 2. Let Mn+1
= R × Mn be a product space whose the fiber Mn has sectional curvature

satisfying KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a compact (r, s)-linear
Weingarten two-sided hypersurface with (s + 1)-mean curvature Hs+1 6= 0 on Σn, for some 0 ≤ s ≤
n – 1, and boundary ∂Σn contained into the slice {t0} × Mn for some t0 ∈ R. Suppose that the angle
function Θ does not change sign on Σ and c(r + 1)minHk+1 > α(s+ 1)maxHk for every k = r, . . . , s.
Then,

(a) Either maxh 6= t0 and

Σn ⊂
[
t0, t0 +

(r + 1)d
(r + 1)dc – (s+ 1)αβ

]
× Mn,

where d is given by (3.1) and β =
∑s
k=r bkmaxHk.

(b) or minh 6= t0 and

Σn ⊂
[
t0 –

(r + 1)d
(r + 1)dc – (s+ 1)αβ

, t0
]
× Mn,

where d is given by (3.1) and β =
∑s
k=r bkmaxHk.

Remark 2. We note that in the case of hypersurfaces having constant (r+1)-mean curvature Hr+1, our
assumption on c in Theorem 2 becomes cHr+1 > αmaxHr . In particular, it is weaker than assumption
(7.77) of Theorem 7.19 of Alías et al. 2016. Moreover, the constant (r+1)d

(r+1)dc–(s+1)αβ
is just given by

Hr+1
cHr+1–αmaxHr . Furthermore, by Lemma 1 we have c ≥ H1/(r+1)

r+1 , which implies that

Hr+1

cHr+1 – αmaxHr
≤ Hr+1

H(r+2)/(r+1)
r+1 – αmaxHr

.

In this setting, our estimate improves that one given in Theorem 7.19 of Alías et al. 2016 for the compact
case.

On the other hand, we also observe that, since KM can be negative in Theorem 2, it does not follow
from Theorem 1 of de Lima & de Lima 2018.
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Proof of Theorem 2. In what follows, we keep the notations established in Theorem 1. Let us suppose
maxh 6= t0 first. Then, as in the previous result, taking the angle function Θ nonpositive, it is easy to
see that the operator Lk is elliptic for every k = r, . . . , s, the (k+ 1)-mean curvature Hk+1 is positive
for every 0 ≤ k ≤ s and h ≥ t0. Besides, by equations (3.4) and (3.3) we get that the function ϕ defined
in Theorem 1 satisfies

Lkϕ ≥ –
ck

k+ 1
〈∇Hk+1,∇h〉 –Θ

n∑
i=1

μi,kKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2. (3.5)

Since the eigenvalues μi,k are all positive on Σn and using our assumption on KM we have

μi,kKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2 ≥ –μi,kα|N

∗ ∧ E∗i |
2, (3.6)

for every i = 1, . . . ,n and k = r, . . . , s. With a straightforward computation, we can show that

|N∗ ∧ E∗i |
2 = |N∗|2|E∗i |

2 – 〈N∗, E∗i 〉
2 = |∇h|2 – 〈Ei,∇h〉2 ≤ 1,

which jointly with (3.6) imply that

n∑
i=1

μi,kKM(N
∗, E∗i )|N

∗ ∧ E∗i |
2 ≥ –αtr Pk = –αckHk ≥ –αckmaxHk.

From here and (3.5) we infer that

Lϕ ≥
s∑
k=r

(k+ 1)αΘbkmaxHk ≥ (s+ 1)αβΘ, (3.7)

where β =
∑s
k=r bkmaxHk. On the other hand, by using Proposition 1 we get that

Lh =
s∑
k=r

(k+ 1)c–1k bkLkh =
s∑
k=r

(k+ 1)ΘbkHk+1 ≤ (r + 1)dΘ. (3.8)

So, let us consider on Σn the smooth function given by

ϕ̃ = ϕ –
(s+ 1)αβ

(r + 1)d
h =

(r + 1)dc – (s+ 1)αβ

(r + 1)d
h+Θ.

