
An Acad Bras Cienc (2013) 85 (4)

Anais da Academia Brasileira de Ciências (2013) 85(4):
(Annals of the Brazilian Academy of Sciences)
Printed version ISSN 0001-3765 / Online version ISSN 1678-2690

www.scielo.br/aabc

Assessing rainfall erosivity indices through synthetic 
precipitation series and artificial neural networks

ROBERTO A. CECÍLIO1, MICHEL C. MOREIRA2, JOSÉ EDUARDO M. PEZZOPANE1, 

FERNANDO F. PRUSKI3 and DANILO C. FUKUNAGA1

1Universidade Federal do Espírito Santo, Departamento de Engenharia Florestal, 
Alto Universitáro, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brasil

2Universidade Federal da Bahia, Instituto de Ciências Ambientais e Desenvolvimento Sustentável, 
Rua Prof. José Seabra, s/n, 47805-100 Barreiras, BA, Brasil 

3Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, Av. P.H. Rolfs, s/n, 36570-000 Viçosa, MG, Brasil

Manuscript received on March 12, 2012; accepted for publication on March 15, 2013

ABSTRACT
The rainfall parameter that expresses the capacity to promote soil erosion is called rainfall erosivity (R), and is 
commonly represented by the indexes EI30 and KE>25. The calculations of these indexes requires pluviographical 
records, that are difficult to obtain in Brazil. This paper describes the use of synthetic rainfall series to compute 
EI30 and KE>25 in Espírito Santo State (Brazil). Artificial neural networks (ANNs) were also developed to 
spatially interpolate R values in Espírito Santo. EI30 and KE>25 indexes values were close to those calculated 
on a homogeneous area according to the similarity of rainfall distribution; indicating the applicability of the use 
of synthetic rainfall series to estimate the R factor. ANNs had a better performance than Inverse Distance 
Weighted and Kriging to spatially interpolate rainfall erosivity values in the State of Espírito Santo.
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INTRODUCTION

Soil erosion is a widespread land degradation 
problem in many parts of the world. On-site and 
off-site costs of soil erosion reach about 44 billion 
dollars in the United States (Pimentel et al. 1995), 
4.2 billion dollars in Brazil (Hernani et al. 2002) and 
45.5 billion dollars in the European Union (Telles et 
al. 2011). Assessing the risk of erosion, predicting 
erosion rates and designing and evaluating different 
soil protection strategies is an essential tool for 
selecting soil and watershed best management 
practices. Mathematical models are used to 

quantify and predict soil losses. The universal soil 
loss equation (USLE) (Wischmeier and Smith 
1978) and the revised universal soil loss equation 
(RUSLE) (Renard et al. 1991) have been the most 
widely used models in predicting soil erosion losses 
(Baskan et al. 2010).

Rainfall is the main climatic characteristic that 
influences soil erosion, given the extraordinary 
importance of soil detachment processes due to 
drop impact and runoff shear. Among USLE/
RUSLE factors, the erosive capacity of rainfall 
is expressed as rainfall erosivity (R), commonly 
represented by the indices EI30 (Wischmeier and 
Smith 1958) or KE>25 (Hudson 1973).
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The main method to calculate rainfall erosi
vity values requires pluviographic records. This 
kind of information is difficult to obtain in Brazil 
due to the reduced number and inadequate spatial 
distribution of meteorological stations that are 
equipped to provide pluviographic data. This makes 
it very difficult to know an R factor for all of Brazil. 
On the other hand, some empirical equations can 
also estimate values of rainfall erosivity by using 
geographical coordinates or pluviometric records, 
such as annual and monthly rainfall averages (Silva 
2004, Hoyos 2005, Aquino et al. 2008, Capolongo 
et al. 2008, Zhang et al. 2008a).

Yu (2002) and Zhang et al. (2008b, 2010) 
assessed the ability of stochastic weather generators 
to generate daily rainfall synthetic series used to 
calculate the R factor. These generators have the 
potential to be used in Brazil to extend the rainfall 
erosivity index database.

Many authors (Qi et al. 2000, Silva 2004, Hoyos 
et al. 2005, Moreira et al. 2006, Yin et al. 2007, Men 
et al. 2008, Shamsad et al. 2008, Angulo-Martínez 
et al. 2009, Silva et al. 2010a, b, Alves Sobrinho et 
al. 2011) used spatial interpolation techniques like 
“inverse distance weighted”, “kriging” and “artificial 
neural networks” (ANNs) to create maps representing 
spatial distribution of R values. Since no single 
interpolation method among those available for spatial 
interpolation of R factor is optimal for all regions and 
all indices, it is very important to compare the results 
obtained through different methods, applied to each 
set of data (Goovaerts 1999, Beguería and Vicente-
Serrano 2006, Angulo-Martínez et al. 2009).

The ability of ANNs to use different input 
parameters makes them capable of solving complex 
problems from many areas (Sárközy 1999, Souza 
et al. 2006). The ANNs are cited as an alternative 
resource for estimating climatic variables that 
may replace the traditional interpolation methods 
(Białobrzewski 2008, Sivapragasam et al. 2010), 
including rainfall erosivity indexes as assessed by 
Moreira et al. (2006) for São Paulo State, Brazil.

In this paper we aimed at: a) calculating 
rainfall erosivity indexes EI30 and KE>25 using 
synthetic rainfall series for several locations in 
Espírito Santo State, Brazil; b) developing ANNs 
to spatially interpolate rainfall erosivity in Espírito 
Santo State, Brazil; and c) comparing the developed 
ANNs performance to other spatial interpolators.

