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Regionalization of flow duration curves in the
Amazon with the definition of homogeneous
regions via fuzzy C-means
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Abstract: Data insufficiency is one of the main challenges faced in hydrological studies,
including a lack of knowledge regarding flow duration curves (FDCs). Thus, homogeneous
regions of streamflow were identified in the Amazon using the Fuzzy C-Means (FCM)
method. The PBM index was used to validate the clustering obtained via FCM, in turn,
a homogeneity test based on the L-moment was applied to confirm the homogeneity
in each defined region. Linear, power, exponential, logarithmic, quadratic and cubic
mathematical models were fitted to the FDCs observed in the homogeneous regions. The
models are the result of multiple regression analyses involving the parameters of the
fitted FDC and the physico-climatic characteristics of the watersheds. The models were
validated using the Jack-knife cross-validation method. The validation was satisfactory,
with NASH coefficients higher than 0.50. Additionally, the standard deviation (RSR) of
observations was less than 0.70, and the averages of the relative mean square error did
not exceed 12.26%. These results are relevant for 89.91% of the analyzed watersheds and
73.58% of the study area. Thus, FDCs may be estimated in large parts of the Amazon,
thereby making the methodology presented a valuable tool to support projects involving
the planning and management of water resources.
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INTRODUCTION

One of the conditions for the proper planning of
water resources is knowledge of the behavior
of rivers and their streamflow regimes. This
knowledge requires the continuous collection
and interpretation of the data obtained at
streamflow gauge stations because reliability
becomes more important as the historical series
become more extensive. However, the lack of
gauged sites and the limited availability of
streamflow observations creates a relevant
problem for the estimation of flow duration
curves (FDCs) that is usually solved through
the application of regionalization models
(Castellarin et al. 2007, Ganora et al. 2009).

According to Li et al. (2010), hydrological
regionalization is a technique that allows the
estimation of variables such as rainfall and
streamflow, and of hydrological functions, such
as FDCs. It is necessary to know the hydrological
processes and to understand the spatiotemporal
heterogeneity of the morphoclimatic properties
of the watersheds.

These functions serve as analytical tools
for hydrological and environmental problems
related to the use of the water in a watershed for
various purposes, such as hydroelectric projects,
irrigation systems and water supply, water
quality assessment, and navigation systems,
among others (Blanco et al. 2013, Castellarin et
al. 2013).
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The literature contains numerous examples
of regional models, defined through multiple
regression, for estimating FDCs in which the
parameters of the curves are related to the
physical and climatic characteristics of a river
basin (Mimikou & Kaemaki 1985, Viola et al. 2011,
Pessoa et al. 2011, Shu & Ouarda 2012, Costa et
al. 2012, Mendicino & Senatore 2013, Waseem et
al. 2015, Swain & Patra 2017, Silva et al. 2019).

Mimikou & Kaemaki (1985) developed a
regionalization study of flow duration curves in
western and northwestern Greece. Viola et al.
(2011) developed a regional model to estimate
FDCs in watersheds in Sicily, Italy. Regional
regression equations were developed to obtain
FDCs from the morphological characteristics
of the basins. Mendicino & Senatore (2013)
analyzed the performance of seven models of
regional FDCs (two statistics and five parametric)
for 19 calibrated basins in a region of southern
Italy known as Calabria. For the definition of the
regional models, they used multiple regression
analysis.

Shu & Ouarda (2012) applied logarithmic-
regression-based logarithmic interpolation
(RBLI), a method used to simulate FDCs at
locations with no information, to 109 streamflow
gauge stations in the province of Quebec,
Canada. Waseem et al. (2015) predicted the
streamflow percentiles of FDCs by combining
three traditional methods (i.e., drainage area
ratio, inverse distance weighted, and the
regression method) in which the ensemble
hydrological prediction performed better than
the three individual traditional techniques in
eight ungauged catchments in Pakistan.

Swain & Patra (2017) bring together
a comparative assessment of streamflow
estimation in ungauged catchments using
regional FDCs. Four regionalization techniques,
including area-index, inverse distance weighted
(IDW), kriging, and stepwise regression, were

applied to 32 catchments in India to estimate
daily streamflow. The area-index method
performed the worst, perhaps because it
considers only drainage.

Regarding the estimation of FDCs, some
works in the Amazon are highlighted, for
example, in the studies developed by Pessoa
et al. (2011) and Costa et al. (2012), in which
the authors estimated FDCs in the hydrographic
regions of the Calha Norte and Xingu in the state
of Pará throughmultiple regressionmodels. Silva
et al. (2019) produced models of regionalization
of FDCs, proposing the grouping of watersheds as
a function of the drainage area without the use
of cluster analysis techniques.