Then, equations (3.7) and (3.8) yield

Lϕ̃ = Lϕ –
(s+ 1)αβ

(r + 1)d
Lh ≥ (s+ 1)αβΘ – (s+ 1)αβΘ = 0.

Hence, we can apply once more the weak maximum principle to conclude that

ϕ̃ ≤ max
∂Σ

ϕ̃ ≤ (r + 1)dc – (s+ 1)αβ

(r + 1)d
t0,

that is,
(r + 1)dc – (s+ 1)αβ

(r + 1)d
(h – t0) ≤ 1. (3.9)
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Now, the assumption on c gives

(r + 1)dc – (s+ 1)αβ = (r + 1)c
s∑
k=r

bkHk+1 – (s+ 1)α
s∑
k=r

bkmaxHk

=
s∑
k=r

bk
(
(r + 1)cHk+1 – (s+ 1)αmaxHk

)
> 0.

Therefore, from equation (3.9) we arrive to

h ≤ t0 +
(r + 1)d

(r + 1)dc – (s+ 1)αβ

as desired.
Finally, the case minh 6= t0 follows as above and this finishes the proof of the theorem.

As consequence of Theorem 2, the analogue of Corollary 1 also holds in this situation:

Corollary 2. Let Mn+1
= R × Mn be a product space whose the fiber Mn has sectional curvature

satisfying KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a compact embedded
(r, s)-linear Weingarten two-sided hypersurface with (s+1)-mean curvature Hs+1 6= 0 onΣn, for some
0 ≤ s ≤ n – 1. Suppose that the angle function Θ does not change sign on Σ and c(r + 1)minHk+1 >
α(s + 1)maxHk for every k = r, . . . , s. Then Σn is symmetric about some slice {t0} × Mn, t0 ∈ R, and
the extrinsic vertical diameter of Σn is no more than 2(r+1)d

(r+1)dc–(s+1)αβ
.

4 - HALF-SPACE THEOREMS

The aim of this section is to give nonexistence results, in the form of half-space theorems, concerning
complete two-sided hypersurfaces in the product Riemannian manifold R × Mn. We point out that
our results do not assume that some higher order mean curvature of the hypersurface is constant.
In this setting, when the fiber Mn is compact, our results generalize those one obtained by Cheng &
Rosenberg 2005 and Hoffman et al. 2006 for the case in which the mean curvature or some higher
order mean curvature is constant (see Theorems 3 and 4 below). Moreover, in the case in which Mn is
not necessarily compact, by using a generalized version of the Omori-Yau maximum principle for trace
type differential operators, we prove other interesting half-space theorem (see Theorem 5 below).

According to Hoffman et al. 2006, we say that a two-sided hypersurface in a product space R×Mn

lies in an upper or lower half-space if it is, respectively, contained in a region of R× Mn of the form

[a,+∞)× Mn or (–∞, a]× Mn,

for some real number a ∈ R.
As an application of Theorem 1 we get the following result:

Theorem 3. Let Mn+1
= R× Mn be a product space whose fiber Mn is compact and has nonnegative

sectional curvature. Let ψ : Σn → Mn+1 be a noncompact (r, s)-linear Weingarten two-sided properly
immersed hypersurface with (s+1)-mean curvature bounded away from zero, for some 0 ≤ s ≤ n – 1,
and such that its angle function does not change sign. Then, Σn cannot lie in a half-space.

An Acad Bras Cienc (2021) 93(Suppl. 3) e20190329 11 | 17



EUDES L. DE LIMA & HENRIQUE F. DE LIMA HEIGHT ESTIMATES AND HALF-SPACE THEOREMS

Proof. Let us assume by contradiction that Σn lies in an upper half-space, that is, Σn ⊂ [a,+∞)×Mn,
for some a ∈ R. For any number t0 > a, we denote by Σt0 the hypersurface

Σt0 = {(t, p) ∈ Σn ; t ≤ t0}.