MATERIALS AND METHODS

ASSESSING RAINFALL EROSIVITY INDEXES

The stochastic weather generator ClimaBR 2.0, deve
loped by Baena et al. (2005) and validated by Zanetti et 
al. (2006), was used to generate daily synthetic rainfall 
series for 73 pluviometric stations in Espírito Santo 
State (Figure 1). Oliveira et al. (2005a, b) describe all 
the method to generate synthetic rainfall precipitation 
series. The input data used to generate each synthetic 
rainfall series were the measured daily rainfall depth 
data series in the standardized format of the Brazilian 
National Water Agency (http://hidroweb.ana.gov.br) 
with 15 or more years in extension. Each synthetic 
rainfall series had 100-year daily data of: rainfall 
depth, storm duration, peak storm intensity, time to 
peak and storm profile patterns.

A computational algorithm was developed to 
identify all the erosive precipitations on each rainfall 
series. The erosive precipitations were taken as all 
rainfall with depth equal or higher than 10 mm or 
lower than 10 mm in depth, but with a 15 minute 
depth equal or higher than 6 mm (Wischmeier and 
Smith 1958, Wischmeier 1959, Cabeda 1976). Two 
different rainfall erosivity indices were computed 
(EI30 and KE>25) using two different equations to 
calculate erosive precipitation kinetic energy (KE).

Before the calculation of EI30 (Wischmeier 
and Smith 1958) and KE>25 (Hudson 1973) 
indices, it was necessary to estimate the erosive 
precipitation kinetic energy (KE). KE values were 
computed individually by the equations proposed 
by Wischmeier and Smith (1958) (equation 1) 
and Wagner and Massambani (1988) (equation 2). 



An Acad Bras Cienc (2013) 85 (4)

1525ASSESSING RAINFALL EROSIVITY INDICES

Equation 1 is an universal accepted equation and 
Equation 2 is a local equation proposed to São 
Paulo State (Brazil). The two equations were used 
intending to make a comparison between their 
results on rainfall erosivity indices values.

KE = 0.119+0.0873log I	 (1)
KE = 0.153+0.0645log I	 (2)

where:

KE	 = kinetic energy, MJ.ha-1.mm-1; and
I	 = rainfall intensity, mm.h-1.

Equations 1 and 2 were used to compute KE 
of all the erosive rainfall with intensity equal to or 

lower than 76 mm.h-1. Erosive rainfall with greater 
intensities were assumed to have a KE equal 
to 0.283 MJ.ha-1.mm-1, as long as the raindrop 
diameter does not rise up to rainfall intensities 
greater than this limit (Foster et al. 1981).

The EI30 parameter for each specific event was 
calculated as the product of total kinetic energy 
(KE) computed individually by equations 1 and 2 
and the maximum 30 min intensity, according to 
Wischmeier and Smith (1958). The total KE of 
each event was computed using the one minute 
time step. Monthly values were determined as the 
sum of the individual events determined through 
the EI30 parameter (MJ.mm.ha-1.h-1), and annual 

Figure 1 - Pluviometric stations in Espírito Santo State where synthetic rainfall series were generated.
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values were determined in the same manner. Then 
mean monthly and annual values were computed 
using the 100-year values.

The KE>25 parameter for each specific event 
was calculated as the product of total kinetic energy 
(KE) computed individually by equations 1 and 2 
and rainfall depth, according to Hudson (1973). 
The total KE of each event was computed by using 
one minute time step. Only rainfall intensities greater 
than 25 mm.h-1 were considered. Monthly values 
were determined as the sum of the individual events 
determined by the KE>25 parameter (MJ.ha-1) and 
annual values were determined in the same manner. 
Later mean monthly and annual values were 
computed using the 100-year values.

Since two different equations were used to 
compute KE (Wischmeier and Smith 1958, Wagner 
and Massambani 1988) and two different erosivity 
indices were calculated (EI30 and KE>25), final 
results consisted on four monthly and four annual 
values of R factors for each pluviometric station.

DEVELOPMENT OF ANNS TO SPATIALLY INTERPOLATE 

RAINFALL EROSIVITY INDICES

Neural modeling was carried out with MathWorks 
MatLab® software (MATLAB 2000). Pluviometric 
stations R values were randomly divided in two sub 
data-sets to develop 48 ANNs (four monthly R indices 
for 12 months): training sub data-set (60 stations) and 
test sub data-set (13 stations).

In the present study, a four-layer ANN model 
was used. The ANN architecture was 3-n1-n2-1 
type, corresponding to one input layer with three 
variables (input parameters), two intermediate 
layers with n1 and n2 neurons and one neuron at 
the output layer representing output variable. The 
input variables were composed of the latitude and 
longitude values of each station (decimal degrees) 
and the altitude value (meters). A linear activation 
function was used in the output layer to obtain the 
rainfall erosivity value (R factor), in MJ.mm.h-1.
ha-1.year-1 (EI30) or MJ.ha-1.year-1 (KE>25).

Before ANN’s training all input and output 
data sets were standardized to values between -1 
and 1. This procedure is essential to guarantee 
better training efficiency (Maier and Dandy 
2000). The training algorithm feed forward back 
propagation was used. After each algorithm 
interaction the ANN’s free parameters were 
refined by the Levenberg-Marquardt training rule. 
Different numbers of neurons at intermediate 
layers were tested (n1 and n2 varying from 1 to 12 
neurons) as well as different total training epochs 
(50, 100, 200 and 500 epochs). The ANN’s total 
number of neurons were limited by the number of 
samples (stations) used on the training sub dataset 
as suggested by Hagan et al. (1996).

Considering that at the beginning of the 
ANN’s training the free parameters are randomly 
generated, the ANNs resulted from each 
combination of n1 and n2 and training seasons 
were trained 20 times. For each month and each 
one of the four R factors, the ANNs that presented 
the highest correlation coefficient (r) obtained in 
the test sub data-set were selected to be the spatial 
interpolator ANNs.

The ANNs to spatially interpolate the annual 
R factor were not developed because their values 
were computed by the sum of the ANN’s monthly 
interpolated R factors.

EVALUATION OF ANN AND OTHER SPATIAL INTERPOLATOR 

PERFORMANCES

Aside from the selected ANN spatial interpolators, 
the following interpolators were evaluated: inverse 
distance weighted (IDW) – considering weights 
2 (IDW2) and 3 (IDW3); and universal kriging 
– considering spherical (KSPH) and exponential 
(KEXP) semivariogram models.