However, to achieve effective regionalization,
it is necessary to define regions with
hydrologically homogeneous behaviors, i.e.,
to have hydrological similarity between the
physical and climatic characteristics of the
region. One method used to obtain results when
dividing a study area into homogeneous regions
is cluster analysis, where the primary purpose
is to aggregate objects based on a measure of
the similarity of their characteristics. Among the
methods of cluster analysis used in hydrology to
obtain homogeneous regions, the hierarchical
agglomerative method (Tsakiris et al. 2011,
Rianna et al. 2011, Farsadnia et al. 2014, Awan
2015) and the Fuzzy C-Means (FCM) partitioning
method (Sadri & Burn 2011, Satyanarayana &
Srinivas 2011, Dikbas et al. 2012, Goyal & Gupta
2014, Senent-Aparicio et al. 2017, Beskow et al.
2016, Gomes et al. 2019) are highlighted.

Specifically, Sadri & Burn (2011) used the FCM
procedure in the delimitation of homogeneous
regions in the Canadian provinces of Alberta,
Saskatchewan and Manitoba. The methodology
was applied to the hydrological records of 36
streamflow monitoring sites based on bivariate
criteria (severity and duration). The authors
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confirmed the importance of this methodology
in helping to delimit homogeneous regions.

Satyanarayana & Srinivas (2011) presented
an approach based on FCM cluster analysis in
which it was possible to identify homogeneous
regions of rainfall in India using large-scale
atmospheric variables, as well as localization
attributes and rainfall seasonality. Dikbas et al.
(2012), in a study of rainfall series classification
of 188 rainfall stations in Turkey, applied the
FCM method and identified six hydrologically
homogeneous regions based on the variables
total annual precipitation, coefficient of variation
of total annual precipitation, latitude and
longitude.

Goyal & Gupta (2014) identified four
homogeneous precipitation regions in
northeastern India, using FCM. Senent-Aparicio
et al. (2017) applied the Fuzzy C-Means and Fuzzy
Minimals algorithms to assess the effectiveness
of both algorithms in the identification of
hydrologically homogeneous regions for flood
frequency analysis of the watersheds in Alto
Genil (southern Spain).

Beskow et al. (2016) evaluated the
performance of artificial intelligence techniques
(K-means, Partitioning Around Medoids,
K-harmonic means, Fuzzy C-means and Genetic
K-means) for the formation of hydrologically
homogeneous regions in the State of Rio Grande
do Sul (Brazil) for the regionalization of low
flow - Q90. Gomes et al. (2019) identified
three homogeneous precipitation regions in
the hydrographic basin of Tocantins-Araguaia
in Brazilian Amazonia using the Fuzzy C-means
method and physical-climatic variables such as
location (latitude and longitude), altitude, and
precipitation.

In the context of the Amazon, there is a lack
of work on the regionalization of flow continuity
curves and the identification of homogeneous
flow regions, with only studies by Pessoa et

al. (2011), Costa et al. (2012) and Silva et al.
(2019) in the state of Pará, Amazônia, Brazil.
Therefore, the premise of this research is to
minimize the problem of the region (absence
of hydrological data), providing regional models
that will allow us to simulate the permanence
curve and not just the maximum, medium or low
flow. According to the findings of Boscarello et
al. (2016), it is important to define homogeneous
regions, because the mean absolute percentage
error decreased from 11% to 7% in the FDC
estimates in 46 catchments in Italy.

The objective of the current study is to
develop a methodology for the regionalization
of FDCs in which the homogeneous regions are
defined through the FCM method and regional
models are defined through multiple regression.
The main motivation for this work is the
application of this methodology to the Amazon
region, which, for the most part, is devoid of
records of streamflow data, making it difficult
to plan and manage the water resources of the
world’s largest river basin.

MATERIALS AND METHODS

Study area and data

The study area involves watersheds located in
the Amazon between 5◦N–18◦S and 42◦W–74◦W
and encompasses multiple states comprising
the Brazilian Amazon (Acre, Amapá, Amazonas,
Mato Grosso, Pará, Roraima, Rondônia, Tocantins
and part of the state of Maranhão). In addition,
the basins extend to neighboring countries
(Venezuela, Colombia, Peru and Bolivia and
French Guiana) (Figure 1).

Initially, 208 streamflow and 208 rainfall
gauge stations were selected. These stations
belong to the hydrometeorological network
of the Hydrological Information System
(HIDROWEB) of the Agência Nacional de Águas
- ANA (2015) (http:/hidroweb.ana.gov.br/). The
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Figure 1. Amazonia and the spatial distribution of the streamflow and rainfall gauge stations used in the study.

stations were chosen after considering the
distributions of existing data and historical
series from 1975 to 2012. The data were used
to calculate the mean annual precipitation
P (mm), and the FDC for each station. The
drainage area A (km2) of the basins, the length
of the main river L (km) and the head of
the river H (m) were delimited by Geographic
Information System (GIS) software using the
digital elevation model (DEM) available at
http://www.relevobr.cnpm.embrapa.br.

Fuzzy C-means (FCM) algorithm

The FCM algorithm is a multivariate data analysis
technique that replaces the binary configuration
of classical set theory with membership intervals
in which an element belongs to one or more sets

with a certain degree of pertinence between 0
and 1. This property is highly effective for the
grouping of hydrological variables, as previously
mentioned. The FCM algorithm was implemented
in MATLAB 7.1 software through the ”Fuzzy Logic
Toolbox”. This tool allows us to use a function
known as fcm, which functions as an algorithm.
As a stopping criterion, a minimum error of ε
= 0.0001 and a maximum number of iterations
tmax = 200 were used.

