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Abstract: We used skeletochronology to compare age, size, reproductive parameters and growth patterns 
of two related, anuran amphibians from Northern Argentina: Leptodactylus bufonius  (n=69) and  L. 
latinasus (n=56), in order to better understand their coexistence in syntopy. Previous studies showed that 
the two species overlap in their dietary requirements and utilize the same habitats for feeding and breeding. 
We found that their life-history patterns are significantly different, L. bufonius being larger, and having 
a higher reproductive output and lifespan, compared to the smaller and shorter-living L. latinasus. Since 
none of the species exhibited sexual size dimorphism, and both acquired sexual maturity after the first year 
of life, we suggest that the differences in the observed life-history parameters must appear during early 
stages of development, during larval and/or juvenile stages. 
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INTRODUCTION

Body size, growth and lifespan are central life 
history traits related to fitness, and ultimately to 
reproductive success and survival (Calder 1984, 
Schmidt-Nielsen 1984, Brown et al. 1993, Stearns 
2000, Metcalfe and Monaghan 2003), which makes 
the study of intra- and interspecific variation in 
these traits an essential goal for understanding life-

history evolution. In amphibians, several factors 
may contribute to the variation in adult body size, 
either within species or among them. Traditionally, 
it has been considered that variation in body 
size can simply reflect an underlying pattern of 
variation in the age structure of populations (Díaz-
Paniagua and Mateo 1999, Miaud et al. 1999, 
Laugen et al. 2005). Variations in juvenile growth 
rates to sexual maturity and age at maturity may 
promote divergences in adult body size between 
species and populations or sexual size dimorphism 
within a population (Hemelaar 1985, Monnet and 
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Cherry 2002). Thus, an important factor in the 
analysis of variation of body size in amphibians 
is the indeterminate growth pattern that they 
exhibit, which becomes asymptotic when sexual 
maturity is reached (Halliday and Verrel 1988). 
Fast growth and early sexual maturity is one of the 
life strategies that determines increased efficacy at 
the expense of reaching a smaller adult size (Roff 
1993, Stearns 1992). In contrast, the benefits of 
delaying reproduction are generally related to the 
benefits associated with large body size, which 
is positively related to fecundity and breeding 
success (Howard 1980, Berven 1981), jumping 
performance (Tejedo et al. 2000) and competition 
(Tejedo 1988). Large body size is also associated 
with higher survivorship and clutch size (Berven 
1982a, Gibbons and McCarthy 1986, Begon et al. 
1990, Stearns 1992). In addition, the environmental 
conditions experienced by the mother (non-genetic 
factors), are an important determinant of offspring 
adult body size, due to the maternally induced 
variation in egg size (Kaplan 1998). For example, 
a smaller egg size may determine a smaller size 
at metamorphosis (Bernardo 1996) and, when 
compensatory growth does not take place (Metcalfe 
and Monaghan 2003, Hector and Nakagawa 2012), 
it can determine small adult body size (Bernardo 
1996, Räsänenetal et al. 2003, 2005, Laugen et al. 
2005, Marangoni 2006).

Skeletochronology is a useful technique 
to estimate individual age in amphibians, and 
discriminate variations in growth rates and age-
related parameters such as age and size at sexual 
maturity, longevity, and potential reproductive 
lifespan (Sinsch 2015). These life-history 
parameters also allow explaining the actual 
pattern of sexual size dimorphism in amphibians 
(Marangoni et al. 2012, Cajade et al. 2013, 
Quiroga et al. 2015). Skeletochronology is based 
on the presence of cyclic and annular bone growth, 
which can be visualized in cross-sections of bones 
(Castanet 1982, Castanet and Smirina 1990). This 

method is commonly and successfully used for 
evaluating the age of many species of amphibians 
and reptiles, providing an age estimate through 
non-lethal means (Castanet and Smirina 1990, 
Marangoni et al. 2009, 2012, Sinsch 2015). 

The comparative study of life-history traits 
in related amphibian species which undergo 
similar environmental conditions is a good way to 
understand interspecific interactions and explain 
how differences in life-history strategies allow the 
coexistence of these species (MacArthur and Levin 
1967, MacArthur 1970, Pianka 1975, Toft 1980, 
1981). We used skeletochronology to compare the 
life-history patterns of two closely-related species 
of the Leptodactylus fuscus group (Heyer 1978), 
which occupy the same habitats in the wet Chaco 
region of northern Argentina. Specifically, we 
estimated and compared body size, age, growth 
and reproductive parameters for the two species, 
aiming to explain the life-history strategies that 
allow their coexistence.

MATERIALS AND METHODS

STUDY SPECIES

The monophyletic genus Leptodactylus (Fitzinger 
1826) has a predominantly Neotropical distribution 
and is composed of 75 currently recognized species 
included in four groups: Leptodactylus fuscus (30 
species), L. melanonotus (17 species), L. latrans 
(8 species), L. pentadactylus (17 species) and three 
species unassigned to any species group (De Sá et al. 
2014). The study species, Leptodactylus latinasus 
(Jiménez de la Espada 1875) and L. bufonius 
(Boulenger 1894), belong to the monophyletic L. 
fuscus clade (De Sá et al. 2014). Leptodactylus 
latinasus is distributed in Argentina (Vaira et al. 
2012), Bolivia, Paraguay, south and east throughout 
Uruguay and southern Brazil (Lavilla et al. 2004). 
Leptodactylus bufonius is distributed in Argentina 
(Cabrera and Willink 1980, Carnevali 1994, Vaira 
et al. 2012), southern Bolivia, Paraguay, and central 
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Brazil (Heyer 1978). The two species are common, 
and sharing habitats scattered throughout the Chaco 
and Espinal ecoregions (Cabrera and Willink 
1980, Carnevali 1994, Vaira et al. 2012). Males 
of both species construct mud nests at the edge of 
ponds and other low-lying depressions, and call 
near semi-permanent or ephemeral water bodies, 
from inside or close to the chambers (Heyer 1978, 
Cei 1980, Faggioni et al. 2017). The two species 
share the same reproductive mode (Duellman and 
Trueb1986) and their trophic niche overlaps to a 
great extent (Duré and Kehr 2004).

