Acessibilidade / Reportar erro

Is the labellum informative to distinguish species of Scaphyglottis(Orchidaceae)? Insights from geometric morphometrics

Abstract

Scaphyglottis Poepp. & Endl. (Orchidaceae) is a neotropical genus with 78 species, 14 of which are found in Brazil. Some of these taxa have an intricate taxonomy, especially due to the morphological similarity among species and the existence of species complexes. Our study aims to test if the labellum shape, the main source of species diagnostic characters, can confirm the proposed circumscription of Brazilian species of Scaphyglottis. We analyzed 136 flowers from 12 species, to which we applied 12 landmarks, using a geometric morphometrics approach. Our results show that most species can be distinguished. Most of the variation is observed in the claw and apices of labellum lobes, confirming that the labellum is important tool in taxon distinction. Species with distinctly 3-lobed labellum showed some overlap but, for these taxa, we have found distinction specially in the lateral lobes. Our study showed new morphologically variable features in Scaphyglottis that can be used in future taxonomic studies. For widely distributed species we suggest a population-level approach, as local environmental factors can impact morphology, causing expected intraspecific variation.

Keywords:
Amazon; multivariate analysis; species complexes; species delimitation; taxonomy

Introduction

Standard external morphological features, traditionally used in plant taxonomy, are not always sufficient to delimit taxa (Galtier 2019Galtier N. 2019. Delineating species in the speciation continuum: A proposal. Evolutionary Applications 12: 12657-12663. doi: 10.1111/eva.12748
https://doi.org/10.1111/eva.12748...
; Lawley et al. 2022Lawley JW, Gamero-Mora E, Maronna MM et al. 2022. Morphology is not always useful for diagnosis, and that’s ok: Species hypotheses should not be bound to a class of data. Reply to Brown and Gibbons. South African Journal of Science 118: 12590. doi: 10.17159/sajs.2022/14495
https://doi.org/10.17159/sajs.2022/14495...
). In closely related or morphologically similar species, the use of qualitative morphological data alone will likely merge distinct taxa or segregate populations of a same taxon. Although molecular approaches can help solve some of these issues, a morphological circumscription is still needed to delimit species in a practical sense (Galtier 2019Galtier N. 2019. Delineating species in the speciation continuum: A proposal. Evolutionary Applications 12: 12657-12663. doi: 10.1111/eva.12748
https://doi.org/10.1111/eva.12748...
).

Distinguishing species that suffered allopatric speciation is usually simpler, but this is often not the case with young or cryptic lineages (Pinheiro et al. 2018Pinheiro F, Dantas-Queiroz MV, Palma-Silva C. 2018. Plant species complexes as models to understand speciation and evolution: A review of South American Studies. Critical Reviews in Plant Sciences 37: 54-80. doi: 10.1080/07352689.2018.1471565
https://doi.org/10.1080/07352689.2018.14...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
). In the first case, these lineages can be included within one of the many species concepts (De Queiroz 2007De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886. doi: 10.1080/10635150701701083
https://doi.org/10.1080/1063515070170108...
; Pinheiro et al. 2018Pinheiro F, Dantas-Queiroz MV, Palma-Silva C. 2018. Plant species complexes as models to understand speciation and evolution: A review of South American Studies. Critical Reviews in Plant Sciences 37: 54-80. doi: 10.1080/07352689.2018.1471565
https://doi.org/10.1080/07352689.2018.14...
), but this is not always applicable to the second case, as other evolutionary and ecological processes, such as hybridization and introgression, or development homeostasis (Mayr 1963Mayr E. 1963. Animal species and evolution. Cambridge, Massachusetts, Belknap Press of Harvard University Press.), can be at play and lead lineages to form species complexes (Pinheiro et al. 2018Pinheiro F, Dantas-Queiroz MV, Palma-Silva C. 2018. Plant species complexes as models to understand speciation and evolution: A review of South American Studies. Critical Reviews in Plant Sciences 37: 54-80. doi: 10.1080/07352689.2018.1471565
https://doi.org/10.1080/07352689.2018.14...
; Pessoa et al. 2022Pessoa EM, Nollet F, Magalhães RF, Viruel J, Pinheiro F, Chase MK. 2022. Nuclear-plastid discordance indicates past introgression in Epidendrum species (Laeliinae: Orchidaceae) with highly variable chromosome numbers. Botanical Journal of the Linnean Society 199: 357-371. doi: 10.1093/botlinnean/boab080
https://doi.org/10.1093/botlinnean/boab0...
).

Several tools have been used to study species complexes, such as near-infrared spectroscopy (NIR) (Durgante et al. 2013Durgante FM, Higuchi N, Almeida A, Vicentini A. 2013. Species Spectral Signature: Discriminating closely related plant species in the Amazon with Near-Infrared Leaf-Spectroscopy. Forest Ecology and Management 291: 240-248. doi: 10.1016/j.foreco.2012.10.045
https://doi.org/10.1016/j.foreco.2012.10...
; Lang et al. 2017Lang C, Almeida DRA, Costa F. 2017. Discrimination of taxonomic identity at species, genus and family levels using Fourier Transformed Near-Infrared Spectroscopy (FT-NIR). Forest Ecology and Management 406: 219-227. doi: 10.1016/j.foreco.2017.09.003
https://doi.org/10.1016/j.foreco.2017.09...
; Prata et al. 2018Prata EMB, Sass C, Rodrigues DP et al. 2018. Towards integrative taxonomy in neotropical botany: Disentangling the Pagamea guianensis species complex (Rubiaceae). Botanical Journal of the Linnean Society 188: 213-231. doi: 10.1093/botlinnean/boy051
https://doi.org/10.1093/botlinnean/boy05...
; Paiva et al. 2021Paiva DNA, Perdiz RO, Almeida TE. 2021. Using near‑infrared spectroscopy to discriminate closely related species: A case study of neotropical ferns. Journal of Plant Research 134: 509-520. doi: 10.1007/s10265-021-01265-9
https://doi.org/10.1007/s10265-021-01265...
), cytogenetics (Assis et al. 2013Assis FMN, Souza BCQ, Medeiros-Neto E, Pinheiro F, Silva AEB, Felix LP. 2013. Karyology of the genus Epidendrum (Orchidaceae: Laeliinae) with emphasis on subgenus Amphiglottium and chromosome number variability in Epidendrum secundum. Botanical Journal of the Linnean Society 172: 329-344. doi: 10.1111/boj.12045
https://doi.org/10.1111/boj.12045...
; Medeiros-Neto et al. 2017Medeiros-Neto E, Nollet F, Moraes AP, Félix LP. 2017. Intrachromosomal karyotype asymmetry in Orchidaceae. Genetics and Molecular Biology 40: 610-619. doi: 10.1590/1678-4685-GMB-2016-0264
https://doi.org/10.1590/1678-4685-GMB-20...
; Querino et al. 2020Querino BC, Ferraz ME, Mata‑Sucre Y, Souza G, Felix LP. 2020. Cytomolecular diversity of the subtribe Laeliinae (Epidendroidae, Orchidaceae) suggests no relationship between genome size and heterochromatin abundance. Plant Systematics and Evolution 306: 19. doi: 10.1007/s00606-020-01650-2
https://doi.org/10.1007/s00606-020-01650...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
), population genetics (Pessoa et al. 2012Pessoa EM, Alves M, Alves-Araújo A, Palma-Silva C, Pinheiro F. 2012. Integrating different tools to disentangle species complexes: A case study in Epidendrum (Orchidaceae). Taxon 61: 721-734. doi: 10.1002/tax.614002
https://doi.org/10.1002/tax.614002...
; Esteves & Vicentini 2013Esteves SM, Vicentini A. 2013. Cryptic species in Pagamea coriacea sensu lato (Rubiaceae): Evidence from morphology, ecology and reproductive behavior in a sympatric context. Acta Amazonica 43: 415-428. doi: 10.1590/S0044-59672013000400003
https://doi.org/10.1590/S0044-5967201300...
; Rodrigues et al. 2014Rodrigues JF, van den Berg C, Abreu AG et al. 2014. Species delimitation of Cattleya coccinea and C. mantiqueirae (Orchidaceae): Insights from phylogenetic and population genetics analyses. Plant Systematics and Evolution 301: 1345-1359. doi: 10.1007/s00606-014-1156-z
https://doi.org/10.1007/s00606-014-1156-...
), and geometric morphometrics (GM) (Pinheiro & Barros 2007Pinheiro F, Barros F. 2007. Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129-136.; Nery & Fiaschi 2019Nery EK, Fiaschi P. 2019. Geometric Morphometrics Dismiss the Polymorphic Hydrocotyle quinqueloba (Araliaceae) from the Neotropics. Systematic Botany 44: 451-469. doi: 10.1600/036364419X15561132273558
https://doi.org/10.1600/036364419X155611...
; Aristizábal et al. 2020Aristizábal MAB, Figueiredo FOG, André T. 2020. Accommodating trait overlap and individual variability in species diagnosis of Ischnosiphon (Marantaceae). Botanical Journal of the Linnean Society 194: 469-479. doi: 10.1093/botlinnean/boaa043
https://doi.org/10.1093/botlinnean/boaa0...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
). This latter phenetic approach allows, through statistical analysis of shape variation among individuals and populations, to test taxon delimitation using highly variable structures. Besides being a low-cost application, depending only on the availability of specimens, this method has an advantage over other tools in that its results can be directly applied to build the morphological circumscription of the taxon (Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
), complying with the more commonly used morphological species concept (De Queiroz 2007De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886. doi: 10.1080/10635150701701083
https://doi.org/10.1080/1063515070170108...
).