Data partitioning into fuzzy clusters is
achieved by minimizing the objective function
Jm (Equation 1), which then assists in verifying
the convergence of the FCM algorithm. This
function depends on the fuzzification parameter,
m, which, with values between 1.25 and 2 (Ross
1995), guarantees effective performance.
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Jm(U, V : X) =
n∑
k=1

c∑
i=1

(uik)
m‖xk – νi‖2 (1)

At each iteration t of the FCM algorithm, a
rate of J(t)m is calculated by means of Jm. J

(t)
m is

subtracted from J(t–1)m to give∆Jm. If∆Jm is close
to zero, it is an indicator that the algorithm is
converging. In Equation 4, V = (ν1, ..., c) is a
vector containing the centroids of the clusters,
in which νi(i = 1,…, c) ∈ <p. Thus, each
value xk is evaluated according to its proximity
to each centroid νi. This comparison is made
using the Euclidean distance between xk and νi.
Specifically, uik is the degree of pertinence of xk
in cluster i. The centroids of the clusters are given
by Equation 2, and the degrees of pertinence are
given by Equation 3.

ν
(t)
i =

n∑
k=1

(
u(t)ik

)m
xk�

n∑
k=1

(
u(t)ik

)m
(2)

u(t+1)
ik = 1/

c∑
j=1

‖xk – ν
(t)
i ‖2

‖xk – ν
(t)
j ‖2


2

m–1

(3)

The FCM algorithm may be summarized in
the following steps (Farsadnia et al. 2014):

1. Choose values for c (number of groups), m
(fuzzification parameter) and stop criterion
ε (error);

2. Randomly generate the array U(0)

complying with the restrictions;

3. Assign the value 0 to the iteration counter;

4. Calculate the centroids (Equation 2), the
objective function Jm (Equation 1) and the
degrees of pertinence (Equation 3);

5. Compare the partition matrices U(t) and
U(t+1). If

∣∣∣U(t+1) – U(t)
∣∣∣ < ε, finalize the

algorithm; otherwise, return to step 3 by

incrementing the iteration counter t = 1, 2,
......, n.

The clusters (homogeneous regions) were
determined by the distribution of the variables:
drainage area (km2), average long period
streamflow (m3/s), mean annual precipitation
(mm) and river length (km).

PBM INDEX

The PBM index was proposed by Pakhira et
al. (2004). It is used to validate the clustering
formed through the application of the FCM
algorithm. This index is defined as the product
of three factors (Equation 4). The maximization
of this index ensures that the partition has the
fewest possible clusters.

PBM(K) =
(
1

K
× E1
Ek

× Dk
)2

(4)

where K is the number of clusters. Additionally,

Ek =
k∑

k=1

Ek (5)

such that

Ek =
n∑
j=1

ukj‖Xj – Zk‖ (6)

and

Dk = maxki,j=1‖Zi – Zj‖ (7)

where n is the total number of data values
analysed, U (X) =

[
ukj

]
k×n

is a partition array,
and Zk is the center of the kth cluster.

L-moments approach

Hosking & Wallis (1997) proposed a homogeneity
test (H test) based on L-moment ratios (L-Cv,
L-Cs, and L-Ck) for testing the homogeneity
of the groups identified by cluster analysis.
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It is statistically evaluated by using a
regional homogeneity test to determine if
the groups determined with cluster analysis
are homogeneous or not. Several studies in
hydrology (Drissia et al. 2019, Gomes et al. 2019,
Ghiaei et al. 2018, Dikbas et al. 2013) have used
this test to confirm the homogeneity of a given
region.

L moments are defined as linear
combinations of probability weighted moments
(PWM) of the time series (Hosking & Wallis 1997,
Hosking & Wallis 1993). The first four L moments
are as follows:

λ1 = β0 (8)

λ2 = 2β1 – β0 (9)

λ3 = 6β2 – 6β1 + β0 (10)

λ4 = 20β3 – 30β2 + 12β1 – β0 (11)

where β0, β1, β2 and β3 are the first four
probability weighted moments (PWMs). L
moment ratios (LMR) were calculated using
Equations 12-14.

τ2 =
λ2

λ1
(12)

τ3 =
λ3

λ2
(13)

τ4 =
λ4

λ2
(14)

where τ2 is the L coefficient of variation (L-Cv),
τ3 is the L coefficient of skewness (L-Cs), τ4 is
the L coefficient of kurtosis (L-Ck). The τ1 is
considered as the average of the observed long
period streamflow series.

According to Hosking & Wallis (1993,
1997), the test H statistic is used assess the
homogeneity of a region based on L-moments
and is ameasure of heterogeneity (H1 for L-Cv,H2

for the combination of L-Cv and L-Cs, and H3 for
the combination of L-Ck and L-Cs) that compares
sintersite variation in sample L-moments for
a group of sites that would be expected in
a homogeneous region. The heterogeneity
measure (Hk) is defined by Equation 15.

