
 Introduction
Phytoplankton communities consist of photoautotroph-

ic microorganisms (Reynolds 1984) suspended in aquatic 
environments that move passively due to the movements 
of winds and currents. Phytoplankton comprise a great di-
versity of species of a wide variety of forms and sizes, each 
with its own unique physiological requirements (Reynolds 
2006). Information on phytoplankton communities (such 
as composition, structure, and spatial and temporal vari-
ability) in continental water ecosystems can elucidate the 
functioning of, and the energy flow within, these environ-
ments (Rodrigues 2004). Since phytoplankton communi-
ties respond rapidly to a wide variety of environmental 
disturbances (Cottingham & Carpenter 1998; Lepistö et al. 
2004; Paerl & Huisman 2009) and present a high diversity 
of species in natural conditions (Hutchinson 1961; 1976; 
Reynolds 1984; 2006), they can serve as important indica-
tors of environmental disarray. 

River algae are controlled by different factors than 
phytoplankton in lentic habitats, such as physical (light, 

temperature), chemical (gases, inorganic nutrients, ions) 
and biotic (herbivory) variables, and their responses, in 
contrast to species in lentic waters, are mainly affected by 
river flow. Anthropogenic activities (disposal of organic 
wastes and removal of riparian vegetation) may cause sig-
nificant changes to phytoplankton communities (Leland & 
Porter 2000; Lewis et al. 2001; Munn et al. 2002). In fact, 
species richness may be the simplest method to assess and 
quantify the complexity of a given environment (Nabout 
et al. 2007). Since it is coupled to taxonomic composition, 
species richness provides a measure of the main compo-
nents of biological diversity for characterizing an ecosystem 
and, thus, is important for defining preservation strategies 
(Nogueira et al. 2008). Consequently, species diversity is 
a quality of biological communities that is deeply related 
to stability, productivity, trophic structure and migratory 
processes (Stirling & Wilsey 2001).

Alpha-diversity and beta-diversity have been employed 
to determine patterns of species diversity (Whittaker 1972; 
Legendre et al. 2005), where α-diversity is defined as the 
local diversity (within the community) and thus a meas-
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ure of richness, whereas γ-diversity (regional diversity) 
represents the total number of sampled species (Whittaker 
1972). Beta-diversity encompasses the differences in species 
composition of different sites. It is thus a simple method 
to characterize species heterogeneity of a given region 
(Whittaker 1972; Gering et al. 2003). In contrast to species 
richness (alpha-diversity), beta-diversity tests hypotheses 
about the patterns of distribution of species biodiversity 
among different places (Baselga 2010).

There have been very few studies on phytoplankton 
beta-diversity in Brazil. Of these, the studies of Huszar 
et al. (1990), Nabout et al. (2007), Nogueira et al. (2008), 
Nogueira et al. (2010) and Pires (2014) should be high-
lighted, although these studies only evaluated alpha- and 
beta-diversity in lentic environments. 

The current paper assesses variation in alpha- and beta-
diversity of species of phytoplankton in two streams with 
different land use and levels of occupation, and analyzes 
whether changes, such as in environmental conditions, 
affect phytoplankton diversity. Specifically, this paper 
tests the hypothesis that stream stretches protected by 
the forest will have lower species richness, whereas non-
protected stretches will have higher beta-diversity. The 
influence of physical and chemical variables of the water 
on the components of alpha- and beta-diversity of algae 
will also be tested. 

Materials and me thods
The hydrographical region under study lies in the 

western region of the state of Santa Catarina, Brazil, on 
the border between the municipalities of Chapecó and 
Guatambu, and comprises an area of the most salient agri-
cultural activities in the state. The area can be divided into 
two hydrographic microbasins, namely the Tigre River and 
the Retiro Stream. The cultivation of bean, soybean and 
corn, and the breeding of swine, broilers and livestock, on 
small farms are the main agricultural activities in these two 
micro basins. 