In several species and genera of Orchidaceae, GM approaches have been used to test species limits (Pinheiro & Barros 2009Pinheiro F, Barros F. 2009. Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Brazilian Journal of Botany 32: 11-21.; Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
; Lau et al. 2021Lau BL, Batista JAN, Massensini-Junior A, Whitten WN, Borba EL. 2021. Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: A biosystematic and molecular phylogenetic approach. Botanical Journal of the Linnean Society 197: 229-248. doi: 10.1093/botlinnean/boab022
https://doi.org/10.1093/botlinnean/boab0...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
) but this tool still have not been employed for several other genera with some difficult species delimitation cases. Scaphyglottis Poepp. & Endl. (Laeliinae, Orchidaceae), a monophyletic Neotropical genus (Dressler et al. 2004Dressler RL, Written M, Williams NH. 2004. Phylogenetic relationships of Scaphyglottis and related genera (Laeliinae: Orchidaceae) based on nrDNA ITS sequence data. Brittonia 56: 58-66. doi: 10.1663/0007-196X(2004)056[0058:PROSAR]2.0.CO;2
https://doi.org/10.1663/0007-196X(2004)0...
) with 78 species (Govaerts 2022Govaerts R. 2022. World Checklist of Scaphyglottis. Royal Botanic Gardens Kew. http://wcsp.science.kew.org/qsearch.do. 18 Jul. 2022.
http://wcsp.science.kew.org/qsearch.do...
), is one of these cases. The genus is recognized for presenting overlapping pseudobulbs, conduplicate leaves, flowers that are almost always resupinate, conspicuous column foot and 4-6 pollinia (Dressler et al. 2004Dressler RL, Written M, Williams NH. 2004. Phylogenetic relationships of Scaphyglottis and related genera (Laeliinae: Orchidaceae) based on nrDNA ITS sequence data. Brittonia 56: 58-66. doi: 10.1663/0007-196X(2004)056[0058:PROSAR]2.0.CO;2
https://doi.org/10.1663/0007-196X(2004)0...
; Szlachetko & Kolanowska 2014aSzlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
https://doi.org/10.2478/pbj-2014-0011...
). The species are distributed from Mexico to Bolivia and Brazil (Govaerts 2022Govaerts R. 2022. World Checklist of Scaphyglottis. Royal Botanic Gardens Kew. http://wcsp.science.kew.org/qsearch.do. 18 Jul. 2022.
http://wcsp.science.kew.org/qsearch.do...
) and Colombia is the country with the highest number of native species (33 spp.), followed by Costa Rica (21 spp.), Ecuador (20 spp.) and Peru (17 spp.) (POWO 2022POWO ‒ Plants of the World Online. 2022. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/. 1 Jun. 2022.
http://www.plantsoftheworldonline.org/...
).

In Brazil, the genus is represented by 14 species: S. bidentata (Lindl.) Dressler., S. boliviensis (Rolfe) B.R. Adams., S. brasiliensis (Schltr.) Dressler., S. emarginata (Garay) Dressler., S. fusiformis (Griseb.) R.E. Schultes., S. graminifolia (Ruiz & Pav.) Poepp. & Endl., S. imbricata (Lindl.) Dressler., S. livida (Lindl.) Schltr., S. modesta (Rchb.f.) Schltr., S. prolifera (Sw.) Cogn., S. punctulata (Rchb. f.) C. Schweinf., S. reflexa Lindl., S. sickii Pabst., and S. stellata Lodd. ex Lindl (Araújo et al. 2022Araújo AM, Farroñay F, Perdiz RO, Pessoa E, Giacomin L. 2022. The discovery of Scaphyglottis punctulata in the highlands of Brazilian Amazonia with a key to the species of the region. Lankesteriana 22: 123-131. doi: 10.15517/lank.v22i2.51844
https://doi.org/10.15517/lank.v22i2.5184...
, Fig. 1). Although the genus is widely distributed in Brazil, the phytogeographical domains with higher diversity are the Amazon Forest (12 spp.) and the Atlantic Forest (6 spp.) (BFG 2022BFG ‒ Brazil Flora Group. 2022. Brazilian Flora 2020 project - Projeto Flora do Brasil 2020. Version 393.274. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Dataset/Checklist. doi: 10.15468/1mtkaw
https://doi.org/10.15468/1mtkaw...
). Among the species found in Brazil, some can be considered part of species complexes due to the morphological similarities and overlapping of diagnostic characters.