Hk =
(νκ – μνκ)
σνκ

(15)

where Vk is the weighted standard deviation of
the L-Cv of the variation values, μvk is the average
of these values and ςvk is the standard deviation
of the values obtained from the simulation.

According to the test of significance, which
was proposed by Hosking & Wallis (1997), if
H < 1, the region is considered “acceptably
homogeneous”, if 1 ≤ H < 2, the region is
“possibly homogeneous,” and finally, if H ≥ 2,
the region should be classified as “definitely
heterogeneous”.

FDC fit

According to Castellarin et al. (2007), an
FDC complements the empirical cumulative
distribution function of daily streamflows based
on the complete streamflow record available for
the basin of interest.

To construct FDC, some authors (Viola et al.
2011, Ganora et al. 2009, Castellarin et al. 2007)
recommend the use of a procedure that consists
of two steps: (1) the observed streamflows qi,
i = 1, 2, ..., N, are sorted in descending order
to produce a streamflow set q(1), i = 1, 2, ...,
N, where N is the length of the sample, e
q(1) and q(N) are the largest and the smallest
observed streamflow events, respectively; (2)
each ordered observation q(i) is plotted against
its corresponding duration Di, which is generally
dimensionless and coincides with an estimate,
pi, of the probability of exceedance of q(i). In
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the estimation of pi, the Weibull plotting position
(WPP) is used according to Equation 16.

Pi = P(Q > q(i)) =
i

N+ 1
(16)

For a better graphical visualization of the
fit of the models, 25 pairs - Q (m3/s) x D
(duration %) - were selected for each streamflow
gauge station belonging to the hydrologically
homogeneous regions previously defined. These
25 pairs were divided in intervals of 4% until
reaching 100%; that is, 4, 8, 12 ... 100%.

Mathematical functions (Equations 17-22),
used as models, were fitted to the observed FDC
of the 208 streamflow gauge stations (Mimikou
& Kaemaki 1985, Pessoa et al. 2011, Costa et al.
2012, Silva et al. 2019) as follows:

Linear Q = a – b.D (17)

Power Q = a.D–b (18)

Exponential Q = a.e(–b.D) (19)

Logarithmic Q = a – b.ln.D (20)

Quadratic Q = a – b.D+ c.D2 (21)

Cubic Q = a – b.D+ c.D2 – d.D3 (22)

where Q (m3/s) is the observed streamflow rate;
D (%) is the equaled or exceeded duration; and a,
b, c and d are the parameters resulting from the
fit, which were calculated using the least squares
method. In this case, the streamflow rate Q is
the dependent variable and the duration D is the
independent variable.

Performance criteria

To analyze the quality and performance of
the model fits, we adopted the relative mean
square error (Equation 23), the coefficient of
determination (Equation 24), and the best-fit plot
between the observed and simulated FDC.

ε = n–1
 n∑
i=1

(
yi – ŷi
yi

)2


1
2

(23)

where yi is the observed daily streamflow rate; ŷi
is the estimated value of the streamflow by the
model; and n is the total number of observations.

R2 =
([β̂]T .[X]T .[Y] – nY2)

YT .[Y] – nY2
(24)

where [Y] is a vector (n x 1) of the observations of
the dependent variable, [X] is an array (n x P) with
the n observations of each of the independent P
variables, and [β] is a vector (P x 1) with unknown
parameters. The coefficient of determination (R2)
describes the proportion of the variance of the
measured data explained by the model. It ranges
from 0 to 1, where values close to 1 indicate less
error variation and values equal to or greater
than 0.5 are considered acceptable (Santhi et al.
2011, Van Liew et al. 2007).

Regionalization

These models were constructed by means of
multiple regression among the parameters (a, b,
c and d) defined in the fit phase (Equations 17-22)
in relation to the morphoclimatic characteristics
of the river basins. These parameters explain the
spatial variation in streamflow rates considering
the drainage area A (km2), the mean annual
precipitation P (mm), the length L of the river
(km) and the head of the river H (m). The
regression equations applied were as follows:

V = β0 + β1.A+ β2.P+ β3.L+ β4.H (25)
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V = β0.Aβ1 .Pβ2 .Lβ3 .Hβ4 (26)

V = β0.Aβ1 .Pβ2 .
(
H
L

)β3
(27)

V = β0.Pβ1 .
(
A
L

)β2
.Hβ3 (28)

where V is the dependent variable that
represents the parameters of the FDC and β0,
β1, β2, β3 and β4 are the regression coefficients
determined by the least squares method.

The morphoclimatic characteristics, as well
as the Equations 25-28, were chosen because
they are the most commonly used in studies
of the regionalization of FDCs in the Amazon
(Pessoa et al. 2011, Costa et al. 2012) and are
similar to the method of regionalization of FDC
used by Mimikou & Kaemaki (1985) in watersheds
of the western and northwestern regions of
Greece. According to Duarte & Pessoa (2017),
the variables drainage area, precipitation, river
length and slope represented a frequency of use
of 95.2%, 90.5%, 42.9% and 38.1%, respectively, in
the regionalization studies of flow in the years
2010 to 2016.