The microbasin of the Tigre River has almost 20% of 
its area covered by the preservation unit ‘Floresta Nacional 
de Chapecó’ (FLONA), Chapecó, SC, Brazil. Six sampling 
sites (P1 to P6) were selected throughout the length of the 
Tigre River. The first two sites (P1 and P2) are not protected 
by forest and lie upstream in an area subjected to human 
impacts. P3 lies in an area of transition between forest and 
the agricultural area upstream, whereas sites P4, P5 and 
P6 lie within the forest and are protected by it. The Retiro 
Stream only borders the forest and has three sampling sites: 
P7 is upstream of the forest, and P8 and P9 have only one 
of their margins protected by the forest (Fig. 1). Table 1 
provides the geographic sites on the stretches analyzed, and 
the characteristics of each site.

Figure 1. Sampling sites on the river Tigre and stream Retiro in the western region of the state of Santa Catarina, Brazil, between February and November 2012. 
Source: ICMBio, 2013. 
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Sampling

Sub-surf ace samplings were made at the nine sampling 
sites during February (summer), May (autumn), August 
(winter) and November (spring) of 2012. Data on latitude, 
longitude, elevation (GPS - Garmin Etrex H), river width 
and depth (measuring tape), and river discharge (floating 
method, EPA 1997) were recorded at each sampling site. 

Samples were collected by successive horizontal hauls 
with 20 μm mesh nets, and fixed with 4% formaldehyde 
solution analysis of species richness. Species were identi-
fied using an optical microscope with magnifications of 
400x and 1000x. Eight slides per sample were analyzed, 
for a total of 32 slides per sampling site. Classification fol-
lowed: Round (1971) for classes of Chlorophyta; Komárek 
& Anagnostidis (1989; 1998; 2005) and Hoffmam et al. 
(2005) for Cyanobacteria; and Hoek et al. (1995) for the 
other classes. Identification to genus and species were 
performed using the specialized works of Komárek & Fott 
(1983), Sant’Anna (1984), Nogueira (1991), Comas (1996), 
Godinho (2009), Godinho et al. (2010), Rodrigues et at. 
(2010), Rosini et al. (2012; 2013a), and Ramos et al. (2012) 
for green algae; Hüber-Pestalozzi (1955), Tell & Conforti 
(1986), and Menezes (1994) for Euglenophyceae; Castro et 
al. (1991), and Menezes (1994) for Cryptophyceae; Komár-

ková-Legnerová & Cronberg (1994), Azevedo et al. (1996), 
Azevedo & Sant’Anna (1999; 2003), Komárek & Azevedo 
(2000), Sant’Anna et al. (2004), and Rosini et al. (2013b) 
for Cyanobacteria; Krammer & Lange-Bertalot (1986; 
1988; 1991), Metzeltin &Lange-Bertalot (1998; 2007), and 
Metzeltin et al. (2005) for Bacillariophyceae; Sant’Anna et 
al. (1989), Ferragut et al. (2005), Tucci et al. (2006), and 
Sant’Anna et al. (2012) for the overall community. Updat-
ing of the taxonomy followed An et al. (1999), Hegewald 
(1997; 2000), Hegewald & Hanagata (2000), Hegewald & 
Wolf (2003), Krienitz et al. (2003), Buchheim et al. (2005), 
and Krienitz & Bock (2012). Samples were deposited in 
the herbarium of the Universidade Comunitária Regional 
de Chapecó.

Abiotic variables, such as water temperature and dis-
solved oxygen (oximeter HANNA HI 9146), were also meas-
ured. An aliquot of water was retrieved for measuring pH 
(digital pHmeter Thermo Scientific Orion 4 Start), electrical 
conductivity and total dissolved solids (multi-parameter 
water quality monitoring system, Orion), turbidity (tur-
bidity meter Hach 2100N), total alkalinity (titration meter 
method), total nitrogen (APHA 2012), total phosphorus 
(Goltermam et al. 1978), biochemical oxygen demand (BOD 
respiration meter method) and chlorophyll-a (APHA 2012).

Table 1. General characteristics of the sampled sites. Localization by geographic coordinates, altitude, mean depth, mean width of the streams and discharge (m³/s) 
in the stretches under analysis.

Stream Identification of 
the sampled site

Geographic 
coordinates

Altitude 
(m)

Mean 
depth (m)

Mean 
width (m)

Discharge 
(m³.s-1)

Order 
stream Additional observations

Tigre

P1 27°01’07”S/
52°45’46”W 613 0.2 3.0 0.12 1ª Small strip of riparian vegetation, adjacent 

areas with corn crops.