Figure 1
Scaphyglottis Poepp. & Endl in Brazil. A.S. reflexa Lindl., B. S. modesta (Rchb.f.) Schltr., C. S. sickii Pabst., D. S. stellata Lodd. ex Lindl, E. S. brasiliensis (Schltr.) Dressler., F. S. livida (Lindl.) Schltr., G. S. bidentata (Lindl.) Dressler., H. S. fusiformis (Griseb.) R.E. Schultes., I. S. prolifera (Sw.) Cogn., J. S. punctulata (Rchb. f.) C. Schweinf. K. S. boliviensis (Rolfe) B.R. Adams. Photos by Barbosa-Silva, R. (A), Marcusso, G. (B, E), Araújo, A. M. (C), Farroñay, F. (D, H, I, J), Pessoa, E. (F), Cordeiro, J. M. P. (G), Terra-Araújo, M. (K). Figure assembled by Miranda, G.

Although vegetative features are useful to delimit a sizeable portion of the Brazilian species of Scaphyglottis (Dressler 1993Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. ; Pessoa & Alves 2012Pessoa E, Alves M. 2012. Flora of Usina São José: Orchidaceae. Rodriguésia 63: 341-356. doi: 10.1590/S2175-78602012000200009
https://doi.org/10.1590/S2175-7860201200...
; Szlachetko & Kolanowska 2013Szlachetko DL, Kolanowska M. 2013. Notes on the Scaphyglottis fusiformis Complex (Orchidaceae, Epidendroideae) in Colombia with the Description of Two New Species. Annales Botanici Fennici 50: 300-304. doi: 10.5735/086.050.0501
https://doi.org/10.5735/086.050.0501...
; Szlachetko & Kolanowska 2014aSzlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
https://doi.org/10.2478/pbj-2014-0011...
; bSzlachetko DL, Kolanowska M. 2014b. A new species of Scaphyglottis (Orchidaceae, Epidendroideae) from Colombia. Plant Systematics and Evolution 300: 1031-1034. doi: 10.1007/s00606-013-0941-4
https://doi.org/10.1007/s00606-013-0941-...
; Koch et al. 2018Koch AK, Cardoso JM, Hall CF. 2018. Flora das cangas da Serra dos Carajás, Pará, Brasil: Orchidaceae. Rodriguésia 69: 165-188. doi: 10.1590/2175-7860201869115
https://doi.org/10.1590/2175-78602018691...
; Santos & Silva 2020Santos IS, Silva MJ. 2020. New record of Scaphyglottis livida (Lindl.) Schltr. (Orchidaceae, Epidendroideae) in Goiás, and a key to Scaphyglottis species in the Central-West Region of Brazil. Check List 16: 9-15. doi: 10.15560/16.1.9
https://doi.org/10.15560/16.1.9...
; Araújo et al. 2022Araújo AM, Farroñay F, Perdiz RO, Pessoa E, Giacomin L. 2022. The discovery of Scaphyglottis punctulata in the highlands of Brazilian Amazonia with a key to the species of the region. Lankesteriana 22: 123-131. doi: 10.15517/lank.v22i2.51844
https://doi.org/10.15517/lank.v22i2.5184...
), there are some taxa in Brazil with questionable taxonomic affinities. Although these taxa have similar vegetative and floral morphology, they have been commonly identified with distinct names, examples are the species pairs: S. stellata-S. boliviensis, S. sickii-S. prolifera and S. brasiliensis-S. reflexa.

The labellum is considered a fundamental character to distinguish species in Orchidaceae (Dressler 1993Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. ; Carnevali & Ramírez-Morillo 2003Carnevali G, Ramírez-Morillo IM. 2003. Scaphyglottis: Orchidaceae. In: Berry PE, Yatskievych K, Holts BK (eds.). Flora of the Venezuelan Guayana. Saint Louis, Missouri Botanical Garden. vol. 7, p. 555-560.; Szlachetko & Kolanowska 2014aSzlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
https://doi.org/10.2478/pbj-2014-0011...
; Araújo et al. 2022Araújo AM, Farroñay F, Perdiz RO, Pessoa E, Giacomin L. 2022. The discovery of Scaphyglottis punctulata in the highlands of Brazilian Amazonia with a key to the species of the region. Lankesteriana 22: 123-131. doi: 10.15517/lank.v22i2.51844
https://doi.org/10.15517/lank.v22i2.5184...
), and have been used as a major source of information in previous studies that applied geometric morphometrics (Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
; Lau et al. 2021Lau BL, Batista JAN, Massensini-Junior A, Whitten WN, Borba EL. 2021. Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: A biosystematic and molecular phylogenetic approach. Botanical Journal of the Linnean Society 197: 229-248. doi: 10.1093/botlinnean/boab022
https://doi.org/10.1093/botlinnean/boab0...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
). Thus, in this study we evaluate if geometric morphometrics of the labellum is able to distinguish the species of Scaphyglottis that occur in Brazil. The main goals are: i) to produce evidence of valuable diagnostic characters to delimit these species and ii) to evaluate delimitation of taxa with similar vegetative morphology.

Material and methods

Sampling

We sampled 136 flowers from 103 specimens from herbarium collections and field expeditions (Tab. S1Table S1. Specimens analyzed for geometric morphometrics, and their respective locations.). Our sampling is representative of the geographical distribution of Scaphyglotttis in Brazil (Fig. 2). Specimens from the following herbaria were analyzed: BHCB, EAC, EAN, FURB, PEUFR, HST, IAN, INPA, IPA, MG, RB, UEC, UFMT, UFP and UPCB (acronyms according to Thiers 2022Thiers B. 2022 (continuously updated). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/. 2 Aug. 2022.
http://sweetgum.nybg.org/science/ih/...
, continuously updated). Three field expeditions were carried out at Reserva Florestal Adolpho Ducke (Manaus, AM), Parque Estadual Serra do Aracá (Barcelos, AM), Serra do Tepequém (Amajari, RR) and Serra Grande (Cantá, RR), where we collected several specimens of six species of Scaphyglottis (S. bidentata, S. fusiformis, S. imbricata, S. reflexa, S. sickii and S. stellata). All specimens collected on the field were kept in cultivation and until now, ten specimens have been deposited in herbarium collections. For each sampled specimen, we removed one to two flowers for analysis, with authorization of the herbarium curators. Some taxa had low sampling, either due to rarity and scarcity of specimens in collections or due to the available specimens being sterile or having only fruits. Specifically, S. graminifolia (one single flower), S. livida (three flowers), S. reflexa (three flowers) and S. brasiliensis (four flowers) had a low number of sampled flowers. We could not include S. emarginata and S. imbricata for the same reason. Therefore, 12 from the 14 Brazilian species were analyzed. Specimens identifications were verified according to Dressler (1993)Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. and Szlachetko and Kolanowska (2014a)Szlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
https://doi.org/10.2478/pbj-2014-0011...
.

Figure 2
Distribution map of species sampled in the morphometric analysis, indicating the number of flowers analyzed by specimen. The symbol (+) indicates that specimens are from the same place, circles represent the specimens. Map prepared by Falen, L.