STUDY SITE

Fieldwork was carried out in the area called “El 
Perichón” (27°25′53.1′′ S, 58°44′44.8′′ W), 10 km 
northeast from Corrientes city, Argentina, where 
L. latinasus and L. bufonius live in syntopy. This 
area is characterized by the presence of numerous 
temporary and semi-permanent ponds. Mean 
annual temperature is 21.5°C and the mean annual 
precipitation is 1500 mm, without a pronounced 
dry season, although periods of rain shortages occur 
every 4-6 years (Carnevali 1994). The original 
vegetation was Schinopsis balansae “quebracho” 
forest, which is currently extremely degraded and 
largely replaced by sclerophyllous forest, with 
prevalence of Acacia caven, Celtis spp., Prosopis 
affinis, Prosopis nigra, and numerous colonies 
of Aechmea distichantha and Bromelia spp. 
(Carnevali 1994). Eight out of thirteen species of 
Leptodactylus genus reported for Argentina are 
present in the study area: five belong to L. fuscus 
group (L. bufonius, L. elenae, L. gracilis, L. 
latinasus, and L. mystacinus), two to the L. latrans 
group (L. latrans and L. chaquensis) and one to the 
L. melanonotus group (L. podicipinus). 

SAMPLING

We sampled 56 L. latinasus (34 males, 17 females 
and five juveniles), and 69 L. bufonius (56 males, 9 

females and four juveniles), from autumn 2007 to 
late spring 2008. The frogs were captured between 
20:00 and 23:00 h. The sampling followed the 
ethical standards imposed by the Dirección de 
Recursos Naturales of the Corrientes province, 
Argentina. Most males (26) were captured by hand 
when they were calling on the ground away from 
ponds, hidden in crevices (L. latinasus) or near the 
cone-shaped nests (L. bufonius). Remaining males 
and females were collected during migration or at 
the edge of the breeding ponds. In these cases, sex 
and sexual maturity was determined by the presence 
of dark vocal sac (males), or ova that could be 
visualized through the skin (females). Frogs were 
separated by sex, placed in independent plastic 
containers (12 cm diameter x 6.5 cm height), and 
brought to the laboratory. 

We measured snout-vent length (SVL) and 
right hind-limb length (HL) by placing each frog 
on laminated graph paper (accuracy ± 1 mm).
We measured the head width (HW), arm length 
(AL) and tibia length (TL) to the nearest 0.1 mm 
with digital calipers. We measured body mass 
(BM) to the nearest 0.01 g, using an Acculab 
electronic balance (Acculab Scales, Titusville, 
NJ). In addition, we measured 67 specimens of 
related Leptodactylus species from the Collection 
of Laboratorio de Genética Evolutiva (Instituto de 
Biología Subtropical (CONICET-UNaM), Posadas, 
Misiones, Argentina), which we considered 
useful for further comparisons: 13 Leptodactylus 
furnarius, 18 L. laticeps and 36 L. plaumanni 
(Appendix A, B). All measurements were taken 
according to Duellman (1970). 

Most individuals (109 out of 125; 87%) were 
released back into their original ponds within 
24-48 h after their capture. Ten L. latinasus and 
six L. bufonius females were preserved for the 
analysis of reproductive traits, and further genetics 
and morphological studies, and deposited in the 
Collection of Laboratorio de Genética Evolutiva, 
Instituto de Biología Subtropical (CONICET-
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UNaM), Posadas, Misiones, Argentina (see 
Appendix A for specimen codes).

SEXUAL SIZE DIMORPHISM

We checked for significant differences in size 
parameters (i.e. SVL, BM, HW, AM and TL) 
between sexes, using multi- and univariate analyses 
of variance (with type III Sum of Squares). We used 
Pearson correlation coefficient adjusted for small 
sample sizes (radj) to analyze the associations 
between these parameters.

We assessed the sexual size dimorphism 
(SSD) for each body measurement using the sexual 
dimorphism index (SDI), following Lovich and 
Gibbons (1992): SDI = mean sizelarger sex/mean 
sizesmaller sex, with the result arbitrarily defined as 
positive when females are larger than males, and 
negative when males are larger.