Interpolators’ evaluation was done using the 
cross-validation method (Robinson and Metternicht 
2006). For each station, observed (Oi) and 
interpolated (Si) R values were used to compute the 
agreement index (d) (Willmont 1981):
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d = 1−
∑J

i=1 (Oi − Si)2
(3)∑J

i=1 |Si − Ō| + Oi − Ō|)2

where:
d	 =	 agreement index;
O	 =	 observed R factor value;
S	 =	 observed R factor value; and
Ō	 =	 mean observed R factor value.

RESULTS AND DISCUSSION

RAINFALL EROSIVITY INDEX VALUES

Table I presents the 73 values of mean annual EI30 

and KE>25 rainfall erosivity indices computed by 
both equations to calculate rainfall kinetic energy: 

WS (equation 1 by Wischmeier and Smith 1958) 
and WM (equation 2 by Wagner and Massambani 
1988). It can be observed that EI30 index computed 
by the use of WM equation are about 3.0% higher 
than those computed by WS equation. On the 
other hand, KE>25 index values computed by WS 
equation are 1.1% higher than those computed 
by WM equation. According to Gonçalves et al. 
(2006) this occurs only with KE>25 index, because 
the WS equation computes higher KE values when 
rainfall intensities are greater than 31 mm.h-1. The 
highest observed difference is equal to 6.2% on 
EI30 and 16.7% on KE>25, both at Santo Agostinho 
pluviometric station.

Number Station Lat. (°) Long. (°)
EI30

(MJ.mm.h-1.ha-1.year-1)
KE>25

(MJ.ha-1.year-1)
WS WM Dif. (%) WS WM Dif. (%)

1 Morro D'anta (Pedro Canário) -18.30 -39.96 2,696 2,780 3.1 27 27 0.0
2 Conceição da Barra -18.56 -39.75 5,675 5,843 3.0 57 56 1.8
3 Fazenda Viração -18.42 -39.72 4,952 5,113 3.3 50 49 2.0
4 Fazenda Klabin -18.23 -39.90 5,038 5,212 3.5 49 49 0.0
5 Barra Nova -18.95 -39.76 6,944 7,133 2.7 71 71 0.0
6 Barra Seca -18.98 -40.13 4,968 5,110 2.9 52 51 1.9
7 Fazenda Alegria -18.52 -40.32 4,888 5,016 2.6 52 51 1.9
8 Itauninhas -18.49 -40.09 4,501 4,639 3.1 47 46 2.1
9 Barra de São francisco -18.75 -40.89 4,029 4,145 2.9 43 42 2.3
10 Mucurici -18.08 -40.58 5,559 5,704 2.6 59 58 1.7
11 Água Doce -18.55 -40.98 5,248 5,398 2.9 56 55 1.8
12 Cedrolândia -18.81 -40.69 4,613 4,745 2.9 49 49 0.0
13 Cotaxe -18.19 -40.72 5,176 5,320 2.8 54 54 0.0
14 Fazenda Limoeiro -18.15 -40.14 4,548 4,686 3.0 47 47 0.0
15 Ecoporanga -18.37 -40.84 4,324 4,449 2.9 45 45 0.0
16 Joaçuba -18.40 -40.69 6,434 6,602 2.6 69 69 0.0
17 Patrimônio Santa Luzia do Norte -18.21 -40.60 4,571 4,697 2.8 49 48 2.0
18 Patrimônio XV -18.49 -40.46 5,021 5,158 2.7 52 52 0.0
19 São João do Sobrado -18.32 -40.41 3,729 3,832 2.8 40 40 0.0
20 Córrego da Boa Esperança -18.70 -40.44 4,652 4,786 2.9 47 47 0.0

TABLE I
Mean annual rainfall erosivity indices EI30 and KE>25 computed by kinectic 

energy equations presented by Wischmeier and Smith (1958) (WS) and Wagner 
and Massambani (1988) (WM) at pluviometric stations of Espírito Santo State.

Dif. = percentage difference of the values computed for each index.
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Number Station Lat. (º) Long. (º)
EI30

(MJ.mm.h-1.ha-1.year-1)
KE>25

(MJ.ha-1.year-1)
WS WM Dif. (%) WS WM Dif. (%)