Geometric Morphometrics (GM)

The flowers were rehydrated, and the labella were mounted in white cardstock paper. The labella were later scanned using an Epson Expression 10000XL scanner in 1200 dpi resolution for geometric morphometrics analyses. The mounted flower images were digitized using TPSutil 1.78 (Rohlf 2015Rohlf FJ. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26:9-12. doi: 10.4404/hystrix-26.1-11264
https://doi.org/10.4404/hystrix-26.1-112...
). We added 12 landmarks to the labellum, using TPSdig2 (Rohlf 2015Rohlf FJ. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26:9-12. doi: 10.4404/hystrix-26.1-11264
https://doi.org/10.4404/hystrix-26.1-112...
). Landmarks 1 and 11 represent the labellum column foot junction, landmark 12 represents the median point between landmarks 1 and 11, landmarks 2 and 10 represent the claw and lateral lobes junction, landmarks 3 and 9 correspond to the lateral lobe apices, 4 and 8 represent the lateral lobe and median lobe junction, 5 and 7 represent the median lobe apices and 6 represents the apex or central point of the labellum invagination (Fig. 3).

Figure 3
Location of landmarks applied to the labellum of Scaphyglottis for geometric morphometric analysis. A. S. prolifera, B. S. bidentata. Photos by Araújo, A. M. Plate prepared by Miranda, G.

The files with the added landmarks were transferred and analyzed in the software MorphoJ 1.06d (Klingenberg 2011Klingenberg CP. 2011. MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x
https://doi.org/10.1111/j.1755-0998.2010...
), and then submitted to Procrustes analysis, where the size variation is removed from the analysis, preserving the variation of the points from the centroid and changes in shape (Goodall 1991Goodall CR. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society 53: 285-339.; Bookstein 1996Bookstein FL. 1996. Standard formula for the uniform shape component in landmark data. In: Marcus LF (ed.). Advances in Morphometrics. New York, Plenum Press. p. 153-168.). An exploratory Principal Component Analysis (PCA) (Hotelling 1933Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441. doi: 10.1037/h0071325
https://doi.org/10.1037/h0071325...
) was performed, aiming to group the specimens according to the labellum variation and to detect potential outliers. We then conducted a Canonical Variable Analysis (CVA) (Campbell & Atchley 1981Campbell NA, Atchley WR. 1981. The geometry of canonical variate analysis. Systematic Zoology 30: 268-280.) to discriminate the variation between pre-determined groups (i.e., the species) and the sequence in which they separate according to the canonical variables (CVs).

Because of the high morphological variation of the 12 analyzed species, we conducted new PCA and CVA analyses for species with 3-lobed labellum separately (S. boliviensis, S. brasiliensis, S. prolifera and S. stellata), as their similarities in the labellum led to overlapping of the ellipses when the total dataset is analyzed. We applied the methods described above to this reduced dataset.

Results

The PCA exploratory analysis shows that the variation explained by the first two axes represents 52% and 25% of the variation respectively, and the accumulated variation of the three first axes is 86% (Tab. S2Table S2. Analysis 1: A. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). B. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). Analysis 2: C. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). D. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). ). For the first axis (PC1; variance = 52%), the larger landmark variation is found between landmarks 3 and 9, which represent the lateral lobe apices, 5 and 7 representing the median lobes, and 6 representing the labellum apex. For PC2 (variance = 25%), most of the variation is also found between landmarks 3 and 9, and between landmarks 4 and 8, which represent the junction between lateral and median lobes. For PC3 (variance = 8.6%), the larger variance is found in landmark 6, representing the apex of the labellum. Overall, the ellipses that represent the species are considerably overlapped (Fig. S1Figure S1. Principal component analysis (PCA) for 103 specimens of Scaphyglottis. (A) PC1+PC2 axes, (B) PC1+PC3 axes.), except for S. bidentata and S. livida.

The CVA discriminant analysis showed an accumulated variation of 77.8% in the first three CVs (Tab. S2Table S2. Analysis 1: A. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). B. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). Analysis 2: C. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). D. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). ). On CV1 (variance = 50.5%) most of the variation is represented by landmarks 3 and 9, which represent the lateral lobe apices, 5 and 7 representing the median lobe apices, and 6, representing the apex position or the central point of the labellum invagination (Fig. 4A). In CV2 (variance = 27.2%) and CV3 (variance = 11.8%) the larger variation is seen in landmarks 5, 6 and 7, which represent the median lobe apices and the apex or central point of the labellum invagination (Fig. 4B-C).

Figure 4
Variation of landmarks in (A) CV1, (B) CV2, and (C) CV3.

The variation of the landmark position of CV1 allowed to separate S. punctulata, S. livida, S. graminifolia, S. fusiformis and S. bidentata in the negative pole, and S. prolifera and S. stellata in the positive pole, while S. boliviensis, S. sickii, S. brasiliensis, S. modesta, and S. reflexa were little impacted (Fig. 5A). The variation found in CV2 separated S. bidentata, S. modesta and S. reflexa in the positive pole and S. fusiformis, S. punctulata, S. livida, S. graminifolia, and S. sickii in the negative pole, while S. brasiliensis, S. boliviensis, S. stellata and S. prolifera were little impacted (Fig. 5A). CV3 allowed to separate S. livida, S. fusiformis, S. reflexa and S. brasiliensis in the positive pole and S. sickii in the negative pole, while the other species were little impacted. We highlight that S. boliviensis was not separated from the other species in any of the CVs that had higher variance, always being in the group of species that were not impacted. This is also clear from the general observations in Fig. 5A-B, where a strong overlap of this species with the remaining taxa is observed.

Figure 5
Canonical variable analysis (CVA) showing the CV1 + CV2 axes (A) and CV3 + CV2 axes (B) for 103 specimens of Scaphyglottis.

In the analysis conducted with the smaller species dataset (S. boliviensis, S. brasiliensis, S. prolifera and S. stellata), the larger variation in PC1 (variance = 54.425%) is found in landmarks 3 and 9, which represent the lateral lobe apices. For PC2 (variance = 30.589%), the largest variation is in landmarks 2 and 10, which represent the junction of the claw with the lateral lobes. The four species remained strongly overlapped in this PCA (Fig. S3Figure S3. Principal component analysis (PCA) for the species S. boliviensis, S. brasiliensis, S. prolifera and S. stellata, PC1+PC2 axes.-S4Figure S4. Landmark variation in (A) PC1 and (B) PC2 for the species S. boliviensis, S. brasiliensis, S. prolifera and S. stellata.). In the CVA, the accumulated variation of the first two CVs is 99.99% (CV1 with 45.35%, CV2 with 40.99%, and CV3 with 13.65%, Tab. S2Table S2. Analysis 1: A. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). B. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). Analysis 2: C. First three eigenvalues, variance and accumulated variance of the principal component analysis (PCA). D. First three eigenvalues, variance and accumulated variance of the canonical variable analysis (CVA). ). In CV1, the largest variation is found between landmarks 3 and 9, which represent the lateral lobe apices, and 2 and 10, which represent the junction of the claw with the median lobes. The same landmarks showed the largest variation in CV2, with the addition of 4 and 8, which represent the lateral and median lobes junction (Fig. 6). CV1 separated S. prolifera in the positive pole and S. boliviensis in the negative pole, while CV2 separated S. stellata in the positive pole and S. brasiliensis in the negative. In this new analysis, we observed that S. brasiliensis overlapped with the remaining species, but S. boliviensis was strongly separated from S. stellata, which is the more morphologically similar species (Fig. 7).