SKELETOCHRONOLOGY

We clipped the third toe of the right leg of 28 L. 
latinasus (12 males, 12 females, four juveniles) 
and 35 L. bufonius (24 males, 7 females, four 
juveniles) (Table II), and stored them in 70% 
ethanol at room temperature for age estimation 
through skeletochronology. We followed the 
standard protocols used in skeletochronology 
(e.g. Smirina 1972). We selected the third phalanx 
of the toe, which was washed in water for 30 
min, and decalcified in 5% nitric acid for 30-45 
min. Afterwards, the samples were washed in 
running tap water for 5 min and kept overnight 
in distilled water. Then, the phalanges were 
frozen (Tissue-Tek O.C.T. Compound, Sakura 
Finetek) and cross-sectioned at 16 μm using a 
cryo-microtome. Sections were stained for 3-6 h 
at room temperature with Ehrlich´s hematoxylin 
(Tejedo et al. 1997). 15 to 20 of these sections 
were permanently mounted in aqueous synthetic 
resin (Aquatex®, Merck KgaA, Germany) on 
glass microscope slides. Cross sections were 

examined light microscopically at magnifications 
of 20x using a Nikon Optiphot microscope. A 
Canon PowerShot A570 was used to take digital 
images from those diaphysis sections in which the 
size of the medullar cavity was at its minimum 
and that of periosteal bone at its maximum. Cross 
sections were viewed and measured using the 
computer package Image-Pro Plus Version 1.1 
(Media Cybernetics 1993-1994). In a first step of 
the analysis, we recorded the presence/absence of 
the line of metamorphosis (LM) and of lines of 
arrested growth (LAGs). The number of LAGs 
visible in each cross section was assessed by FM 
and independently by AC. In those frogs with no 
remnant of the line of metamorphosis we estimated 
the degree of resorption by osteometrical analysis, 
following the method of Sagor et al. (1998). In 
a second step, we distinguished annual growth 
marks (LAGs sensu stricto) from non-annual 
ones (irregular interruptions of the aestivation 
periods), following Sinsch et al. (2007). The age 
of maturity was defined as the lowest age recorded 
in a reproductive frog of a given population. 

AGE-RELATED PARAMETERS

We computed the following age-related parameters 
(sensu Leskovar et al. 2006): (1) age at maturity: 
the minimum number of LAGs counted in breeding 
individuals; (2) longevity: the maximum number of 
LAGs counted in breeding individuals; (3) potential 
reproductive lifespan: the difference between 
longevity and age at maturity; (4) mean lifespan; (5) 
size at maturity: the average snout-vent length of 
all individuals with the minimum number of LAGs. 
We used a two-sample Kolmogorov-Smirnov and 
Mann-Whitney test to check for differences in the 
shape of age distribution and median age between 
males and females. We used linear regressions to 
analyze the associations between age and body size 
parameters.
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GROWTH PATTERNS

We used the packages FSA (Ogle 2018) and 
nlstools (Baty et al. 2015) in R Studio version 
1.1.423 (© 2009-2018 RStudio, Inc.) to compute 
von Bertalanffy’s growth model (Bertalanffy 
1938) following Beverton and Holt (1957): 
SVLt = SVLmax x (1-e-k x (t- t0)) , where SVLt is 
the expected or average SVL at time (or age) t, 
SVLmax is the asymptotic average SVL, k is the 
growth rate coefficient and t0 is the time or age 
when the average SVL was zero. We fitted von 
Bertalanffy growth model and estimated growth 
parameters (VBGPs) by nonlinear least squares 
regression. Two estimated VBGPs were considered 
significantly different at the 0.95 level when their 
confidence intervals (CI 95%) did not overlap. 
We used the value of 10.9 mm as the mean size 
at metamorphosis (0 LAGs) found in L. bufonius 
by Vera and Ponssa (2014), to adjust the growth 
model, since no freshly metamorphosed individuals 
could be captured from the studied area. Based on 
the known life-history patterns of the species (i.e. 
breeding period and larval development) and the 
moment of sampling, we assigned the age of 0.25 
LAGs to L. bufonius and L. latinasus juveniles, 
assuming that only 3 months elapsed since their 
metamorphosis.

REPRODUCTIVE TRAITS

Reproductive traits were measured in 16 females: 
ten L. latinasus and six L. bufonius. We determined 
the ovarian mass (OM) as the difference between 
the body mass before and after ovary removal. 
The ovarian complement (OC) represents the total 
number of mature ova from each gravid female 
and is considered a measure of their fertility or 
reproductive potential (Crump 1974, Basso 1990). 
We removed and weighed approximately 10% 
of each ovary and counted the mature ova under 
a Nikon C-DS magnifying glass. Mature ova had 
well-defined black and yellow poles and pronounced 

larger size, consistent with the post-vitellogenesis 
class (Crump 1974). We photographed a random 
sample of about 200 ova from each ovary with a 
digital Nikon Coolpix S10 camera, mounted on a 
Nikon C-DS magnifying glass. We measured the 
longest and shortest perpendicular axes of 100 ova 
per sample to the nearest 0.01 mm using Image-
Pro Plus 1.1 (Media Cybernetics 1993-94). We 
determined mature ovum size (OS) by square 
rooting the product of the two axis measurements. 
We estimated the ovarian size factor (OSF) which 
correlates the number and size of mature ova to 
body length, following Duellman and Crump 
(1974): OSF = (OC x OS)/SVL. Finally, we 
estimated the reproductive effort (RE) following 
Prado et al. (2000): RE = (OM/BM) x 100, where 
the body mass is the final weight of the female after 
oviposition. We used Pearson product-moment 
correlation coefficient adjusted for small sample 
sizes (radj) to analyze the associations between size 
and reproductive parameters.

STATISTICAL ANALYSIS

Body size variables were log-transformed in 
order to achieve normality. We tested all data for 
normality and homoscedasticity using Shapiro-
Wilk and Levene tests and chose the statistic 
tests accordingly. We used multi- and univariate 
analyses of variance to test for differences in body 
size between the sexes. We used linear regressions 
to test the association between body size, age 
and clutch characteristics. All statistical analyses 
were performed using STATISTICA 6.0 package 
(StatSoft Inc. 2001).