21 Mantenópolis -18.91 -41.12 5,097 5,235 2.7 56 55 1.8
22 Santo Agostinho -18.41 -41.04 2,123 2,254 6.2 6 5 16.7
23 Santa Cruz - litoral -19.96 -40.15 4,541 4,681 3.1 47 46 2.1
24 Riacho -19.75 -40.04 5,051 5,212 3.2 52 51 1.9
25 Valsugana Velha - montante -19.95 -40.55 8,560 8,810 2.9 88 87 1.1
26 Novo Brasil -19.24 -40.59 5,493 5,646 2.8 57 57 0.0
27 Santa Tereza - Museu de Biologia -19.93 -40.60 5,138 5,302 3.2 53 52 1.9
28 Aracruz -19.83 -40.27 4,914 5,070 3.2 49 49 0.0
29 Domingos Martins (DNOS) -20.36 -40.66 6,928 7,151 3.2 70 69 1.4
30 Fazenda Jucuruaba -20.42 -40.49 5,863 6,027 2.8 62 61 1.6
31 Alfredo Chaves (DNOS) -20.63 -40.75 7,795 8,004 2.7 82 81 1.2
32 Guarapari (DNOS) -20.65 -40.51 4,492 4,620 2.8 45 45 0.0
33 Iconha - montante -20.78 -40.83 7,506 7,708 2.7 78 77 1.3
34 Usina Paineiras (DNOS) -20.95 -40.95 5,006 5,167 3.2 51 50 2.0
35 Santa Maria do Jetibá (DNOS) -20.03 -40.74 5,484 5,632 2.7 59 58 1.7
36 Garrafão (DNOS) -20.14 -40.98 3,979 4,095 2.9 43 42 2.3
37 Anchieta (DNOS) -20.80 -40.66 4,992 5,146 3.1 49 49 0.0
38 Santa Leopoldina (DNOS) -20.10 -40.53 6,144 6,322 2.9 62 62 0.0
39 Matilde (DNOS) -20.56 -40.81 8,357 8,598 2.9 2.9 87 1.1
40 Marechal Floriano (DNOS) -20.41 -40.68 6,625 6,821 3.0 3.0 69 0.0
41 Rio Novo do Sul (DNOS) -20.88 -40.94 7,657 7,867 2.7 2.7 78 0.0
42 Duas Bocas (DNOS) -20.26 -40.48 3,892 3,988 2.5 2.5 40 0.0
43 Perobinha (DNOS) -20.28 -40.78 3,986 4,120 3.4 3.4 41 0.0
44 Duas Barras (DNOS) -20.73 -40.88 8,107 8,325 2.7 2.7 82 1.2
45 Cachoeira Suiça (DNOS) -20.08 -40.61 5,687 5,867 3.2 3.2 58 0.0
46 Granja São Jerônimo (DNOS) -20.38 -40.72 6,222 6,412 3.1 3.1 64 1.5
47 Ponta da Fruta -20.52 -40.36 4,335 4,480 3.3 3.3 42 2.3
48 São Rafael -20.30 -40.93 3,420 3,535 3.4 3.4 34 2.9
49 Córrego do Galo (DNOS) -20.30 -40.67 5,061 5,235 3.4 3.4 51 0.0
50 Canaã -20.38 -40.45 6,167 6,332 2.7 2.7 63 1.6
51 Atílio Vivacqua -20.91 -41.20 4,955 5,099 2.9 2.9 52 0.0
52 Guaçuí -20.77 -41.68 6,592 6,785 2.9 2.9 69 0.0
53 Castelo -20.61 -41.20 5,649 5,816 3.0 3.0 59 1.7
54 Rive -20.75 -41.47 6,584 6,773 2.9 2.9 69 1.4
55 Cachoeiro do Itapemirim (DNOS) -20.85 -41.10 4,657 4,801 3.1 3.1 47 2.1
56 Jacigua (DNOS) -20.70 -41.02 7,055 7,262 2.9 2.9 72 1.4
57 Conceição do Castelo (DNOS) -20.35 -41.24 5,374 5,527 2.8 2.8 57 0.0
58 Muniz Freire (DNOS) -20.45 -41.40 6,608 6,803 3.0 3.0 70 0.0

TABLE I (CONTINUATION)

Dif. = percentage difference of the values computed for each index.
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The low values of percentage differences on 
Table I indicate that both WS and WM equations 
compute very similar values to both R indices 
in Espírito Santo State. Gonçalves et al. (2006) 
had found the same result in Rio de Janeiro, a 
state limiting with Espírito Santo and located on 
a homogeneous area according to similarity of 
rainfall distribution (Keller Filho et al. 2005). This 
was also observed in other homogeneous rainfall 
areas in Brazil, like the Brazilian Savanna (Marques 
et al. 1997, Silva et al. 1997).

The EI30 index ranged from 2,123 (Santo 
Agostinho station) to 9,885 MJ.mm.ha-1.h-1.
year-1 (Burarama (DNOS)). The KE>25 index 
ranged from 5.0 to 105.0 MJ.ha-1.year-1 on 
the same stations. The lowest R index values 
were observed at higher latitudes, where annual 
pluviometric depths are also the lowest. On the 
other hand, the higher values were observed on 
lower latitudes and higher longitudes (near the 
Brazilian coast), in regions characterized by 

orographic precipitations and maritime influence 
(Castro et al. 2010). Silva et al. (2010c) had used 
pluviometric data of Espírito Santo to calculate 
EI30 indices and had found values ranging from 
5,091 to 7,958 MJ.mm.ha-1.h-1.year-1.

Average EI30 e KE>25 were 5,592 MJ.mm.ha-
1.h-1.year-1 and 58.0 MJ.ha-1.year-1, respectively. 
These values are very close to those found by 
Carvalho et al. (2005) and Gonçalves et al. (2006) 
in Rio de Janeiro, located on a homogeneous area 
according to the similarity of rainfall distribution 
(Keller Filho et al. 2005).

The EI30 values on the west side of Espírito 
Santo (lower longitudes) were close to those found 
by Mello et al. (2007) near the limit to the State of 
Minas Gerais. It indicates the applicability of the 
use of synthetic rainfall series to estimate the R 
factor, corroborating Zhang et al. (2010).

In Espírito Santo State there is one value of 
EI30 calculated by using pluviographic data from 
1998 to 2003 on Aracruz station. This value is 

Number Station Lat. (º) Long. (º)
EI30

(MJ.mm.h-1.ha-1.year-1)
KE>25

(MJ.ha-1.year-1)
WS WM Dif. (%) WS WM Dif. (%)

59 Iuna -20.35 -41.54 5,099 5,247 2.9 2.9 53 1.9
60 Dores do Rio Preto -20.69 -41.85 5,890 6,061 2.9 2.9 62 1.6
61 Fazenda Monte Alegre (DNOS) -20.94 -41.40 6,067 6,250 3.0 3.0 63 1.6
62 Ibitirama (DNOS) -20.54 -41.67 7,121 7,326 2.9 2.9 75 1.3
63 Santa Cruz - Caparão (DNOS) -20.32 -41.70 6,732 6,929 2.9 2.9 71 0.0
64 Usina Fortaleza (DNOS) -20.37 -41.41 6,632 6,823 2.9 2.9 71 0.0
65 Itaici -20.53 -41.51 6,564 6,751 2.8 2.8 70 0.0
66 Arace (DNOS) -20.37 -41.06 5,939 6,108 2.8 2.8 64 0.0
67 Burarama (DNOS) -20.68 -41.35 9,643 9,885 2.5 2.5 104 1.0
68 Terra Corrida (DNOS) -20.43 -41.48 7,010 7,212 2.9 2.9 75 0.0
69 Barra do Itapemirim (DNOS) -21.01 -40.84 2,713 2,805 3.4 3.4 26 0.0
70 Ponte de Itabapoana -21.21 -41.46 5,085 5,229 2.8 2.8 53 1.9
71 Mimoso do Sul (DNOS) -21.06 -41.36 6,244 6,419 2.8 2.8 65 0.0
72 São José do Calçado -21.04 -41.65 6,600 6,782 2.8 2.8 70 1.4
73 São José das Torres -21.06 -41.24 7,246 7,450 2.8 2.8 74 1.3