The best model to be used for each
hydrologically homogeneous region was
evaluated by calculating the determination
coefficient, R2 (Equation 24). The Ftotal test
(Equation 29) was also applied to verify the
existence of a significant relationship between
the dependent variable and the independent
variables. The critical rate was obtained using
the Snedecor’s-F distribution.

Ftotal =
[β̂]T [X]T [Y]–nY2

P
[Y]T [Y]–[β̂]T [X]T [Y]

n–P–1

(29)

The model was considered to be statistically
significant when the calculated rate of Ftotal >
F(α, P,n – P – 1) at a significance level of 5%. (α =
0.05).

Validation

The Jack-knife cross validation method
(Castellarin et al. 2007, 2009, Rianna et al. 2011)
was used to validate the regionalization models.
The procedure, summarized by Castellarin et al.
(2007), consists of a repeated analysis of the
results, excluding a station from the regression
with the purpose of validating the model.
The choice of this procedure is because the
regionalization methodology to will repeated
for all analyzed stations. Thus, each estimated
curve may be compared to an observed curve to
check the model errors. The Jack-knife technique
was associated with the calculation of the NASH
efficiency coefficient (Nash & Sutcliffe 1970)
(Equation 30), which is described as follows:

NASH = 1 –

[∑n
i=1(Y

obs
i – Ysimi )2∑n

i=1(Y
obs
i – Yobs)2

]
(30)

where Yobsi is the observed streamflow rate, Ysimi
is the estimated streamflow rate and Yobs is the
average of the observed streamflow rates. Rates
between 0 and 1 are generally seen as acceptable
levels of model performance, while rates below
0 indicate unacceptable performance (Nash &
Sutcliffe 1970).

In addition to the NASH, we also used the
relative mean square error (Equation 23) and
the model evaluation statistic RSR (observations
standard deviation ratio) (Equation 31). The RSR
is calculated by dividing the square root of the
sum of the quadratic errors by the standard
deviation of the observations.

RSR =


√∑n

i=1(Y
obs
i – Ysimi )2√∑n

i=1(Y
obs
i – Yobs)2

 (31)

The RSR varies from 0 to ∞, where
zero is the ideal value, indicating a perfect
performance of the model in the simulation and
zero residual variation or RMSE. Moriasi et al.
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(2007) recommend satisfactory streamflow-rate
simulation hydrological models with a
Nash-Sutcliffe (NASH) efficiency coefficient of
greater than 0.50 and an RSR of less than 0.70.
Figure 2 summarizes the methodology used in
the present study.

RESULTS AND DISCUSSION

Homogeneous regions via FCM

Table I shows the PBM index values as a function
of the cluster number (c) and the fuzzification
parameter (m). Each column in Table I provides
values corresponding to m ranging from 1.5 to
2.0. Figure 3 shows the graphs for these results.
As seen in Table I and Figure 3, the PBM validation
index had its value maximized for c = 10 and
m = 1.6.

Pal & Bezdek (1995) noted that the FCM
provides better performance for m (fuzzifier) in
the range of 1.5–2.5. Gomes et al. (2019) observed
better performance for the FCM algorithm with
values of m = 1,9 and c = 3, which were validated
through the PBM index. However, Srinivas et al.
(2008) and Goyal et al. (2014) defined the best
values of m = 1.5 and m = 1.7, respectively, but
these values were validated by other methods.

The results demonstrate that the application
dataset is best clustered into 10 groups. In this
case, the algorithm reached the stop condition
in 10 iterations (Figure 4). For the first iteration of
the algorithm, the objective function jm provided
the value of 6.79×1012, and for the last iteration,
the calculated value was equal to 4.44× 1010.

Figure 5 reflects an important contribution
of the FCM algorithm since it can estimate the
average streamflow rate of a river as a function
of the homogeneous region, the drainage area
and the average annual rainfall.

Figure 6 shows the spatial distribution of the
hydrologically homogeneous streamflow regions
found in the Amazon by means of the FCM

algorithm. As seen by the clusters formed,
geographic contiguity is not necessary to define
a hydrologically homogeneous region (Rao &
Srinivas 2006).

It is also noted that regions 6 to 8 grouped
only a few stations, representing 6% of the
total number of stations (Table II). Regions 1
to 4 grouped 90% of all of the stations. These
regions, which show hydrological similarity, are
distributed across the majority of the Amazonian
territory, in comparison with the other regions.
However, some regions of the Brazilian Amazon
were not grouped due to the scarcity of data.

The FCM algorithm has been widely used
in hydrology to identify homogeneous regions,
as in studies by Beskow et al. (2016), who
used artificial intelligence (AI) techniques with
measures of the low seasonality of streamflow.
The authors demonstrated the efficiency of
the FCM algorithm in the identification of
homogeneous regions, aiming to regionalize
Q90 in southern Brazil. Gomes et al. (2019)
identified three homogeneous rainfall regions
for a watershed in the Amazon. Rao & Srinivas
(2006) evaluated the FCMmethod for watersheds
in Indiana, USA, and found great potential of that
algorithm to determine homogeneous regions
for modeling annual maximum stream flows.
Sadri & Burn (2011) also obtained promising
results from the FCM technique to delineate
regions for low stream flow regionalization in
watersheds located in Canada.