P2 27°02’50”S/
52°46’37”W 586 0.2 2.7 0.36 3ª

Strip of non-extant riparian vegetation; 
adjacent areas planted with eucalyptus and 

mate trees; marked erosion process.

P3 27°04’11”S/
52°46’50”W 583 0.3 4.8 0.37 3ª Small strip of riparian vegetation; transition 

area between pastureland and preserved forest.

P4 27°05’39”S/
52°46’10”W 560 0.4 4.8 0.50 3ª Preserved riparian vegetation, area protected 

by the forest

P5 27°06’05”S/
52°46’12”W 545 0.3 4.9 0.57 3ª Preserved riparian vegetation, area protected 

by the forest

P6 27°06’37”S/
52°45’29”W 539 0.3 9.5 0.59 4ª

Preserved riparian vegetation, area 
protected by the forest, low water velocity; 

river´s mouth.

Retiro

P7 27°05’05”S/
52°43’55”W 560 1.2 8.5 0.29 4ª Lack of riparian vegetation, modified 

river course with small barrages.

P8 27°06’46”S/
52°45’01”W 542 0.3 8.3 1.17 4ª

Left margin protected by the forest; right 
margin with a small strip of riparian 
vegetation; adjacent area with crops; 

stretch with small rapids

P9 27°07’17”S/
52°45’06”W 540 1.2 6.8 1.26 4ª

Left margin protected by the forest; adjacent 
areas with pastureland, erosion 

processes; river´s mouth
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Data analysis

Means, standard d eviations and amplitudes were cal-
culated for the physical and chemical variables of the water 
from the seasonal samplings at each collection site. The 
trophic level of the site was analyzed for phosphorus and 
chlorophyll-a concentrations, following Lampareli (2004). 
One-way analysis of variance (ANOVA) was used to evalu-
ate differences among sampling sites with each sampling site 
being treated as an independent variable. The physical and 
chemical variables were treated as the response variables with 
each seasonal sampling as a replication for the sampling sites. 
Physical and chemical variables with significant differences 
(p<0.05) were correlated with alpha- and beta-diversity. 

The species richness of each sampling site (alpha-
diversity) was determined from the number of species 
collected throughout the entire study period, taking into 
consideration data from qualitative analysis, and was esti-
mated by first and second order jackknife indexes (Nabout 
et al. 2007) with StimateS (Colwell 2006). Occurrence 
frequencies were categorized as: constant for species found 
in more than 50% of the collections; common when found 
between 25% and 50% of the collections; and accidental or 
rare species when found in less than 25% of the collections 
(Lobo & Leighton 1986).

The β-1-diversity index (Harrison et al. 1992) measures 
the amount that regional diversity exceeds mean alpha-
diversity, and is calculated by the formula β-1= [(S/αmean)-1]/
[N-1] x 100, where S is the regional diversity or total richness 
(the number of species per each sampling site); αmean is the 
mean alpha diversity (mean number of species) for each 
site in each period; N is the number of sites of the period.

The β-1 index varies between 0 and 100, with 100 indi-
cating a set of dissimilar sampling sites and 0 indicating a 
set of totally similar sampling sites. Beta-diversity over 50% 
indicates high heterogeneity in phytoplankton composition 
among systems; between 20 and 50% indicates intermediate 
heterogeneity; and below 20% indicates low heterogeneity 
(Harrison et al.1992; Nabout et al. 2007).

Floral similarity between sites was measured by 
Sørensen´s similarity index (Magurran 1988). Similarity 
in phytoplankton composition among sites was determined 
using cluster analyses with Sørensen´s distance, employing 
the UPGMA-type method (mean of groups). Analysis was 
performed using PC-ORD (McCune & Mefford 1999) and 
the reliability of the dendrogram was assessed by the coef-
ficient of the co-phenetic co-relationship with PAST (Ham-
mer et al. 2001). This analysis was employed to increase the 
reliability of the conclusions drawn from the interpretation 
of the dendrogram (Kopp et al. 2007).