RESULTS

BODY SIZE AND SEXUAL SIZE DIMORPHISM

Both species (Table I) showed no significant 
effect on all measured morphometric variables (L. 
latinasus: Wilk´s λ=0.771, F6,39=1.920, P=0.101; L. 
bufonius: Wilk´s λ=0.846, F6,58=1.750, P=0.125). 



FEDERICO MARANGONI et al.	 CONTRASTING LIFE-HISTORIES OF TWO SYNTOPIC ANURANS

An Acad Bras Cienc (2019) 91(3)	 e20180507  6 | 16 

The values of sexual dimorphism index (SDI) were 
negative for head width (-1.00) in L. latinasus and 
arm length (-1.01) in L. bufonius, showing that the 
males were larger than females in these variables, 
whereas the females were larger than males in the 
remaining variables studied (Table I). We found a 
positive and significant correlation between body 
mass and SVL in both species. This correlation 
showed differences in the slope between the two 
species, with body mass increasing faster with SVL 
in L. bufonius compared to L. latinasus (Fig. 1).

AGE-RELATED PARAMETERS

All sections showed recognizable bone structures 
that allowed age determination. We found well-
defined LAGs in the periosteal bone of these 
sections, and they were relatively easy to count 
in order to assess individual age (Fig. 2). The 
descriptive statistics of the studied life history-
traits are summarized in Table II, and the age 
structure is presented in Fig. 3. The minimum 
number of LAGs found in reproductive individuals 
was one in both species. One-year old L. latinasus 
males were on average smaller than one-year old 
females, whereas in L. bufonius males were bigger 
than females within the one-year old age class. On 
average, males were older than females in both 
species; however, the differences in the median 
lifespan between sexes were significant only in L. 
latinasus (Mann-Whitney U test, Z = 2.849, P = 
0.004). Longevity in L. latinasus was three years in 
males and two years in females, while females were 
older in L. bufonius (five years in females and four 
years in males). Thus, the difference in the potential 
reproductive lifespan (PRLS) between sexes was 
one year in both species. We found no LAGs in the 
cross sections of juveniles.

GROWTH PATTERNS

Since MANOVA on all morphometric variables 
measured showed no significant effects of sex 

TA
B

L
E

 I
M

ea
n 

± 
SD

 v
al

ue
s o

f b
od

y 
m

as
s (

B
M

), 
sn

ou
t-

ve
nt

 le
ng

th
 (S

V
L

), 
ri

gh
t h

in
d 

le
g 

le
ng

th
 (H

L
R

), 
he

ad
 w

id
th

 (H
W

), 
tib

ia
 le

ng
th

 (T
L

) a
nd

 a
rm

 le
ng

th
 (A

L
) o

f m
al

e 
an

d 
fe

m
al

e 
Le

pt
od

ac
ty

lu
s l

at
in

as
us

 a
nd

 L
. b

uf
on

iu
s f

ro
m

 n
or

th
ea

st
er

n 
A

rg
en

tin
a.

 S
D

I =
 se

xu
al

 d
im

or
ph

is
m

 in
de

x.
 S

am
pl

e 
si

ze
 is

 p
ro

vi
de

d 
in

 p
ar

en
th

es
es

.
L.

 la
tin

as
us

L.
 b

uf
on

iu
s

Se
x/

tr
ai

t
M

al
e

Fe
m

al
e

SD
I

Ju
ve

ni
le

M
al

e
Fe

m
al

e
SD

I
ju

ve
ni

le
B

M
2.

46
 ±

 0
.5

7 
(3

4)
2.

65
 ±

 0
.6

5 
(1

7)
1.

08
0.

8 
± 

0.
08

 (5
)

11
.2

1 
± 

1.
75

 (5
6)

12
.8

3 
± 

1.
28

 (9
)

1.
14

1.
63

 ±
 0

.4
8 

(4
)

SV
L

32
.3

8 
± 

2.
94

 (3
4)

33
.0

2 
± 

3.
15

 (1
7)

1.
02

22
.0

4 
± 

2.
83

 (5
)

55
.3

 ±
 1

.8
 (5

6)
56

.3
3 

± 
2 

(9
)

1.
02

29
.2

5 
± 

2.
5 

(4
)

H
LR

45
.1

 ±
 2

.4
5 

(3
0)

46
.4

3 
± 

2.
78

 (1
6)

1.
03

32
.5

 ±
 1

.9
1 

(4
)

63
.1

4 
± 

2.
43

 (5
6)

64
.6

6 
± 

3.
53

 (9
)

1.
02

35
.7

5 
± 

3.
4 

(4
)

H
W

10
.3

5 
± 

0.
43

 (3
0)

10
.3

3 
± 

0.
62

 (1
6)

-1
.0

0
7.

63
 ±

 0
.1

5 
(4

)
16

.7
6 

± 
1.

34
 (5

6)
17

.2
2 

± 
0.

74
 (9

)
1.

09
10

.0
5 

± 
0.

94
 (4

)
TL

14
.2

7 
± 

0.
73

 (3
0)

14
.6

9 
± 

0.
91

 (1
6)

1.
03

10
.1

3 
± 

0.
52

 (4
)

20
.9

9 
± 

0.
66

 (5
6)

21
.3

9 
± 

0.
25

 (9
)

1.
02

11
.1

3 
± 

1.
17

 (4
)

A
L

6.
39

 ±
 0

.4
5 

(3
0)

6.
5 

± 
0.