AVERAGE - - - - 3.0 - - 1.1

TABLE I (CONTINUATION)

Dif. = percentage difference of the values computed for each index.
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equal to 6,500 MJ.mm.ha-1.h-1.year-1 (Martins et al. 
2010) and is relatively close to the one found on the 
present paper (about 5,000 MJ.mm.ha-1.h-1.year-1), 
once again indicating the applicability of the use 
of synthetic rainfall series to estimate the R factor.

ANNs DEVELOPED TO SPATIALLY INTERPOLATE 

RAINFALL EROSIVITY INDICES

Table II presents the architecture (number of neurons 
on the intermediate layers and training seasons) 
of the ANNs developed to spatially interpolate 
monthly values of EI30 and KE>25 at Espírito 
Santo State, considering WS and WM equations. 
According to the criteria taken from Hagan et al. 

(1996), the maximum number of neurons on the 
intermediate layers of the ANNs would be 12. The 
low number of neurons on the developed ANNs 
(Table II) indicates a lower complexity, better 
ability to generalization and estimation (Bernardos 
and Vosniakos 2007) and had a lower probability 
of “memorizing” answers (Sinha and Wang 2007).

ANN with increased numbers of neurons were 
only those for the spatial interpolation of EI30 for 
the months of October, November and December 
(KE computed by WS equation) and for February 
and October (KE computed by WM equation). The 
same happened to the ANNs developed for spatial 
interpolation of KE>25 for May (KE computed by 
WM equation).

TABLE II
Number of neurons on intermediate layers and training seasons of the ANN developed to spatial interpolation 
of monthly EI30 e KE>25 erosivity indices (computed considering WS and WM equations) at Espírito Santo.

MONTH
EI30 KE>25

F WM F WM
n1 n2 seasons n1 n2 seasons n1 n2 seasons n1 n2 seasons

Jan. 1 4 50 3 2 100 4 4 200 4 5 200
Feb. 2 3 50 5 6 200 4 2 500 1 6 100
Mar. 3 2 50 5 4 100 2 4 200 3 3 50
Apr. 3 3 500 3 2 200 2 6 100 4 5 200
May 4 3 200 6 1 200 2 6 200 6 5 500
Jun. 6 3 100 2 3 500 4 1 500 6 3 500
Jul. 2 4 50 4 4 50 1 5 200 4 2 50
Aug. 1 6 100 6 4 500 6 2 500 6 1 200
Sep. 3 5 100 4 2 200 4 3 500 4 2 200
Oct. 6 5 500 5 6 100 1 3 100 3 3 200
Nov. 6 5 500 4 2 200 3 5 50 2 4 100
Dec. 5 6 500 3 2 500 4 1 50 3 3 500

EVALUATION OF ANN AND OTHER SPATIAL 

INTERPOLATORS’ PERFORMANCE

Table III presents the agreement index (d) used to 
evaluate the ability of the interpolators to estimate 
spatially KE>25 and EI30 erosivity indices. 
Considering each erosivity index separately (EI30 

and KE> 25), the values of "d" for conventional 

interpolators (IDW and kriging) are very similar 
for each month. Thus the performance of 
conventional interpolators doesn’t depend on the 
equation taken to compute KE (WS or WM). This 
behavior was expected since, as previously shown 
in this paper, WS and WM equations compute very 
similar values to both R indices for Espírito Santo 
State. Thus, the performance of conventional 
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interpolators only depends on the distance 
between stations, which are weighting factors 
in mathematical models used for conventional 
interpolation. This did not occur on the ANNs 
because trained architectures (Table II) are different 
for each month and each situation (WS or WM 
equations), resulting in different performances. 

In general, the conventional interpolation methods 
evaluated had similar performances. These inter
polators have advantages and disadvantages that 
depend on various factors such as the amount 
of data available and regularity of the spatial 
distribution. If the distribution of observed data is 
not favorable, the results may be unsatisfactory.

TABLE III
Agreement index (d) used to evaluate the ability of the interpolators to estimate spatial KE>25 e 

EI30 erosivity indexes (computed considering WS and WM equations) at Espírito Santo.

Erosivity index Period
d

ANN IDW2 IDW3 KSPH KEXP

EI30 (WS)

Jan. 0.53 0.52 0.54 0.52 0.54
Feb. 0.85 0.69 0.74 0.75 0.72
Mar. 0.84 0.67 0.69 0.69 0.68
Apr. 0.94 0.75 0.75 0.77 0.78
May 0.90 0.76 0.78 0.78 0.78
Jun. 0.55 0.75 0.74 0.76 0.76
Jul. 0.92 0.51 0.51 0.52 0.52

Aug. 0.88 0.61 0.60 0.65 0.65
Sep. 0.96 0.65 0.65 0.69 0.69
Oct. 0.54 0.45 0.44 0.47 0.47
Nov. 0.82 0.41 0.39 0.43 0.44
Dec. 0.77 0.69 0.69 0.69 0.69
Year 0.86 0.66 0.65 0.68 0.69

EI30 (WM)

Jan. 0.83 0.52 0.54 0.52 0.55
Feb. 0.85 0.70 0.74 0.76 0.73
Mar. 0.91 0.67 0.69 0.69 0.68
Apr. 0.94 0.75 0.75 0.77 0.78
May 0.92 0.76 0.78 0.78 0.78
Jun. 0.83 0.75 0.74 0.76 0.76
Jul. 0.95 0.52 0.51 0.53 0.53