Figure 6
Variation of landmarks for the species S. boliviensis, S. brasiliensis, S. prolifera and S. stellata. (A) CV1, (B) CV2.

Figure 7
Canonical variable analysis (CVA) showing the CV1 + CV2 axes for the species S. boliviensis, S. brasiliensis, S. prolifera and S. stellata.

Discussion

In this study we tested if geometric morphometrics of the labellum is useful to distinguish species of Scaphyglottis that occur in Brazil, as it has been used to separate taxa in Orchidaceae in many recent studies (e.g.: Pinheiro & Barros 2007Pinheiro F, Barros F. 2007. Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129-136.; Pinheiro & Barros 2009Pinheiro F, Barros F. 2009. Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Brazilian Journal of Botany 32: 11-21.; Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
; Lau et al. 2021Lau BL, Batista JAN, Massensini-Junior A, Whitten WN, Borba EL. 2021. Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: A biosystematic and molecular phylogenetic approach. Botanical Journal of the Linnean Society 197: 229-248. doi: 10.1093/botlinnean/boab022
https://doi.org/10.1093/botlinnean/boab0...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
). Previous taxonomic studies of Scaphyglottis used a combination of vegetative characters (shape and size of pseudobulbs and leaves), besides flower color, size, and overall shape of the labellum to distinguish species (Dressler 1993Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. ; Carnevali & Ramírez-Morillo 2003Carnevali G, Ramírez-Morillo IM. 2003. Scaphyglottis: Orchidaceae. In: Berry PE, Yatskievych K, Holts BK (eds.). Flora of the Venezuelan Guayana. Saint Louis, Missouri Botanical Garden. vol. 7, p. 555-560.; Szlachetko & Kolanowska 2014aSzlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
https://doi.org/10.2478/pbj-2014-0011...
; Araújo et al. 2022Araújo AM, Farroñay F, Perdiz RO, Pessoa E, Giacomin L. 2022. The discovery of Scaphyglottis punctulata in the highlands of Brazilian Amazonia with a key to the species of the region. Lankesteriana 22: 123-131. doi: 10.15517/lank.v22i2.51844
https://doi.org/10.15517/lank.v22i2.5184...
). We found evidence that the lateral lobe apices, the junction of the claw with the lateral lobes, the median lobe apices, and the apex or central point of the labellum have enough morphological variation to delimit these species, allowing their identification solely based on this structure.

The species with higher morphological variation in Brazil, S. bidentata and S. livida, were easily separated when compared to the other analyzed species in the first PCA (Fig. S1Figure S1. Principal component analysis (PCA) for 103 specimens of Scaphyglottis. (A) PC1+PC2 axes, (B) PC1+PC3 axes.-S2Figure S2. Landmark variation in (A) PC1, (B) PC2, and (C) PC3.), which could not separate most of the species. This pattern was also found in previous studies with the labellum in Orchidaceae, in which the PCA showed little power to distinguish among morphologically similar species, being mostly used as a preliminary approach (Goldman et al. 2004Goldman DH, van den Berg C, Griffith MP. 2004. Morphometric circumscription of species and infraspecific taxa in Calopogon R.Br. (Orchidaceae). Plant Systematics and Evolution 247: 37-60. doi: 10.1007/s00606-004-0137-z
https://doi.org/10.1007/s00606-004-0137-...
; Pinheiro & Barros 2009Pinheiro F, Barros F. 2009. Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Brazilian Journal of Botany 32: 11-21.; Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
; Lau et al. 2021Lau BL, Batista JAN, Massensini-Junior A, Whitten WN, Borba EL. 2021. Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: A biosystematic and molecular phylogenetic approach. Botanical Journal of the Linnean Society 197: 229-248. doi: 10.1093/botlinnean/boab022
https://doi.org/10.1093/botlinnean/boab0...
; Pessoa et al. 2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
; Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
).

The CVA allows better separation of the species, besides indicating the regions of the labellum that show higher variation, such as the median lobe apex (landmarks 5, 6 and 7), and the wider point of the labellum (landmarks 3 and 9) (Fig 3). Similar results indicating these regions as more variable were also found by Pinheiro and Barros (2007Pinheiro F, Barros F. 2007. Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129-136.; 2009Pinheiro F, Barros F. 2009. Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Brazilian Journal of Botany 32: 11-21.) in Maxillariinae, Pessoa et al. (2021Pessoa E, Cordeiro JMP, Félix LP et al. 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
https://doi.org/10.1093/botlinnean/boaa0...
) in Laeliinae and Camelo-Júnior et al. (2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
) in Oncidiinae. However, among the species of Scaphyglottis with a more distinctly 3-lobed labellum, S. boliviensis, S. brasiliensis, S. prolifera and S. stellata, these regions showed low variation when compared to the other species, remaining overlapped in the analyses (Fig. 4).

The second CVA analysis, containing only these four species, allowed their separation with higher variation in the lateral lobe apex and claw junction (landmarks 3 and 9, 2 and 10, respectively) (Fig. 6), separating S. boliviensis and S. stellata, which are frequently misidentified in herbarium collections (CRIA 2022CRIA. 2022. speciesLink. https://specieslink.net/. 9 Mar. 2022.
https://specieslink.net/...
). Previous studies used similar strategies to try and separate species that remain overlapped in preliminary analyses (Camelo-Júnior et al. 2022Camelo-Júnior AE, Ferreira AWC, Andrade IM et al. 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
https://doi.org/10.1080/14772000.2022.20...
). In the case of these four species, landmarks 2 and 10, referring to the junction of the claw with the median lobes, had an essential role in separating them. These landmarks contain the length and width of the claw (Fig. 7).

Among these four taxa, S. stellata and S. boliviensis can be vegetatively identified only by leaf width (> 0.4 cm vs. < 0.3 cm, respectively), while regarding floral characters, S. boliviensis has a more prominent callus in the labellum than S. stellata (Dressler 1993Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. ; Koch et al. 2018Koch AK, Cardoso JM, Hall CF. 2018. Flora das cangas da Serra dos Carajás, Pará, Brasil: Orchidaceae. Rodriguésia 69: 165-188. doi: 10.1590/2175-7860201869115
https://doi.org/10.1590/2175-78602018691...
). Our results indicate that the claw is smaller in S. stellata than in S. boliviensis. Both species have synonyms that were described based on specimens with cream-colored/whitish or lilac flowers (Reichenbach 1869Reichenbach HG. 1869. Ponera amethystina Rchb. f. Refugium Botanicum; or Figures and Descriptions 2: 93.; Schweinfurth 1955Schweinfurth C. 1955. Scaphyglottis decipiens C. Schweinf. Botanical Museum Leaflets 17: 43. ; Mansfeld 1928Mansfeld R. 1928. Scaphyglottis floribunda Mansf. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 10: 378.). We believe that further investigation at population level is needed to decide either to maintain those as synonyms or reinstate them as separate species; nonetheless our results indicate that the claw size is an important feature that might help in this task.