5 
(1

6)
1.

02
4.

3 
± 

0.
34

 (4
)

11
.6

5 
± 

0.
51

 (5
6)

11
.5

8 
± 

0.
57

(9
) 

-1
.0

1
6.

33
 ±

 0
.5

2 
(4

)



FEDERICO MARANGONI et al.	 CONTRASTING LIFE-HISTORIES OF TWO SYNTOPIC ANURANS

An Acad Bras Cienc (2019) 91(3)	 e20180507  7 | 16 

in both species, we computed Von Bertalanffy’s 
growth model using pooled data of males and 
females (Fig. 4). The asymptotic average snout-
vent length was significantly higher in L. bufonius 
(SVLmax ± SE = 56.22 ± 0.43, CI 95%= 55.35 
– 57.09, K ± SE = 3.62 ± 0.44, CI 95% = 2.71 – 
4.52) than in L. latinasus (SVLmax ± SE = 32.68 
± 0.816, CI 95% = 31.00 – 34.36, K ± SE = 2.60 
± 0.55, CI 95% = 1.46 - 3.75). Although we found 
no significant differences in the growth coefficient, 
the growth rates during the first year of life, from 
metamorphosis to sexual maturity, appear to 
be distinct in the two species: L. latinasus had a 
mean SVL of only 32.6 mm (n=12 one-year old 
individuals: four males, eight females), compared to 
L. bufonius which attained a mean SVL of 56.8 mm 

in the same age class (n=8 one-year old individuals: 
four males, four females). In addition, there were 
significant differences both in the size and age 
distribution of the two species, L. bufonius being 
larger (Mann-Whitney U-test, U=50, P<0.001) and 
having a higher average lifespan compared to L. 
latinasus (M-W, U= 257, P= 0.006).

REPRODUCTIVE TRAITS VS FEMALES’ SIZE

The descriptive statistics of the reproductive 
variables in both species are presented in Table 
III. Following the differences in body size between 
species, all reproductive traits were higher in 
L. bufonius than L. latinasus. However, the 
relationships among reproductive variables (i.e. 
ovarian complement, ovarian mass and ovum size), 
female size (i.e. snout-vent length, body mass) and 
age in L .latinasus and L. bufonius were statistically 
non-significant (Table IV). In L. latinasus, the 
mean OC increased with SVL, BM and age. 
Similarly, OM increased with BM and age, but the 
relationship with SVL was negative. OS increased 
with age, but decreased with SVL and BM. On the 
other hand, in L. bufonius, OC increased with age, 
but showed a negative relationship with SVL and 
BM. Moreover, OM showed a positive relationship 
with SVL and age, but had a negative relationship 
with BM. Finally, OS increased significantly with 
SVL, BM and age.

DISCUSSION

INTRASPECIFIC DIFFERENCES IN BODY SIZE AND 
AGE-RELATED PARAMETERS

Several non-mutually exclusive factors may 
contribute to SSD in amphibians, such as 
environmental conditions, phylogeny, genetic drift, 
or natural and sexual selection (Berven 1982a, 
b, Marangoni and Tejedo 2008, Cogălniceanu 
et al. 2014). In most anurans, females are larger 
than males and in overall this is explained by the 
positive correlation between female body size and 

Figure 1 - Snout-vent length (SVL) and body mass (BM) 
relationships in Leptodactylus latinasus and L. bufonius males 
(a) and females (b).
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reproductive output (Shine 1979, Duellman and 
Trueb 1986). However, in some cases males are 
larger than females or there is no SSD (Shine 1979, 
Silva et al. 2005, Zina and Haddad 2005). We did 
not find a significant SSD in the studied L. latinasus 
and L. bufonius populations, in any of the analyzed 
morphological variables. However, a female-
biased SSD was reported in other populations of 
L. bufonius (Heyer 1978, Reading and Jofré 2003, 
Schaefer 2007, Faggioni et al. 2017, but see Duré 
and Kehr 2004) and L. latinasus (Heyer 1978, 
Duré and Kehr 2004, Schaefer 2007, Ponssa and 
Barrionuevo 2012, Attademo et al. 2014), and 
likewise, in the other 11 species of the genus 
distributed in Argentina (Appendix B). Regarding 
species of the Leptodactylus fuscus group, where 
males construct subterranean chambers, Heyer 
(1978) hypothesized a relationship between 
burrowing habits and sexual dimorphism, males 
having larger heads compared to females (Faggioni 
et al. 2017). We found no SSD in the head width of 
either species studied, but our results are similar to 
those obtained by Ponssa and Barrionuevo (2012).

Figure 2 - Cross sections through a phalanx of Leptodactylus latinasus  (a) and L. bufonius (b). An arrowhead 
indicates the lines of arrested growth (LAGs), medullar cavity (mc), endosteal bone (eb), periosteal bone 
margin (pbm).

Figure 3 - Population age structure in males and females of L. 
bufonius (a) and L. latinasus (b). 
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Several species of Leptodactylus exhibit male 
combat, a main source that have been widely 
proposed to explain the existence of sexual size 
dimorphism in anurans (Shine 1979, Blanckenhorn 
2000, Monnet and Cherry 2002), but although we 
observed male-male interaction in L. bufonius, 
with the consequent emission of territorial calls 
(F. Marangoni, personal observation), we never 
observed male combat in either of the two species 
studied (F. Marangoni, personal observation). Thus, 
we suggest that the absence of male combat could 
be another possible explanation for the absence of 
sexual size dimorphism in these species.  