Regional homogeneity test based on
L-moments (H test)

The hydrological homogeneity of the clusters
identified by the FCM algorithm should be
tested for use in streamflow estimation studies.
A regional homogeneity test based on the
L-moments proposed by Hosking & Wallis (1993,
1997) was used in this study. H (H1, H2 and
H3) values were calculated for clusters 1-8
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Figure 2. Summary of the methodology.

Table I. Results of the PBM index to the clustering of the FCM algorithm.

Number of cluster
PMB-index

m=1.5 m=1.6 m=1.7 m=1.8 m=1.9 m=2.0

2 4.65E+09 4.64E+09 1.02E+12 1.01E+12 1.00E+12 4.64E+09

3 2.38E+09 2.82E+10 2.37E+09 2.38E+09 2.55E+10 1.56E+11

4 1.29E+11 1.76E+10 1.48E+09 4.59E+10 4.00E+11 1.61E+11

5 1.01E+10 3.35E+10 1.47E+10 1.10E+12 3.08E+11 6.82E+10

6 2.40E+10 1.99E+10 1.30E+10 9.37E+08 2.34E+10 9.54E+09

7 1.80E+08 8.71E+08 2.12E+10 6.11E+09 1.51E+11 5.65E+09

8 2.40E+10 6.76E+09 1.55E+10 2.90E+10 6.50E+08 5.54E+09

9 3.28E+09 5.80E+09 5.87E+08 5.49E+10 6.51E+09 7.53E+09

10 5.16E+09 1.32E+12 2.80E+09 4.99E+10 2.48E+09 1.21E+10

11 1.48E+10 1.46E+09 1.77E+09 2.13E+10 5.61E+08 3.79E+10

12 1.44E+10 3.52E+10 1.66E+10 1.01E+09 9.19E+09 1.20E+07

13 1.21E+09 1.64E+10 3.35E+09 1.52E+10 7.62E+09 5.01E+08

14 1.25E+09 5.03E+09 1.45E+09 4.13E+09 9.72E+08 3.27E+10

15 5.64E+09 4.96E+09 1.73E+09 1.26E+09 1.42E+10 8.83E+09
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Figure 3. Results of the PBM index to the clustering of the FCM algorithm.

Figure 4. Convergence of the objective function for the 10 clusters.
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Figure 5. Clusters according to the drainage area, mean annual precipitation and average long-term streamflow.

Table II. Clustering x Data distribution.

Clusters NS % Drainage Area (km²) Average Streamflow (m³/s) Average Rainfall (mm)

1 101 48.56 491-17,990 150 1837

2 55 26.44 18,394 - 47,038 925 1883

3 21 10.10 51,147 - 112,186 1824 2027

4 10 4.81 133,571 - 193,372 4646 2343

5 6 2.88 225,424 - 293,084 13014 2178

6 4 1.92 317,967 - 367,791 22882 2342

7 3 1.44 456,347 - 508,733 9083 1829

8 6 2.88 889,201 – 1,082,709 17661 2162

9 1 0.48 1,402,097 101158 2250

10 1 0.48 3,911,283 170013 1778

Total 208 100

NS – number of stations.

determined by the FCM algorithm and are
given in Table III. This test was not applied
to groups 9 and 10, since each one was
defined containing only one station, though
these stations represent the basins with the
largest drainage area present in the Amazon
region.

Based on the values of the H statistic (Table
III), groups 1-8 were evaluated as ”acceptably
homogeneous”, since all H values found were
less than 1. Hence, regions 1-8 can be considered
hydrologically homogeneous for all average
long-period streamflows.

Ghiaei et al. (2008) applied the L-moments
technique at all stages of regional rainfall
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Figure 6. Spatial distribution of the hydrologically homogeneous streamflow regions found in the Amazon.
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Table III. The results of the regional homogeneity test for clusters defined by the FCM algorithm.

Region The number of stations
H test

Homogeneity comment
H1 H2 H3

1 101 -0.1431 -0.1397 -0.00038 Acceptably homogeneous

2 55 -0.1237 -0.1155 -0.00991 Acceptably homogeneous

3 21 -0.0930 -0.1052 0.01407 Acceptably homogeneous

4 10 -0.0874 -0.0869 0.00472 Acceptably homogeneous

5 6 -0.0857 -0.0825 0.00152 Acceptably homogeneous

6 4 -0.0651 -0.1197 -0.0005 Acceptably homogeneous

7 3 -0.1066 -0.1053 0.00026 Acceptably homogeneous

8 6 -0.0948 -0.0962 -0.00694 Acceptably homogeneous

9 1 - - - has not been applied

10 1 - - - has not been applied

analysis in Turkey, including the determination
of homogeneous regions, in addition to
fitting and estimating parameters from
appropriate distribution functions in each
homogeneous region. Likewise, Gomes et al.
(2019) confirmed the homogeneity of three
regions of precipitation in the Hydrographic
Region of Tocantins-Araguaia using the
heterogeneity H test.