Then, Σt0 is a compact (r, s)-linear Weingarten two-sided hypersurface with boundary contained into
the slice {t0} × M and minh 6= t0, because Mn is compact and the immersion is proper. Hence, by
Theorem 1 we must have Hs+1 > 0 on Σt0 and Σt0 ⊂ [t0 – 1

c(t0)
, t0]×Mn, where c(t0) = minΣt0 H1 > 0,

that is,
t0 – a ≤ 1

c(t0)
.

Because Hs+1 is bounded away from zero we get infHs+1 > 0, which implies infH1 > 0. Thus

t0 – a ≤ 1

c(t0)
≤ 1

infH1
.

Then choosing t0 large enough we reached a contradiction.
Finally, if Σn is contained into a lower half-space, we may apply the same argument above to

arrive at a contradiction.

Similarly, we can reason as in Theorem 3 to obtain as consequence of Theorem 2 the following
result, where we keep the notation c = minH1.

Theorem4. LetMn+1
= R×Mn be a product space whose fiberMn is compact with sectional curvature

satisfying KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a noncompact (r, s)-linear
Weingarten two-sided properly immersed hypersurface with bounded away from zero (s + 1)-mean
curvature, for some 0 ≤ s ≤ n – 1, and such that its angle function does not change sign. Suppose
that c(r + 1)minHk+1 > α(s+ 1)maxHk for every k = r . . . , s. Then, Σn cannot lie in a half-space.

In order to treat the case in which the fiber is not compact, we will make use of a generalized
version of the Omori-Yau maximum principle for trace type differential operators proved in Alías et al.
2016. Let Σn be a Riemannian manifold and let L = tr(P ◦ hess) be a semi-elliptic operator, where
P : X(Σ) → X(Σ) is a positive semi-definite symmetric tensor. Following the terminology introduced
by Pigola et al. 2005, we say that the Omori-Yau maximum principle holds on Σn for the operator L
if, for any function u ∈ C2(Σ) with u∗ = sup u < +∞, there exists a sequence of points (pj) ⊂ Σn

satisfying
u(pj) > u

∗ –
1

j
, |∇u(pj)| <

1

j
and Lu(pj) <

1

j

for every j ∈ N. Equivalently, for any smooth function u ∈ C2(Σ) with u∗ = inf u > –∞ there exists a
sequence of points (pj) ⊂ Σn satisfying

u(pj) < u∗ +
1

j
, |∇u(pj)| <

1

j
and Lu(pj) > –

1

j

for every j ∈ N.
We quote a suitable version of the Omori-Yau maximum principle for trace type differential

operators on a complete noncompact Riemannian manifold (see Theorem 6.13 of Alías et al. 2016).
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Lemma 4. Let Σn be a complete noncompact Riemannian manifold; let o ∈ Σn be a reference point
and denote by ro the Riemannian distance function from o. Assume that the sectional curvature of Σn

satisfies
KΣ ≥ –G2(ro), (4.1)

with G ∈ C1([0,+∞)) satisfying

G(0) > 0, G′(t) ≥ 0 and
1

G(t)
/∈ L1(+∞). (4.2)

Let P be a positive semi-definite symmetric tensor on Σn. If sup tr(P) < +∞, then the Omori-Yau
maximum principle holds on Σn for the semi-elliptic operator L = tr(P ◦ hess).

In particular, Lemma 4 remains true if we replace condition (4.1) by the stronger condition of Σn

having sectional curvature bounded from below by a constant.

Remark 3. As it is well known, especially significant examples of functions G satisfying the condition
(4.2) in Lemma 4 are given by (see, for instance Alías et al. 2016 and Pigola et al. 2005)

G(t) = t
N∏
j=1

logj(t), t � 1,

where logj stands for the j-th iterated logarithm.

Now, we are in ready to state and prove our last half-space theorem.