Aug. 0.79 0.61 0.60 0.65 0.65
Sep. 0.87 0.66 0.65 0.69 0.69
Oct. 0.84 0.45 0.44 0.47 0.47
Nov. 0.66 0.41 0.39 0.43 0.44
Dec. 0.73 0.69 0.69 0.69 0.69
Year 0.86 0.66 0.65 0.68 0.69

KE>25 (WS)

Jan. 0.92 0.48 0.50 0.47 0.50
Feb. 0.85 0.69 0.72 0.73 0.70
Mar. 0.64 0.65 0.67 0.67 0.65
Apr. 0.94 0.75 0.75 0.77 0.77
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TABLE III (CONTINUATION)

Erosivity index Period
d

ANN IDW2 IDW3 KSPH KEXP

KE>25 (WS)

May 0.85 0.75 0.75 0.76 0.77
Jun. 0.61 0.73 0.72 0.74 0.74
Jul. 0.38 0.10 0.10 0.11 0.11

Aug. 0.96 0.78 0.78 0.80 0.80
Sep. 0.95 0.52 0.52 0.53 0.54
Oct. 0.76 0.45 0.44 0.48 0.49
Nov. 0.80 0.39 0.38 0.42 0.42
Dec. 0.88 0.70 0.70 0.70 0.70
Year 0.85 0.67 0.67 0.70 0.70

Table III data shows that “d” index was 
higher on 44 of the 48 developed ANNs, which 
indicates better performance of ANNs for 
spatial interpolation of the R factor compared to 
conventional interpolators, as also seen by Moreira 
et al. (2006, 2009) in the States of São Paulo and 
Minas Gerais, respectively. According to Akkala 
et al. (2010), ANN interpolators work well with 
sparse data irregularly distributed, just as for the 
data presented (Figure 1). The ANNs, in order to 
have better performance, need consistent training 
and the data-set used must represent the nuances 
of the terrain to be modeled (Teegavarapu 2007, 
Miranda et al. 2009, Sivapragasam et al. 2010), as 
was the case in this study.

Another important factor that led to the supe
riority of ANNs consisted in considering the altitude 
to interpolate the R factor (Goovaerts 1999, Moreira 
et al. 2006, Silva et al. 2010b). This is a very important 
variable to explain the behavior of precipitation, 
especially in regions of great orographic influence on 
the climate, as for Espírito Santo State (Keller Filho et 
al. 2005; Melo Júnior et al. 2006).

The ANNs developed to spatially interpolate EI30 
and KE>25 indices with KE computed by the use of 
WM equation showed always better performance than 
traditional interpolation, so they are recommended for 
use in spatial of rainfall erosivity in Espírito Santo 
State. Figure 2 presents the spatial distribution of the 

annual EI30 and KE>25 indices calculated with KE 
computed by the use of WM equation and interpolated 
using the developed ANNs.

CONCLUSIONS

Based on the presented results we can conclude that:
1. 	 The use of synthetic rainfall series is a 

promising alternative to estimate the rainfall 
erosivity at locations without pluviographic 
data availability;

2. There were no significant differences in EI30 and 
KE> 25 rainfall erosivity indices estimated 
using two rainfall kinetic energy equations that 
were evaluated;

3. Artificial neural networks presented better 
performance than IDW and Kriging to spatial 
interpolate rainfall erosivity values in Espirito 
Santo State.

ACKNOWLEDGMENTS

The authors thanks Fundação de Amparo à Pesquisa 
do Espírito Santo (FAPES) for the financial support 
of (Process number 35613165/06.).

RESUMO

Dentre as características da precipitação aquela que 
expressa sua capacidade em promover a erosão do 
solo é denominada erosividade das chuvas (R), sendo 
comumente representada pelos índices EI30 e KE>25. A 
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Figure 2 - Spatial distribution of the annual EI30 (A) and KE>25 (B) indices calculated with KE computed by the use of WM 
equation and interpolated using the developed ANNs.

determinação destes indices requer a disponibilidade de 
series de dados pluviográficos, que são de difícil acesso 
no Brasil. O presente artigo descreve o uso de séries 
sintéticas de dados pluviográficos para calcular os índices 
EI30 e KE>25 no Estado do Espírito Santo (Brasil). Redes 
neurais artificiais (ANNs) também foram desenvolvidas 
para promover a interpolação espacial dos valores de R no 
Espírito Santo. Os valores calculados para os índices EI30 
e KE>25 foram próximos àqueles encontrados em áreas 
pluviométricamente homegêneas próximas, indicando 
a aplicabilidade do uso de séries sintéticas de dados 
pluviográficos. As redes neurais artificiais consistiram em 
interpoladores espacial melhores que os métodos de inverso 
da potência da distância e krigagem para a espacialização 
dos índices de erosividade no Espírito Santo.

Palavras-chave: interpolação, gerador climático, conser
vação do solo, equação universal de perdas de solo.

REFERENCES

Akkala A, Devabhaktuni V and Kumar A. 2010. 
Interpolation techniques and associated software for 
environmental data. Environ Prog Sustainable Energy 
29: 134-141.

Alves Sobrinho T, Pertussatti CA, Rebucci LCS and 
Oliveira PTS. 2011. Estimation of local rainfall erosivity 
using artificial neural network. R Ambiente & Água 6: 
246-254. (in Portuguese).

Angulo-Martínez M, López-Vicente M, Vicente-Serrano 
SM and Beguería S. 2009. Mapping rainfall erosivity at 
a regional scale: a comparison of interpolation methods 
in the Ebro Basin (NE Spain). Hydrol Earth Syst Sci 13: 
1907-1920.

Aquino RF, Avanzi JC, Silva MLN, Sáfadi T and Curi N. 
2008. Use of time series models for predicting monther 
erosivity in Lavras, MG. R Bras Agromet 16: 205-210. 
(in Portuguese).