Scaphyglottis brasiliensis, one of the taxa included in this second analysis, is morphologically related to S. reflexa and S. emarginata in Brazil, with these two latter species presenting cylindrical leaves (Lindley 1839Lindley J. 1839. Scaphyglottis reflexa Lindl. Edwards's Botanical Register 25: misc.20.; Schlechter 1922Schlechter FRR. 1922. Fractiunguis brasiliensis Schltr. Anexos das Memorias do Instituto de Butantan: Seccao de Botanica 4: 56.; Pessoa & Alves 2012Pessoa E, Alves M. 2012. Flora of Usina São José: Orchidaceae. Rodriguésia 63: 341-356. doi: 10.1590/S2175-78602012000200009
https://doi.org/10.1590/S2175-7860201200...
) and being relatively rare in herbarium collections. Our analysis, however, did not show similarities between the labellum of S. brasiliensis and S. reflexa (Fig. 4A). Among the group of species with 3-lobed labellum, S. brasiliensis has the longest and narrowest claw (Hoehne 1949Hoehne FC. 1949. Iconografia de Orchidáceas do Brasil. São Paulo, Secretaria de Agricultura, Indústria e Comércio. ). However, this species overlaps with other three taxa, presenting the wider ellipse in the analysis plot, with datapoints further separated from each other, indicating either insufficient sampling or large morphological variation. This group of species with cylindrical leaves, already treated as a separate genus, Reichenbachanthus Barb. Rodr. (Brade 1935Brade AC. 1935. Reichenbachanthus reflexus (Lindl.) Brade. Rodriguésia 1: 55.; Garay 1967Garay LA. 1967. Reichenbachanthus emarginatus Garay. Botanical Museum Leaflets 21: 255.), deserves a dedicated taxonomic study, although our results show these two taxa are distinguishable.

Lastly, we could easily distinguish S. prolifera from S. sickii based on the first CVA (Fig. 4). These two species are considered more morphologically related to each other than to other species that occur in Brazil, due to the smaller leaves and pseudobulbs, and flower color and size. S. prolifera has the least prominent 3-lobed labellum among the species included in the second analysis, and according to Dressler (1993Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press. ), it is not a typically 3-lobed labellum as seen in other species, but a labellum where the median portion extends to the sides. However, this character (position of the landmarks) probably caused the overlapping with S. boliviensis, S. brasiliensis and S. stellata in the first analysis, due to being different than the remaining species with unlobed labellum.

Studies that highlight the morphological variation in Orchidaceae species with wide geographical ranges and varied habit (epiphytic, rupicolous or facultative terrestrial) were carried out in Epidendroideae and Maxillariinae (Pinheiro & Barros 2007Pinheiro F, Barros F. 2007. Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129-136.; 2009) and Laeliinae (Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
). Taking into account that some species of Scaphyglottis have similar attributes, further studies to evaluate the geographic organization of morphological variation and its relation to environmental gradients should be considered, especially in widely distributed species like S. stellata, that is known from Nicaragua to central Brazil. The labellum has an essential role in pollinator attraction in Orchidaceae, mainly due to color, size, odor, and floral resources (nectar, pollen, oils) (van der Pijl & Dodson 1966van der Pijl L, Dodson CH. 1966. Orchid flowers, their pollination and evolution. Coral Gables, University of Miami Press.). In Scaphyglottis, nectar usually accumulates in the labellum base (Dressler 2001Dressler RL. 2001. Scaphyglottis. In: Pridgeon AM, Cribb PJ, Chase MW & Rasmussen FN (eds.). Genera Orchidacearum Epidendroideae. Oxford, Oxford University Press. vol. 4, part 1, p. 310-313.), therefore, selective pressures associated with pollination might influence the variation found in this structure, especially in the size and width of the claw. It might explain differences in the labellum morphology found in similar species studied here. However, reproductive biology studies need to be carried out in Scaphyglottis species to elucidate evolutionary pressures related to labellum shape variation and avoid speculative conclusions.

Our study showed new morphologically variable features in Scaphyglottis that can be used in future taxonomic studies, or even for identification of specimens based on labellum fragments (Fig. 8). We highlight that six of the more morphologically close species did not overlap in their labellum morphology (i.e., S. sickii and S. prolifera; S. reflexa and S. brasiliensis; S. punctulata and S. fusiformis), possibly indicating different pollination strategies. For widely distributed species, such as S. prolifera, S. stellata and S. reflexa, we suggest a population-level approach, as local environmental factors can impact morphology, causing expected intraspecific variation (Jonas & Geber 1999Jonas CS, Geber MA. 1999. Variation among Populations of Clarkia unguiculata (Onagraceae) along Altitudinal and Latitudinal Gradients. American Journal of Botany 86: 333-343. doi: 10.2307/2656755
https://doi.org/10.2307/2656755...
; Blinova 2012Blinova IV. 2012. Intra and Interspecific Morphological Variation of Some European Terrestrial Orchids along a Latitudinal Gradient. Russian Journal of Ecology 43: 111-116. doi: 10.1134/S1067413612020051
https://doi.org/10.1134/S106741361202005...
; Menini-Neto et al. 2019Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
https://doi.org/10.5091/plecevo.2019.153...
).

Figure 8
Labellum shape variation of Scaphyglottis. A. S. boliviensis, B. S. prolifera, C. S. stellata, D. S. livida, E. S. brasiliensis, F.S. modesta, G. S. fusiformis, H. S. sickii, I. S. punctulata, J. S. bidentata, K. S. reflexa, L. S. graminifolia. Photos by Araújo, A. M. (A, B, C, D, E, F, G, H, J, K, and L) and Farroñay, F. (I). Prepared by Miranda, G.

Acknowledgments

We thank the Graduate Program in Botany (INPA) and FAPEAM; FUNBIO and Instituto Humanize for the Preserving the Future grant (Call 07/2020), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Financing Code 001 for the master’s scholarship granted to AMA. We thank herbarium curators and technicians for access to collections and loan preparation, to the curator Mike Hopkins and the technician Mariana Mesquita from the INPA herbarium for access to vouchers and the Museu da Amazônia (MUSA) for the structure to keep living specimens of Scaphyglottis. We thank Lourdes Falen for preparing the map; Edmilson Camelo for analysis support; Gustavo Miranda for editing photos and assembling figures; Carolina Siniscalchi for the help with English version; Francisco Farroñay, Rafael Barbosa-Silva, Mario Terra-Araújo, Joel Cordeiro and Gabriel Marcusso for the photos; Alessandro Coelho, Luiz Teixeira and Marcelo Miranda for donating specimens. EMP also acknowledges the productivity grant from CNPq (303556/2022-6). LLG received financial support from UFOPA/ICTA/Pipex 01/2021 and CNPq (422191/2021-3).