Variation in age structure promoting 
considerable variation in adult body size has been 
widely demonstrated in amphibians (Díaz-Paniagua 
and Mateo 1999, Miaud et al. 1999, Laugen et al . 
2005, Marangoni et al. 2006, 2012, Cajade et al. 
2013, Quiroga et al. 2015, Sinsch et al. 2015). 
In addition, contrasting life-strategies related to 
growth rates, age and body size at sexual maturity 
of males versus females can also shape sexual 
size dimorphism in amphibians (Hemelaar 1988, 
Halliday and Tejedo 1995). We found that sexual 
maturity was reached after the first year of life in 
males and females of both species studied, which 
could also explain the absence of a significant 
sexual size dimorphism. Basso and Kehr (1991) 

also found that L. latinasus attains sexual maturity 
after the first year of life. Similar age at maturity 
and longevity (one and five years, respectively) 
and no SDD was also found in a related species - 
L. latrans, by López et al. (2017) and the authors 
proposed that the lack of SSD is probably due to 
the lack of differences in the age structure of males 
and females, females having only a slightly delayed 
sexual maturity. In contrast, other studies found that 
males and females attained sexual maturity after 
the second year of life in L. bufonius (Reading and 

TABLE II
Age-related traits of Leptodactylus latinasus and L. bufonius. AM = age at maturity (i.e. the minimum age in the sample, 
in LAGs); Longevity = maximum age in the sample (LAGs); PRLS = potential reproductive lifespan (years); Mean and 
maximum size at AM = mean and maximum snout-vent length of first-year breeders (mm). Sample size is provided in 

parentheses.

Species/Sex
Mean age

± SE
Modal 

age
Median

age
AM Longevity PRLS

Mean size at
AM ± SD  

Maximum
size at AM 

L. latinasus
Males (12) 1.75 ± 0.62 2(7) 2 1 3 2 31.27 ± 5.15 (4) 39 (1)

Females (12) 1.33 ± 0.49 1(8) 1 1 2 1 32.43 ± 3.51 (8) 38 (2) 
L. bufonius
Males (24) 2.5 ± 0.98 2-3(8) 2.5 1 4 3 57.25 ± 1.7 (4) 59 (1) 
Females (7) 2.0 ± 1.52  1(4) 1 1 5 4 56.5 ± 1.0 (4) 59(5) 

Figure 4 - Growth patterns in Leptodactylus latinasus (black 
triangles) and L. bufonius (open circles).
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Jofré 2003) and L. latinasus (Attademo et al. 2014). 
Attademo et al. (2014) found that age at maturity 
and longevity where 3 and 7 years respectively, in 
L. mystacinus. 

INTERSPECIFIC DIFFERENCES IN LIFE-HISTORY 
TRAITS

The observed differences in adult body size 
paralleled the differences in age-related parameters 
(longevity and PRLS), all reproductive traits, and 
growth pattern in both species. Observed SVL of 
first-breeders suggest that distinct growth patterns 
occur before sexual maturity in the two species, L. 
bufonius achieving a larger body size compared 
to L. latinasus, during the same amount of time. 
This pattern is also evident from the SVL-BM 

relationship, body mass increasing faster with SVL 
in L. bufonius compared to L. latinasus (Fig. 1). 
Overall, L. bufonius is larger than L. latinasus, and 
females have a higher reproductive investment. 
In addition, the potential reproductive lifespan 
(PRLS) is also higher in L. bufonius, which 
increases the potential reproductive success of the 
species (Halliday and Verrel 1988, Halliday and 
Tejedo 1995, Blanckenhorn 2000). Overall, our 
study indicates that L. bufonius exhibits a more 
successful life-history strategy and therefore 
has better chances to displace L. latinasus in 
competition for resources. However, Duré and 
Kehr (2004) showed that L. latinasus and L. 
bufonius exhibit niche complementarity, which 
means that under satisfactory levels of food and 

TABLE III
Reproductive traits of Leptodactylus latinasus and L. bufonius females. SVL = snout-vent length; OM = ovarian mass; 

OC = ovarian complement; OS = ovum size; RE = reproductive effort; OSF = ovarian size factor. Values are presented as 
Mean ± SD. Sample size is provided in parentheses.

Species SVL (mm) OM (g) OC OS (mm) RE (%) OSF 

L. latinasus 33.03 ± 3.16 (17) 0.20 ± 0.10 (10) 224.30  ±  51.43 (10) 1.19  ±  0.14 (10) 6.44 ± 2.97 (10) 7.95 ± 2.26(10)

L. bufonius 56.33 ± 2.00 (9) 1.73  ±  1.54 (6) 400.17  ±  117.89 (6) 1.29  ±  0.17 (6) 17.11 ± 16.54 (6) 9.33 ± 2.91(6)

TABLE IV
Relationship between reproductive variables (i.e. ovarian complement, ovarian mass, ovum size), body size (snout-vent 
length, body mass) and age in Leptodactylus latinasus and L. bufonius females. All variables were log-transformed. All 

relationships were statistically not significant.