Baena LGN, Pruski FF, Moreira MC, Souza VBC, Zanetti 
SS and Oliveira VPS. 2005. Software for Generating 
Synthetic Series of Climatic Data. Eng Agricult 13: 210-
220. (in Portuguese).



An Acad Bras Cienc (2013) 85 (4)

1534 ROBERTO A. CECÍLIO et al.

Baskan O, Cebel H, Akgul S and Erpul G. 2010. Conditional 
simulation of USLE/RUSLE soil erodibility factor by 
geostatistics in a Mediterranean Catchment, Turkey. 
Environ Earth Sci 60: 1179-1187.

Beguería S and Vicente-Serrano SM. 2006. Mapping 
the hazard of extreme rainfall by peaks over threshold 
extreme value analysis and spatial regression techniques. 
J Appl Meteorol 45: 108-124.

Bernardos PG and Vosniakos GC. 2007. Optimizing 
feedforward artificial neural network architecture. Eng 
Appl Artif Intell 20: 365-382.

Białobrzewski I. 2008. Neural modeling of relative air 
humidity. Comput Electron Agric 60: 1-7.

Cabeda MSV. 1976. Computation of storm EI value. West 
Lafayette: Purdue University, 6 p.

Capolongo D, Diodato N, Mannaerts CM, Piccarreta 
M and Strobl RO. 2008. Analyzing temporal changes in 
climate erosivity using a simplified rainfall erosivity model 
in Basilicata (southern Italy). J Hydrol 356: 119-130.

Carvalho DF, Montebeller CA, Franco EM, Valcarcel 
R and Bertol I. 2005. Rainfall patterns and erosion indices 
at Seropédica and Nova Friburgo, Rio de Janeiro - Brazil. 
R Bras Eng Agríc Ambiental 9: 7-14. (in Portuguese).

Castro FS, Pezzopane JEM, Cecílio RA, Pezzopane JRM 
and Xavier AC. 2010. Evaluation of the performance of 
the different methods of interpolaters for parameters of the 
climatologic water balance. R Bras Eng Agríc Ambiental 
14: 871-880. (in Portuguese).

Foster GR, McCool KG, Renard KG and Moldenhauer 
WC. 1981. Conversion of the universal soil loss equation 
to SI metric units. J Soil Water Cons 36: 355-359.

Gonçalves FA, Silva DD, Pruski FF, Carvalho DF and 
Cruz ES. 2006. Indices and spatialization of rainfall 
erosivity in Rio de Janeiro State, Brazil. R Bras Eng Agríc 
Ambiental 10: 269-276. (in Portuguese).

Goovaerts P. 1999. Using elevation to aid the geostatistical 
mapping of rainfall erosivity. Catena 34: 227-242.

Hagan MT, Demuth HB and Beale M. 1996. Neural network 
design. Boston, PWS publishing company.

Hernani LC, Freitas PL, Pruski FF, De Maria IC, Castro 
Filho C and Landers JC. 2002. A erosão e seu impacto. 
In: MANZATTO CV ET AL. (Eds), Uso agrícola dos 
solos brasileiros. Rio de Janeiro, EMBRAPA, p. 47-60. 
(in Portuguese).

Hoyos N. 2005. Spatial modeling of soil erosion potential in 
a tropical watershed of the Colombian Andes. Catena 63: 
85-108.

Hoyos N, Waylen PR and Jaramillo A. 2005. Seasonal and 
spatial patterns of erosivity in a tropical watershed of the 
Colombian Andes. J Hydrol 314: 177-191.

Hudson NW. 1973. Soil conservation. Ithaca: Cornell 
University Press, 320 p.

Keller Filho T, Assad ED and Lima PRSR. 2005. Rainfall 
homogeneous areas in Brazil. Pesq Agropec Bras 40: 311-
322. (in Portuguese).

Maier HR and Dandy GC. 2000. Neural networks for the 
prediction and forecasting of water resources variables: 
a review of modeling issues and applications. Environ 
Modell Softw 15: 101-123.

Marques JJGSM, Alvarenga RC, Curi N, Santana DP and 
Silva MLN. 1997. Rainfall erosivity índices, soil losses 
and erodibility factor for two soils from the Cerrado 
region – first approximation. R Bras Ci Solo 21: 427-434. 
(in Portuguese).

Martins SG, Avanzi JC, Silva MLN, Curi N, Norton LD 
and Fonseca S. 2010. Rainfall erosivity and rainfall 
return period in the experimental watershed of Aracruz, 
in the coastal plain of Espírito Santo, Brazil. Rev Bras Ci 
Solo 34: 999-1004.

MATLAB software. 2000. Version 6.0, The MathWorks, Inc., 
Natick, MA.

Melo Júnior JCF, Sediyama GC, Ferreira PA and Leal 
BG. 2006. Spacial distribution of the rainfall frequencies 
in the Atlântico hydrographic region, east of Minas 
Gerais, Brazil. R Bras Eng Agríc Ambiental 10: 408-416. 
(in Portuguese).

Mello CR, Sá MAC, Curi N, Nello JM, Viola MR and 
Silva AM. 2007. Monthly and annual rainfall erosivity for 
Minas Gerais State. Pesq Agropec Bras 42: 537-545. (in 
Portuguese).

Men M, Yu Z and Xu H. 2008. Study on the spatial pattern of 
rainfall erosivity based on geostatistics in Hebei Province, 
China. Front Agric China 2: 281-289.

Miranda F, De Freitas S and Faggion P. 2009. Integration 
and interpolation free air anomalies with basis in an ANN 
and kriging. Bol Ci Geod 15: 428-433. (in Portuguese).

Moreira MC, Cecílio RA, Pinto FAC, Lombardi Neto F 
and Pruski FF. 2006. Estimates of rainfall erosivity in 
São Paulo state by an artificial neural network. Rev Bras 
Ci Solo 30: 1069-1076. (in Portuguese).