Theorem 5. Let Mn+1
= R×Mn be a product space whose fiber Mn has sectional curvature satisfying

KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a complete noncompact (r, s)-linear
Weingarten two-sided hypersurface with positive (s+ 1)-mean curvature, for some 1 ≤ r ≤ s ≤ n – 1.
Suppose that sup |Hr| < +∞ and, if s ≥ 2, there exists an elliptic point in Σn. Assume further that
the shape operator satisfies |A| ≤ G(ro), where G ∈ C1([0,+∞)) satisfies (4.2) and ro is the distance
function from a reference point of Σn. The following holds:

(a) either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) either infΘ < 0 or Σn cannot lie in a lower half-space.

Proof. We begin stating that the sectional curvature KΣ of Σ satisfies the assumption (4.1) of Lemma
4. Indeed, denoting by K the sectional curvature of the ambient space, it follows from Gauss equation
(2.1) that if {X, Y} is an orthonormal basis for an arbitrary plane tangent to Σn, then

KΣ(X, Y) = K(X, Y) + 〈AX, X〉〈AY , Y〉 – 〈AX, Y〉2

≥ K(X, Y) – |AX||AY| – |AX|2

≥ K(X, Y) – 2|A|2, (4.3)

where the last inequality follows from the fact that

|AX|2 ≤ tr(A2)|X|2 = |A|2
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for every unitary vector X tangent to Σn. Taking into account that

K(X, Y) = KM(X∗, Y∗)|X∗ ∧ Y∗|2

we obtain from our hypothesis on KM that K(X, Y) ≥ –α, because |X∗ ∧ Y∗|2 ≤ |X ∧ Y|2 ≤ 1. Hence,
since the shape operator satisfies |A| ≤ G(ro), equation (4.3) yields

KΣ ≥ –α – 2G2(ro),

which concludes the claim.
We prove part (a) first. To do this, we assume that Θ ≤ 0 and argue by contradiction, that is, we

suppose that Σn lies in an upper half-space. Equivalently, the height function of Σn satisfies h∗ =

infh > –∞.
We set the second order linear differential operator L : C∞(Σ) → C∞(Σ) by

L =
s∑
k=r

c–1k bkLk = tr (P ◦ hess),

where the tensor P : X(Σ) → X(Σ) is given by

P =
s∑
k=r

c–1k bkPk.

Since Σn has an elliptic point (that is, all the principal curvatures are positive in such a point), the
operator Lk is elliptic for every k = r, . . . , s or, equivalently, Pk is positive definite. Then, P is a positive
linear combination of the Pk’s, so that it is positive definite. Thus, L is a trace type elliptic operator.
Besides, by using the identity tr(Pk) = ckHk we obtain from Lemma 1 that

tr(P) =
s∑
k=r

bkHk ≤
s∑
k=r

bkH
k/r
r ,

which implies that sup tr(P) < +∞. Hence, we are ready to apply Lemma 4 to guarantee that the
Omori-Yau maximum principle holds on Σn for the operator L. Then, there exists a sequence of points
(pj) ⊂ Σn having the following properties:

limh(pj) = h∗, |∇h(pj)| <
1

j
and Lh(pj) > –

1

j
.

In particular, by Proposition 1 we get

–
1

j
< Lh(pj) =

s∑
k=r

Θ(pj)bkHk+1(pj) = dΘ(pj).

Since |∇h|2 = 1 –Θ2, we see that Θ(pj) → –1. So, taking limits we conclude that d ≤ 0, which gives
a contradiction.

In case (b), we reason again by contradiction, that is, by assuming thatΘ ≥ 0 and Σn is contained
into a lower half-space so that the height function satisfies h∗ = suph < +∞. Then, reasoning as in
part (a), it is not difficult to see once more that d ≤ 0, characterizing a contradiction. This concludes
the proof of the theorem.
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Let us observe that the proof of Theorem 5 remains true with the stronger assumption that KΣ is
bounded from below by a constant, which implies the validity of the Omori-Yau’s maximum principle.
For instance, reasoning as in the proof of Theorem 5 we see that KΣ is bounded from below since
sup |A|2 < +∞. On the other hand, the hypothesis on Hr in Theorem 5, sup |Hr| <∞, can be replaced
by supH1 <∞, because of Lemma 1. In this case, taking into account the relation

|A|2 = n2H21 – n(n – 1)H2,

it follows that the condition sup |A|2 < +∞ is equivalent to supH1 < +∞. This proves the following
result:

Corollary 3. Let Mn+1
= R×Mn be a product space whose fiber Mn has sectional curvature satisfying

KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a complete noncompact (r, s)-linear
Weingarten two-sided hypersurface with positive (s+ 1)-mean curvature, for some 1 ≤ r ≤ s ≤ n – 1.
Suppose that sup |H1| < +∞ and, if s ≥ 2, there exists an elliptic point in Σn. The following holds:

(a) either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) either infΘ < 0 or Σn cannot lie in a lower half-space.

In the case of hypersurfaces having constant mean curvature the assumption of existence of an
elliptic point can be dropped as follows.

Corollary 4. Let Mn+1
= R×Mn be a product space whose fiber Mn has sectional curvature satisfying

KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a complete noncompact two-sided
hypersurface with positive constant mean curvature and such that infH2 > –∞. The following holds:

(a) either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) either infΘ < 0 or Σn cannot lie in a lower half-space.

In other words we have:

(a’) There is no complete noncompact two-sided hypersurface having positive constant mean
curvature, angle function nonpositive and contained into an upper half-space;

(b’) There is no complete noncompact two-sided hypersurface having positive constant mean
curvature, angle function nonnegative and contained into a lower half-space.

Proof. It is enough to prove part (a). We suppose thatΘ ≤ 0 and let us reason by contradiction, that is,
infh = h∗ > –∞. As in the proof of Theorem 5 and by remark above, we might see that the Omori-Yau
maximum principle holds on Σn for the Laplacian. Then, there is a sequence of points (pj) ⊂ Σn

satisfying
limh(pj) = h∗, |∇h| < 1

j
and ∆h(pj) > –

1

j
.

By applying Proposition 1 we find
–
1

j
< ∆h(pj) = nΘ(pj)H1

Since the angle function is nonpositive, taking limits here we conclude that H1 ≤ 0, which gives a
contradiction.
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More generally, for hypersurfaces having some constant higher order mean curvature we get the
following result:

Corollary 5. Let Mn+1
= R×Mn be a product space whose fiber Mn has sectional curvature satisfying

KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a complete noncompact two-sided
hypersurface with positive constant (r + 1)-mean curvature, for some 1 ≤ r ≤ n – 1. Suppose that
supH1 < +∞ and, if r ≥ 2, there exists an elliptic point in Σn. The following holds:

(a) either supΘ > 0 or Σn cannot lie in an upper half-space;

(b) either infΘ < 0 or Σn cannot lie in a lower half-space.

In other words we have:

(a’) there is no complete noncompact two-sided hypersurface having Hr+1 > 0, an elliptic point, with
supH1 < +∞, angle function nonpositive and contained into an upper half-space;

(b’) there is no complete noncompact two-sided hypersurface having Hr+1 > 0, an elliptic point, with
supH1 < +∞, angle function nonnegative and contained into a lower half-space.

Finally we collect (a) and (b) in the previous corollaries in order to obtain the following result.

Corollary 6. Let Mn+1
= R×Mn be a product space whose fiber Mn has sectional curvature satisfying

KM ≥ –α, for some positive constant α ∈ R. Let ψ : Σn → Mn+1 be a complete noncompact two-sided
hypersurface with positive constant (r + 1)-mean curvature, for some 0 ≤ r ≤ n – 1. Suppose that
supH1 < +∞ and, if r ≥ 2, there exists an elliptic point in Σn. In addition, if r = 0 assume that
infH2 ≥ –∞. Then, either Θ does not vanishes identically or Σn cannot lie in a half-space. In other
words, there is no complete noncompact two-sided hypersurface having Hr+1 > 0, an elliptic point,
with supH1 < +∞, angle function vanishes identically and contained into a half-space.
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