Reproductive traits (y) vs. 
body size

Leptodactylus latinasus Leptodactylus bufonius
n Equation r2 n Equation r2

Ovarian Comp.
SVL 10 y = -0.8606 + 1.767 x 0.2703 6 y = 14.4744 - 2.1199 x 0.0635
BM 10 y = -0.313 + 0.2303 x 0.0968 6 y = 7.7499 - 0.5038 x 0.2628
Age 7 y = 5.3276 + 0.0573 x 0.0059 5 y = 5.9463 + 0.0833 x 0.0147

Ovarian mass
SVL 10 y = 0.3483 - 0.0793 x 0.0323 6 y = -16.9517 + 4.3615 x 0.0932
BM 10 y = 0.7944 + 1.9593 x 0.1179 6 y = 5.0727 - 1.2619 x 0.5721
Age 7 y = 0.271 + 0.3624 x 0.0013 5 y = 0.5017 + 0.7775 x 0.5597

Ovum size
SVL 10 y = 2.7067 - 0.7174 x 0.1791 6 y = -10.9025 + 2.7752 x 0.4827
BM 10 y = 0.2494 - 0.0855 x 0.0161 6 y = 0.0279 + 0.0625 x 0.0179
Age 7 y = 0.1725 + 0.0579 x 0.0253 5 y = 0.29 + 0.054 x 0.1160
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space availability, competition should not be an 
issue, and thus explaining the coexistence of the 
two species in syntopy. Furthermore, competition 
is avoided through spatial segregation between L. 
latinasus and L. bufonius: for example, although 
males of both species construct mud nests at the 
edge of ponds and other low-lying depressions 
(Heyer 1978, Cei 1980), there are subtle differences 
in their microhabitat preferences and reproductive 
behavior (see Crump 1995), L. latinasus being 
usually associated to crevices in the ground, while 
L. bufonius constructs cone-shaped nests at the 
edge of the ponds (Shoemaker and McClanahan 
1973, Crump 1995, F. Marangoni, personal 
observation during present study). Since both 
species use the same ponds for breeding, at the 
same time, interspecific interaction is most likely to 
occur during larval stages. However, little is known 
regarding the length of larval development, dietary 
requirements, foraging behavior of the tadpoles, or 
size at metamorphosis. Hence, studies regarding 
growth, diet and foraging behavior during early-
stages of life in both species are required to fully 
understand the mechanisms that shape their life-
histories and allow their coexistence.  
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APPENDIX A

Species, location and registration numbers of all 
individuals deposited and measured at the Collection 
of the Laboratorio de Genética Evolutiva, Instituto 
de Biología Subtropical (CONICET-UNaM), 
Posadas, Misiones, Argentina (LGE):

L. bufonius: Charata, Chaco: 05226, 05235, 
05236, 05247, 05248, 05249, 05250, 05251, 05252, 
05253, 05254. Perichón, Corrientes: 20058, 20059, 
20060, 20061, 20062, 20063, 20064, 20065, 20066, 
20067, 20068, 20069, 20070, 20071, 12163, 12947, 
12948, 12949, 12950, 12951, 13330, 13419, 13437, 
13438, 13439, 13440. Fuerte Esperanza, Chaco: 
13006, 05863, 05864, 05865, 05866, 05867, 05868, 
05869, 05870, 05871, 05872, 05873, 05874, 05875, 
05876, 05877, 05878, 05879, 05880, 05881, 05882, 
05883, 05886, 05887, 05888, 05889, 05890, 05891, 
05892, 05893, 05894, 05895, 05896, 05897, 05898, 

05899, 13022, 13078, 13079, 13317, 13370, 13371, 
13373, 13405, 50898, 5899.

L. latinasus: Perichón, Corrientes: 20072, 
20073, 20074, 20075, 20076, 20077, 20078, 20079, 
20080, 20081, 20082, 20083, 20084, 20085, 20086, 
20087.

L. laticeps: Chaco, Formosa: 12083, 12084, 
12100, 12101, 12150, 12164, 15282, 15283, 15284, 
15285, 15286, 15287, 15289, 15290, 15291, 15292, 
15293, 15294.

L. furnarius: Corrientes and Misiones: 03438, 
03439, 03493, 03666, 03867, 04119, 04163, 04694, 
07889,12854, 12855, 12856, 12857. 

L. plaumanni: Misiones: 02067, 03373, 03374, 
03375, 03386, 03427, 03430, 03431, 03537, 03543, 
03545, 03546, 03556, 03557, 03929, 03930, 04243, 
04244, 04823, 05086, 05104, 07034, 07077, 09662, 
09663, 09664, 09665, 09666, 09667, 09668, 09669, 
09672, 09673, 09674, 09675, 19927.

APPENDIX B
Average SVL of males and females of the 13 species of the genus Leptodactylus and the SDI computed for each population. 

# = species belong to the L. fuscus group. LGE = Collection of the Laboratorio de Genética Evolutiva, Instituto de 
Biología Subtropical (CONICET-UNaM), Posadas, Misiones, Argentina. Mean ± SD. n=sample size. Significant 

differences in SVL between males and females (P< 0.05) are marked with *;▲= not analyzed.
Species Country Coordinates Males SVL Females SVL SDI Source

L. bufonius # Argentina 29°48’S, 64°43’W 56.40 ± 2.58 (62) 60.00 ± 2.87 (53) 1.06* Reading and Jofré 
2003

L. bufonius  # Several Several 51.60 ± 2.0 53.60 ± 2.3 1.04* Heyer 1978

L. bufonius # Argentina 27°17’34.8” S, 
61°09’01.4” W 46.68 ± 1.02 (9) 45.69 ± 1.76 (3) -1.02 LGE

L. bufonius # Argentina 25°04’39.24” S, 
61°37’52.33” W 53.26 ± 3.05 (36) 59.87 ± 3.64 (10) 1.12* LGE

L. bufonius # Argentina 27°30’ S, 58°45’W 44.20 ± 4.2(12) 43.80 ± 6.9 (8) -1.01 Duré and Kehr 2004
L. bufonius # Argentina 27°26’ S, 58°44’ W 46.10 ± 1.94 (11) 47.90 ± 2.32 (11) 1.04 Schaefer 2007