Moreira MC, Pruski FF, Oliveira TEC, Pinto FAC and 
Silva DD. 2009. Artificial Neural Networks for Monthly 
Estimates of Rainfall Erosivity in the Minas Gerais State. 
Eng Agricult 17: 75-83. (in Portuguese).

Oliveira VPS, Zanetti SS and Pruski FF. 2005a. 
CLIMABR part I: model for generation of synthetic series 
of precipitation. R Bras Eng Agríc Ambiental 9: 356-363. 
(in Portuguese).

Oliveira VPS, Zanetti SS and Pruski FF. 2005b. CLIMABR 
part II: generation of precipitation profile. R Bras Eng 
Agríc Ambiental 9: 348-355. (in Portuguese).

PIMENTEL D et al. 1995. Environmental and economic costs 
of soil erosion and conservation benefits. Science 267: 
1117-1123.

Qi H, Gantzer CJ, Jung PK and Lee BL. 2000. Rainfall 
erosivity in the Republic of Korea. J Soil Water Conserv 
55: 115-120.

Renard KG, Foster GR, Weesies GA and Porter JP. 1991. 
RUSLE: Revised Universal Soil Loss Equation. J Soil 
Water Conserv 46: 30-33.



An Acad Bras Cienc (2013) 85 (4)

1535ASSESSING RAINFALL EROSIVITY INDICES

Robinson TP and Metternicht G. 2006. Testing the perfor
mance of spatial interpolation techniques for mapping soil 
properties. Comput Electron Agric 50: 97-108.

Sárközy F. 1999. Gis functions - Interpolation. Periodica 
polytechnica Ser Civ Eng 43: 63-86.

Shamsad A, Azhari MN, Isa MH, Wan Hussin WMA 
and Parida BP. 2008. Development of an appropriate 
procedure for estimation of RUSLE EI30 index and 
preparation of erosivity maps for Pulau Penang in 
Peninsular Malaysia. Catena 72: 423-432.

Silva AM. 2004. Rainfall erosivity map for Brazil. Catena 
57: 251-259.

Silva MA, Silva MLN, Curi N, Santos GR, Marques 
JJGSM, Menezes MD and Leite FP. 2010a. Evaluation 
and spatialization of rainfall erosivity in the Rio Doce 
Valley, central-eastern region of Minas Gerais, Brazil. 
Rev Bras Ci Solo 34: 1029-1039. (in Portuguese).

Silva MLN, Freitas PL, Blancaneaux P and Curi N. 
1997. Rainfall erosivity indices in the Goiânia region, 
Goiás State, Brazil. Pesq Agropec Bras 32: 977-985. (in 
Portuguese).

Silva RB, Iori P, Armesto C and Bendini HN. 2010b. 
Assessing Rainfall Erosivity with Artificial Neural 
Networks for the Ribeira Valley, Brazil. Int J Agron 
2010: 1-7.

Silva SA, Lima JSS, Souza GS and Oliveira RB. 2010c. 
Variability of rainfall erosive potential for Espírito Santo 
State, Brazil. Irriga 15: 312-323. (in Portuguese).

Sinha SK and Wang MC. 2007. Artificial neural network 
prediction models for soil compaction and permeability. 
Geotech Geol Eng 26: 47-64.

Sivapragasam C, Arun VM and Giridhar D. 2010. A simple 
approach for improving spatial interpolation of rainfall 
using ANN. Meteorol Atmos Phys 109: 1-7.

Souza ECB, Ribeiro SRA, Botelho MF, Krueger CP and 
Centeno JAS. 2006. Generation of isolines using GPR/
L1L2 data and artificial neural network technique. Acta 
Scient Tech 28: 205-212. (in Portuguese).

Teegavarapu RSV. 2007. Use of universal function approxi
mation in variance dependent surface interpolation method 
- an application in hydrology. J Hydrol 332: 16-29.

Telles TS, Guimarães MF and Dechen SCF. 2011. The 
costs of soil erosion. Rev Bras Ci Solo 35: 287-298.

Wagner CS and Massambani O. 1988. Analysis of the 
Wischmeier and Smith rainfall intensity-kinetic energy 
relationship and its applicability for São Paulo (Brazil) 
region. Rev Bras Ci Solo 12: 197-203. (in Portuguese).

Willmont CJ. 1981. On the validation of models. Phys Geog 
2: 184-194.

Wischmeier WH. 1959. A rainfall erosion index for a universal 
soil loss equations. Soil Sci Soc Am Proc 23: 246-249.

Wischmeier WH and Smith DD. 1958. Rainfall energy and 
its relationship to soil loss. Trans Am Geophys Union 
39: 285-291.

Wischmeier WH and Smith DD. 1978. Predicting Rainfail 
Erosion Losses - A Guide to Conservation Planning, 
vol. 537 of Agriculture Handbook, USDA, Washington, 
DC, USA.

Yin S, Xie Y, Nearing MA and Wang C. 2007. Estimation 
of rainfall erosivity using 5-to 60-minute fixed-interval 
rainfall data from China. Catena 70: 306-312.

Yu B. 2002. Using CLIGEN to generate RUSLE climate 
inputs. Trans ASAE, 45: 993-1001.

Zanetti SS, Oliveira VPS and Pruski FF. 2006. Validation 
of the model ClimaBR in relation to the number of wet 
days and to daily total precipitation. Eng Agríc 26: 96-
102. (in Portuguese).

Zhang Q, Wang L and Wu F. 2008a. GIS-based assessment 
of soil erosion at Nihe Gou Catchment. Agric Sci China 
7: 746-753.

Zhang Y, Liu B, Wang Z and Zhu Q. 2008b. Evaluation 
of CLIGEN for storm generation on the semiarid Loess 
Plateau in China. Catena 73: 1-9.

Zhang YG, Nearing MA, Zhang XC, Xie Y and Wei H. 
2010. Projected rainfall erosivity changes under climate 
change from multimodel and multiscenario projections in 
Northeast China. J Hydrol 384: 97-106.