FDC fit

No regional models were developed for
homogeneous regions 5 - 10 (Figure 6) due to
the small number of existing streamflow gauge
stations. Figure 7 presents examples of the fit of
the mathematical model that best estimated the
FDC for the homogeneous regions 1 – 4.

Table IV shows the mean of the coefficients
of determination (R2) and the relative mean
squared errors (ε %) for the 4 homogeneous
regions of all the models used in the FDC
fit. The fits were found to be satisfactory for
the evaluation of the means of R2 and ε %
and for the graphical analysis of the fit of

the best model to the observed FDC (Figure
7). The Table III and the Figure 7 shows that
for homogeneous region 1, the cubic model
provided the best fit of the permanence curves.
In regions 2, 3 and 4, the exponential model
provided the best fit. It is important to note
that, as seen in Figure 3, the best model of each
homogeneous region was adjusted to the FDC
approximately equally during periods of floods
as well as during periods of droughts. This result
indicates that the parameters a, b, c and d,
since D (%) is known, satisfactorily explain the
spatial variation in the streamflows based on the
morphoclimatic characteristics of the basins of
each homogeneous region.

These results are in agreement with those
found by Silva et al. (2019), Costa et al. (2012)
and Pessoa et al. (2011), which demonstrated the
efficiency of the cubic and exponential models in
the adjustment with the curves of permanence
in the watersheds of the Amazon. In contrast,
studies by Otache et al. (2016) and Shu &
Ouarda (2012) obtained the best results for the
exponential and logarithmic models. According
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Table IV. Mean of R2 and εεε% of each model in the FDC fit for the 4 homogeneous regions.

Models
Region 1 Region 2 Region 3 Region 4

R2 ε (%) R2 ε (%) R2 ε (%) R2 ε (%)

Linear 0.92 8.19 0.87 9.08 0.89 7.67 0.91 6.96

Potential 0.90 4.52 0.85 6.54 0.84 6.17 0.79 7.31

Exponential 0.95 2.28 0.97 2.17 0.98 1.31 0.98 2.11

Logarithmic 0.97 3.58 0.96 4.66 0.94 4.12 0.93 5.09

Quadratic 0.95 4.20 0.97 3.87 0.97 2.66 0.98 2.97

Cubic 0.98 1.51 0.97 2.98 0.98 1.74 0.98 2.70

Figure 7. Fit of the FDC observed for Regions 1-4.
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to Silva et. al. (2019), this difference can be
explained, since the adoption of a single model
for all situations may not be adequate, since
the physical and climatic characteristics of each
basin are unique.

Regional models

Table V shows the best regional models for
estimating the parameters a, b, c and d and,
consequently, the best models to estimate
the streamflow continuity curves for the 4
homogeneous regions (HR).

The Table V also shows the performance
criteria for the establishment of the models,
i.e., R2 and Ftotal. Thus, in Region 1, the cubic
model was the best. In Region 2, the exponential
model was the best. These models presented R2

values above 0.50, in addition to a significant
relationship between the parameters of the
models and the explanatory variables to 5%
of significance. This result is explained by the
rates found in the Snedecor’s F distribution,
which are equal to 2.70 and 2.79, respectively,
which are smaller than the Ftotal found for
Equations 32-35 and Equations 36-37. In regions
3 and 4, which have 29 and 10 streamflow
gauge stations, respectively, the Snedecor’s
F distribution rates are 3.20 and 4.76 at a
significance of 5%. It is observed in Table IV that
Equations 38-41 of the regional models suggest
that these regions did not pass the Ftotal test and
presented R2 values for parameter b below 0.50.
However, the results should not completely rule
out a regression equation because regression
coefficients can show significant correlation.
However, the regional models of these data
revealed unsatisfactory results, probably due to
the application of multiple regressions in very
small clusters. Thus, validation was performed
for the regionalized FDC models, including the
unsatisfactory results.

Validation of regional models

Figures 8, 9, 10 and 11 presents a comparison
of the rates of the average relative mean
square error (ε %), the Nash-Sutcliffe efficiency
coefficient (NASH) and the ratio by standard
deviation (RSR). The figures also shows the mean
values of NASH and ε % for each streamflow
gauge station from the homogeneous regions 1,
2, 3 and 4 that was removed from the regression
according to the Jack-knife method.

An analysis of the data in Figure 8
verified that only one streamflow gauge station
presented an ε % greater than 20%, with a mean
ε % of 7.19. It can be observed that only seven
stations (E3, E21, E154, E175, E185 and E194 - 8%
of the sample) can be considered unacceptable
because they exhibited NASH values of less than
0. With the values of NASH and RSR for each
station removed, it was determined that 81.61%
of the streamflow gauge stations have NASH
coefficients higher than 0.50 and RSR lower than
0.70. These results demonstrate that in more
than 80% of the cases, there was a satisfactory fit
of the data observed and that simulated by the
model. In less than 20% of the cases, the NASH
values were less than 0.50, and the RSR was
greater than 0.70. The performance of the model
can be accepted as good considering these rates
of NASH and RSR (Moriasi et al. 2007).