References

  • Araújo AM, Farroñay F, Perdiz RO, Pessoa E, Giacomin L. 2022. The discovery of Scaphyglottis punctulata in the highlands of Brazilian Amazonia with a key to the species of the region. Lankesteriana 22: 123-131. doi: 10.15517/lank.v22i2.51844
    » https://doi.org/10.15517/lank.v22i2.51844
  • Aristizábal MAB, Figueiredo FOG, André T. 2020. Accommodating trait overlap and individual variability in species diagnosis of Ischnosiphon (Marantaceae). Botanical Journal of the Linnean Society 194: 469-479. doi: 10.1093/botlinnean/boaa043
    » https://doi.org/10.1093/botlinnean/boaa043
  • Assis FMN, Souza BCQ, Medeiros-Neto E, Pinheiro F, Silva AEB, Felix LP. 2013. Karyology of the genus Epidendrum (Orchidaceae: Laeliinae) with emphasis on subgenus Amphiglottium and chromosome number variability in Epidendrum secundum Botanical Journal of the Linnean Society 172: 329-344. doi: 10.1111/boj.12045
    » https://doi.org/10.1111/boj.12045
  • Blinova IV. 2012. Intra and Interspecific Morphological Variation of Some European Terrestrial Orchids along a Latitudinal Gradient. Russian Journal of Ecology 43: 111-116. doi: 10.1134/S1067413612020051
    » https://doi.org/10.1134/S1067413612020051
  • Bookstein FL. 1996. Standard formula for the uniform shape component in landmark data. In: Marcus LF (ed.). Advances in Morphometrics. New York, Plenum Press. p. 153-168.
  • Brade AC. 1935. Reichenbachanthus reflexus (Lindl.) Brade. Rodriguésia 1: 55.
  • BFG ‒ Brazil Flora Group. 2022. Brazilian Flora 2020 project - Projeto Flora do Brasil 2020. Version 393.274. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Dataset/Checklist. doi: 10.15468/1mtkaw
    » https://doi.org/10.15468/1mtkaw
  • Camelo-Júnior AE, Ferreira AWC, Andrade IM et al 2022. Species delimitation in the Trichocentrum cepula (Oncidiinae, Orchidaceae) complex: A multidisciplinary approach. Systematics and Biodiversity 20: 1-18. doi: 10.1080/14772000.2022.2099478
    » https://doi.org/10.1080/14772000.2022.2099478
  • Campbell NA, Atchley WR. 1981. The geometry of canonical variate analysis. Systematic Zoology 30: 268-280.
  • Carnevali G, Ramírez-Morillo IM. 2003. Scaphyglottis: Orchidaceae. In: Berry PE, Yatskievych K, Holts BK (eds.). Flora of the Venezuelan Guayana. Saint Louis, Missouri Botanical Garden. vol. 7, p. 555-560.
  • CRIA. 2022. speciesLink. https://specieslink.net/ 9 Mar. 2022.
    » https://specieslink.net/
  • De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886. doi: 10.1080/10635150701701083
    » https://doi.org/10.1080/10635150701701083
  • Dressler RL. 1993. Field guide to the orchids of Costa Rica and Panama. Ithaca, Cornell University Press.
  • Dressler RL. 2001. Scaphyglottis In: Pridgeon AM, Cribb PJ, Chase MW & Rasmussen FN (eds.). Genera Orchidacearum Epidendroideae. Oxford, Oxford University Press. vol. 4, part 1, p. 310-313.
  • Dressler RL, Written M, Williams NH. 2004. Phylogenetic relationships of Scaphyglottis and related genera (Laeliinae: Orchidaceae) based on nrDNA ITS sequence data. Brittonia 56: 58-66. doi: 10.1663/0007-196X(2004)056[0058:PROSAR]2.0.CO;2
    » https://doi.org/10.1663/0007-196X(2004)056[0058:PROSAR]2.0.CO;2
  • Durgante FM, Higuchi N, Almeida A, Vicentini A. 2013. Species Spectral Signature: Discriminating closely related plant species in the Amazon with Near-Infrared Leaf-Spectroscopy. Forest Ecology and Management 291: 240-248. doi: 10.1016/j.foreco.2012.10.045
    » https://doi.org/10.1016/j.foreco.2012.10.045
  • Esteves SM, Vicentini A. 2013. Cryptic species in Pagamea coriacea sensu lato (Rubiaceae): Evidence from morphology, ecology and reproductive behavior in a sympatric context. Acta Amazonica 43: 415-428. doi: 10.1590/S0044-59672013000400003
    » https://doi.org/10.1590/S0044-59672013000400003
  • Galtier N. 2019. Delineating species in the speciation continuum: A proposal. Evolutionary Applications 12: 12657-12663. doi: 10.1111/eva.12748
    » https://doi.org/10.1111/eva.12748
  • Garay LA. 1967. Reichenbachanthus emarginatus Garay. Botanical Museum Leaflets 21: 255.
  • Goldman DH, van den Berg C, Griffith MP. 2004. Morphometric circumscription of species and infraspecific taxa in Calopogon R.Br. (Orchidaceae). Plant Systematics and Evolution 247: 37-60. doi: 10.1007/s00606-004-0137-z
    » https://doi.org/10.1007/s00606-004-0137-z
  • Goodall CR. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society 53: 285-339.
  • Govaerts R. 2022. World Checklist of Scaphyglottis Royal Botanic Gardens Kew. http://wcsp.science.kew.org/qsearch.do 18 Jul. 2022.
    » http://wcsp.science.kew.org/qsearch.do
  • Hoehne FC. 1949. Iconografia de Orchidáceas do Brasil. São Paulo, Secretaria de Agricultura, Indústria e Comércio.
  • Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24: 417-441. doi: 10.1037/h0071325
    » https://doi.org/10.1037/h0071325
  • Jonas CS, Geber MA. 1999. Variation among Populations of Clarkia unguiculata (Onagraceae) along Altitudinal and Latitudinal Gradients. American Journal of Botany 86: 333-343. doi: 10.2307/2656755
    » https://doi.org/10.2307/2656755
  • Klingenberg CP. 2011. MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x
    » https://doi.org/10.1111/j.1755-0998.2010.02924.x
  • Koch AK, Cardoso JM, Hall CF. 2018. Flora das cangas da Serra dos Carajás, Pará, Brasil: Orchidaceae. Rodriguésia 69: 165-188. doi: 10.1590/2175-7860201869115
    » https://doi.org/10.1590/2175-7860201869115
  • Lang C, Almeida DRA, Costa F. 2017. Discrimination of taxonomic identity at species, genus and family levels using Fourier Transformed Near-Infrared Spectroscopy (FT-NIR). Forest Ecology and Management 406: 219-227. doi: 10.1016/j.foreco.2017.09.003
    » https://doi.org/10.1016/j.foreco.2017.09.003
  • Lau BL, Batista JAN, Massensini-Junior A, Whitten WN, Borba EL. 2021. Unravelling the Habenaria repens (Orchidaceae) complex in Brazil: A biosystematic and molecular phylogenetic approach. Botanical Journal of the Linnean Society 197: 229-248. doi: 10.1093/botlinnean/boab022
    » https://doi.org/10.1093/botlinnean/boab022
  • Lawley JW, Gamero-Mora E, Maronna MM et al 2022. Morphology is not always useful for diagnosis, and that’s ok: Species hypotheses should not be bound to a class of data. Reply to Brown and Gibbons. South African Journal of Science 118: 12590. doi: 10.17159/sajs.2022/14495
    » https://doi.org/10.17159/sajs.2022/14495