L. bufonius # Argentina 27°25’53.2” S, 
58°44’44.8” W 55.30 ± 1.8 (56) 56.33 ± 2 (9) 1.02 Present study

L. bufonius # Brazil 21º42’39’’ S, 
57º43’16’’ W 46.03 ± 2.91 (25) 47.66 ± 3.11 (31) 1.04* Faggioni  et al. 2017

L. chaquensis Brazil 57°00’ W, 19°34’ S 71.34 ± 5.11 (34) 71.31 ± 4.51 (50) -1.00 Prado et al. 2000
L. chaquensis Argentina 27°30’ S, 58°45’ W 62.90 ± 5.43 (21) 65.30 ± 7.82 (14) 1.04 Schaefer et al. 2006
L. chaquensis Argentina 27° 26’ S, 58°44’ W 63.00 ± 5.45 (27) 61.38 ± 7.67 (35) -1.03 Schaefer 2007

L. elenae # Several Several 42.70 ± 2.5 42.80 ± 3.1 1.00* Heyer 1978

L. furnarius Brazil 18°55’ S, 48°17’ W 38.00 ± 1.13 (19) 42.40 ± 1.58 (52) 1.12* Giaretta and 
Kokubum 2003

L. furnarius Argentina Several 36.62 ± 1.70 (11) 41.79  ± (2) 1.14▲ LGE
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Species Country Coordinates Males SVL Females SVL SDI Source
L. fuscus Brazil - 43.60 ± 2.4 (135) 45.60 ± 2.2 (13) 1.05* Lucas et al. 2008

L. fuscus Brazil - 43.00 (39.9-46.8) 
(28)

43.70 (41.9-46.3) 
(28) 1.02 Maragno and 

Cechin 2009
L. fuscus Brazil 2°48’ N, 60°12’ W 36.20 ± 1.3 (25) 39.50 ± 1.3 (25) 1.09* Martins 1988

L. fuscus Brazil 16°13’50” S, 
48°04’49” W 46.90 ± 2.7 (13) 49.30 ± 2.6 (6) 1.05▲ De-Carvalho et al. 

2008
L. gracilis # Several Several 43.00 ± 4.8 43.00 ± 3.7 1.00 Heyer 1978

L. labyrinthicus Brazil 18°55’ S, 48°17’ W 136.50 ± 17.2 
(16)

127.30 ± 12.7 
(12) -1.07 Silva et al. 2005

L. labyrinthicus Brazil 22°15’ S, 47°49’ W 170.00 ± 18.9 (5) 157.00 ± 10.4 (5) -1.08 Zina and Haddad 
2005

L. labyrinthicus Brazil 22°16’ S, 47°42’ W 152.30 ± 10.6 
(10) 155.00 ± 12.3 (8) 1.02 Zina and Haddad 

2005
L. laticeps Argentina Several 94.61± 3.00 (8) 99.32 ± 10.2 (10) 1.05 LGE

L. latinasus Several Several 31.20 ± 1.7 33.00 ± 1.9 1.06* Heyer 1978

L. latinasus Argentina - 30.30 ± 0.9 (7) 32.20 ± 2.2 (6) 1.06▲ Ponssa and 
Barrionuevo 2012

L. latinasus Argentina 30°00’10.83’’ S 
57°22’31.61’’ W 30.43 ± 1.67 (21) 32.59 ± 1.65 (19) 1.07 

R. Cajade and J.M. 
Piñeiro, unpublished 

data
L. latinasus Argentina 27°26’S, 58°44’W 28.35 ± 1.62 (60) 29.30 ± 1.92 (50) 1.03* Schaefer 2007
L. latinasus Argentina 27°3’S, 58°45’W 27.76 ± 2.2 (43) 28.50 ± 2.4 (27) 1.02 Duré and Kehr 2004

L. latinasus Argentina 27°25’53.2’’S, 
58°44’44.8’’ W 32.38 ± 2.94 (34) 33.02 ± 3.15 (17) 1.02 Present study

L. latrans Argentina Several 65.41 ± 28.84 
(94)

63.59 ± 26.72 
(89) -1.03 López et al. 2017

L. mystacinus # Several Several 53.00 ± 4.6 56.50 ± 2.7 1.07* Heyer 1978

L. mystacinus # Brazil 16°13’50” S, 
48°04’49” W 55.80 ± 2.2 (17) 60.80 ± 5.5 (18) 1.09▲ De-Carvalho et al. 

2008

L. mystacinus # Brazil - 52.90 ± 2.8 (7) 57.90 ± 3.1 (6) 1.09* Oliveira Filho and 
Giaretta 2008

L. plaumanni Argentina 26°13’15.6” S, 
53°49’16.2” W 38.64 ± 2.57 (27) 41.78 ± 2.42 (9) 1.08* LGE

L. podicipinus Brazil 19°34’ S, 57°00’ W 35.19 ± 1.34 (21) 39.47 ± 2.13 (36) 1.12* Prado et al. 2000

L. podicipinus Brazil 19°34’ S, 57°00’ W 32.20 ± 3.4 (55) 38.00 ± 3.7 (53) 1.18▲ Rodrigues et al. 
2004
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