Similar results were found in the studies
conducted by Swain & Patra (2017), in which an
average Nash-Sutcliffe value of 0.60 indicated
better regional model performance when
comparing four techniques; in the study,
regionalization flow duration curves (area index,
inverse distance weighting (IDW), kriging and
stepwise regression methods) were applied to
assess 32 catchments in India. Silva et al. (2019)
formed 3 homogeneous regions as a function
of the drainage area without the use of cluster
analysis techniques. Regional models presented
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Table V. Models of regionalization by homogeneous region.

HR Regionalization models Eq. R2 Ftotal

1 a = 1.30× A0.689.P–0.060.
(
H
L

)–0.133
(32) 0.81 108.64

b = 1253.8× A0.604 × P–0.756 ×
(
H
L

)–0.183
(33) 0.62 45.22

c = 1619.1× A0.673 × P–0.816 ×
(
H
L

)–0.064
(34) 0.53 31.56

d = 351.1× A0.683 × P–0.719 ×
(
H
L

)–0.024
(35) 0.51 26.87

2 a = –2175.8 + 0.059× A+ 1.166× P+ 40.44×
(
H
L

)
(36) 0.61 9.44

b = 1.96 – 3× 10–6 × A+ 0.0002× P – 0.024×
(
H
L

)
(37) 0.54 2.92

3 a = –5384.6 + 0.057× A+ 2.71× P+ 4154.1×
(
H
L

)
(38) 0.52 2.05

b = 2.54 – 1.3× 10–5 × A+ 5.8× 10–5 × P+ 6.73×
(
H
L

)
(39) 0.31 0.53

4 a = –38707.6 + 0.087× A+ 13.37× P+ 492236.4×
(
H
L

)
(40) 0.64 1.84

b = 2.94 – 1.0× 10–5 × A+ 0.0004× P+ 24.61×
(
H
L

)
(41) 0.24 0.79

Figure 8. Graphical comparison of εεε%, NASH and RSR for the homogeneous region 1.

Figure 9. Graphical comparison of εεε%, NASH and RSR for the homogeneous region 2.
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Figure 10. Graphical comparison of εεε%, NASH and RSR for the homogeneous region 3.

Figure 11. Graphical comparison of εεε%, NASH and RSR for the homogeneous region 4.

satisfactory performance in the estimation
of FDC because the average values of the
Nash-Sutcliffe coefficient of both models were
higher than 0.60 and the relative mean square
error was less than 20%.

In research conducted by Boscarello et
al. (2016), Mendicino & Senatore (2013) and
Castellarin et al. (2007), the cross-validation
method was used to evaluate the performance
of the regionalization of the flow duration
curves model developed through multiple linear
regression. Nash- Sutcliffe values lower than
0.50 were considered a weak fit between the
simulated and observed curves, so they were not
satisfactory.

Figures 9-11 show the graphs that compare
the criteria used for the validation of the
efficiency of the regional models for the
homogeneous regions 2-4.

An analysis of Figures 9-11 indicates
unacceptable performance in two cases for
regions 3 (E63 and E74) and 4 (E102 and E117)
and one in region 2 (E24) because the NASH
coefficients were less than 0. The averages of
the NASH coefficients for the three regions were
higher than 0.60, and the averages of ε% were
close to 10%, at 8.74%, 9.93% and 12.26%. This
result is considered a satisfactory performance
for the regional models. It can also be observed
that the regional models identified for the three
regions presented satisfactory performance
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because the NASH coefficient values were higher
than 0.50 and RSR values were less than 0.70.

CONCLUSION

The methodology developed exhibited
satisfactory performance, taking into account
the analysis of the results of the criteria
analyzed. The homogeneous regions were
well defined by the FCM method, and the
regional models, through multiple regressions,
were able to satisfactorily simulate the FDCs,
which can be confirmed by the good graphical
representation of these curves as a function
of the data observed. This satisfactory result
is important in a region that, for the most
part, has insufficient streamflow data, making
it difficult to plan and manage water resources.
However, it is observed that this same lack
of streamflow data was related to the main
limitation of the study. That is, it is difficult to
apply regional models due to data scarcity. Even
with this limitation in quantity, our methodology
can be applied to 4 homogeneous regions
(Regions 1-4), representing 89.91% of the total
streamflow gauge stations considered in this
study. Therefore, through the regionalization
models developed and with the input of
available data, FDCs can be estimated in the
majority of the Amazon region (approximately
75%). Therefore, the methodology presented
here can be a valuable tool to support issues
involving the planning andmanagement of water
resources, which depend on the knowledge of
FDCs. However, it was not possible to apply
the methodology to the streamflow gauging
stations in homogeneous regions (Regions 5-10)
representing 25% of the overall region. In this
case, other methodologies should be developed
for the estimation of FDCs.
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