  • Lindley J. 1839. Scaphyglottis reflexa Lindl. Edwards's Botanical Register 25: misc.20.
  • Mansfeld R. 1928. Scaphyglottis floribunda Mansf. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 10: 378.
  • Mayr E. 1963. Animal species and evolution. Cambridge, Massachusetts, Belknap Press of Harvard University Press.
  • Medeiros-Neto E, Nollet F, Moraes AP, Félix LP. 2017. Intrachromosomal karyotype asymmetry in Orchidaceae. Genetics and Molecular Biology 40: 610-619. doi: 10.1590/1678-4685-GMB-2016-0264
    » https://doi.org/10.1590/1678-4685-GMB-2016-0264
  • Menini-Neto L, van den Berg C, Forzza RC. 2019. Linear and geometric morphometrics as tools to resolve species circumscription in the Pseudolaelia vellozicola complex (Orchidaceae, Laeliinae). Plant Ecology and Evolution 152: 53-67. doi: 10.5091/plecevo.2019.1531
    » https://doi.org/10.5091/plecevo.2019.1531
  • Nery EK, Fiaschi P. 2019. Geometric Morphometrics Dismiss the Polymorphic Hydrocotyle quinqueloba (Araliaceae) from the Neotropics. Systematic Botany 44: 451-469. doi: 10.1600/036364419X15561132273558
    » https://doi.org/10.1600/036364419X15561132273558
  • Paiva DNA, Perdiz RO, Almeida TE. 2021. Using near‑infrared spectroscopy to discriminate closely related species: A case study of neotropical ferns. Journal of Plant Research 134: 509-520. doi: 10.1007/s10265-021-01265-9
    » https://doi.org/10.1007/s10265-021-01265-9
  • Pessoa E, Alves M. 2012. Flora of Usina São José: Orchidaceae. Rodriguésia 63: 341-356. doi: 10.1590/S2175-78602012000200009
    » https://doi.org/10.1590/S2175-78602012000200009
  • Pessoa EM, Alves M, Alves-Araújo A, Palma-Silva C, Pinheiro F. 2012. Integrating different tools to disentangle species complexes: A case study in Epidendrum (Orchidaceae). Taxon 61: 721-734. doi: 10.1002/tax.614002
    » https://doi.org/10.1002/tax.614002
  • Pessoa E, Cordeiro JMP, Félix LP et al 2021. Too many species: Morphometrics, molecular phylogenetics and genome structure of a Brazilian species complex in Epidendrum (Laeliinae; Orchidaceae) reveal fewer species than previously thought. Botanical Journal of the Linnean Society 195: 161-188. doi: 10.1093/botlinnean/boaa071
    » https://doi.org/10.1093/botlinnean/boaa071
  • Pessoa EM, Nollet F, Magalhães RF, Viruel J, Pinheiro F, Chase MK. 2022. Nuclear-plastid discordance indicates past introgression in Epidendrum species (Laeliinae: Orchidaceae) with highly variable chromosome numbers. Botanical Journal of the Linnean Society 199: 357-371. doi: 10.1093/botlinnean/boab080
    » https://doi.org/10.1093/botlinnean/boab080
  • Pinheiro F, Barros F. 2007. Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic Journal of Botany 25: 129-136.
  • Pinheiro F, Barros F. 2009. Morphometric analysis of the Brasiliorchis picta complex (Orchidaceae). Brazilian Journal of Botany 32: 11-21.
  • Pinheiro F, Dantas-Queiroz MV, Palma-Silva C. 2018. Plant species complexes as models to understand speciation and evolution: A review of South American Studies. Critical Reviews in Plant Sciences 37: 54-80. doi: 10.1080/07352689.2018.1471565
    » https://doi.org/10.1080/07352689.2018.1471565
  • POWO ‒ Plants of the World Online. 2022. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ 1 Jun. 2022.
    » http://www.plantsoftheworldonline.org/
  • Prata EMB, Sass C, Rodrigues DP et al 2018. Towards integrative taxonomy in neotropical botany: Disentangling the Pagamea guianensis species complex (Rubiaceae). Botanical Journal of the Linnean Society 188: 213-231. doi: 10.1093/botlinnean/boy051
    » https://doi.org/10.1093/botlinnean/boy051
  • Querino BC, Ferraz ME, Mata‑Sucre Y, Souza G, Felix LP. 2020. Cytomolecular diversity of the subtribe Laeliinae (Epidendroidae, Orchidaceae) suggests no relationship between genome size and heterochromatin abundance. Plant Systematics and Evolution 306: 19. doi: 10.1007/s00606-020-01650-2
    » https://doi.org/10.1007/s00606-020-01650-2
  • Reichenbach HG. 1869. Ponera amethystina Rchb. f. Refugium Botanicum; or Figures and Descriptions 2: 93.
  • Rodrigues JF, van den Berg C, Abreu AG et al 2014. Species delimitation of Cattleya coccinea and C. mantiqueirae (Orchidaceae): Insights from phylogenetic and population genetics analyses. Plant Systematics and Evolution 301: 1345-1359. doi: 10.1007/s00606-014-1156-z
    » https://doi.org/10.1007/s00606-014-1156-z
  • Rohlf FJ. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26:9-12. doi: 10.4404/hystrix-26.1-11264
    » https://doi.org/10.4404/hystrix-26.1-11264
  • Santos IS, Silva MJ. 2020. New record of Scaphyglottis livida (Lindl.) Schltr. (Orchidaceae, Epidendroideae) in Goiás, and a key to Scaphyglottis species in the Central-West Region of Brazil. Check List 16: 9-15. doi: 10.15560/16.1.9
    » https://doi.org/10.15560/16.1.9
  • Schlechter FRR. 1922. Fractiunguis brasiliensis Schltr. Anexos das Memorias do Instituto de Butantan: Seccao de Botanica 4: 56.
  • Schweinfurth C. 1955. Scaphyglottis decipiens C. Schweinf. Botanical Museum Leaflets 17: 43.
  • Szlachetko DL, Kolanowska M. 2013. Notes on the Scaphyglottis fusiformis Complex (Orchidaceae, Epidendroideae) in Colombia with the Description of Two New Species. Annales Botanici Fennici 50: 300-304. doi: 10.5735/086.050.0501
    » https://doi.org/10.5735/086.050.0501
  • Szlachetko DL, Kolanowska M. 2014a. Two new species of Scaphyglottis (Ochidaceae, Epidendroideae) from Colombia. Polish Botanical Journal 59: 1-5. doi: 10.2478/pbj-2014-0011
    » https://doi.org/10.2478/pbj-2014-0011
  • Szlachetko DL, Kolanowska M. 2014b. A new species of Scaphyglottis (Orchidaceae, Epidendroideae) from Colombia. Plant Systematics and Evolution 300: 1031-1034. doi: 10.1007/s00606-013-0941-4
    » https://doi.org/10.1007/s00606-013-0941-4
  • Thiers B. 2022 (continuously updated). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ 2 Aug. 2022.
    » http://sweetgum.nybg.org/science/ih/
  • van der Pijl L, Dodson CH. 1966. Orchid flowers, their pollination and evolution. Coral Gables, University of Miami Press.

Publication Dates

  • Publication in this collection
    04 Sept 2023
  • Date of issue
    2023

History

  • Received
    25 Jan 2023
  • Accepted
    05 July 2023
Sociedade Botânica do Brasil SCLN 307 - Bloco B - Sala 218 - Ed. Constrol Center Asa Norte CEP: 70746-520 Brasília/DF. - Alta Floresta - MT - Brazil
E-mail: acta@botanica.org.br