Results
Phosphorus concentrations for the Tigre River (mean 0.2 

mg.L-1 (± 0.1)) and for the Retiro Stream (0.3 ±0.2 mg.L-1) 
classified the sampling stretches of P1, P2, P3, P4, P5, P7 

and P8 as eutrophic and P6 and P9 as super-eutrophic, with 
no significant difference between the sites (p>0.05). How-
ever, analysis of the concentration of chlorophyll-a in the 
stretches showed that P2 (7.4 μg.L-1), P6 (7.7 μg.L-1), P8 (6.7 
μg.L-1) and P9 (21.1 μg.L-1) were super-eutrophic (Tab. 2). 
All the sampling sites had a pH close to neutral and were 
well oxygenated, (between 5.5 and 9.8 mg.L-1). Turbidity 
for the stretches of the Retiro Stream were higher than 
those for the Tigre River (F(2.33)= 9.6964; p=0.0005). Rates 
for Electrical conductivity, total dissolved solids and total 
alkalinity in the upstream sections of the rivers were higher 
than those in sections further downstream (river mouth) 
(Tab. 2), and the differences among sites in total alkalinity 
were significant (F(2.33)= 4.5393; p=0.0181). The total number 
of infrageneric taxa of the phytoplankton communities of 
both rivers was 429. This amount corresponded to 88% of 
the estimated expected richness (Jackknife 1=491 sp; Jack-
knife 2=501 sp) (Fig. 2). The phytoplankton community 
comprised nine classes among which the most represented 
were Bacillariophyceae (283 taxa) Chlorophyceae (47 taxa), 
Zygnemaphyceae (36 taxa), Cyanophyceae (35 taxa), fol-
lowed by Euglenophyceae (17 taxa), Xanthophyceae (five 
taxa), Chrysophyceae (three taxa), Dinophyceae (two taxa) 
and Chryptophyceae (one taxon) (Fig. 3). Bacillariophyceae 
had the greatest richness at all sampling sites. 

Fifty-nine out of the 429 taxa had constant occurrence 
(relative occurrence frequency - FR% above 51%); 91 taxa 
were common (between 25 and 50%) and 279 taxa were rare 
(lower than 24%). Further, 96% of the 59 taxa with constant 
occurrence were specimens of the class Bacillariophyceae, 
whereas the others (4%) comprised the species Pediastrum 
duplex var. duplex and Desmodesmus communis, both of 
the class Chlorophyceae. Of Cyanophyceae, the greatest 
occurrence was Microcystis aeruginosa (42%), a potentially 
toxin-producing species. The Bacillariophyceae comprised 
Amphipleura chiapasensis, Cymbella aspera, Melosira 
varians, Navicula cryptocephala, N. rostellata, N. simulata, 
N. germainii, Nitzschia palea, N. recta, Ulnaria ulna, 
Achnanthidium minutissimum, Aulacoseira pusilla, 
A. calypsi, Gyrosigma scalproides, G. acuminatum, G. nodiferum, 
Luticola acidoclinata and Gomphonema parvulum, which 
occurred in at least 80% of the collected samples. 

Species richness (alpha-diversity) ranged between 248 
taxa at P1 and 147 taxa at P3 (Fig. 4), with a decreasing gradi-
ent in the number of taxa from the river source to its mouth 
in both rivers. The beta-diversity index was applied to 
quantify renewal or substitution of the species among sites. 
In fact, the β-1 diversity index for the period under analysis 
ranged between 23.8 (P1 and P7) and 38.9 (P9) (Fig. 4) 
and indicated an intermediate level of similarity among the 
sampled environments.

Sorensen´s similarity analysis revealed two groups o f 
taxa (Fig. 5), with a similarity of 60%: sampling sites P1, P2 
and P7 were the most similar in phytoplankton composition, 
followed by P3, P4 and P5. Sites P8, P6 and P9 were dis-
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Table 2. Means, standard deviation (in brackets) and amplitude of physical and chemical characteristics of stream water measured at the subsurface of each sam-
pled site throughout the four sampled periods. Water T = Water temperature; pH = hydrogenionic potential; DO = dissolved oxygen; BOD = Biochemical Oxygen 
Demand; TN = total nitrogen; TP = total phosphorus; EC = Electrical conductivity; Talk = total alkalinity; TDS = total dissolved solids; Turb = turbidity.

Physical and chemical 
chacacteristics P1 P2 P3 P4 P5 P6 P7 P8 P9

Water T (°C)
21.1 (±3.2) 18.5(±3.8) 19.8(±3.9) 18.2 (±3.1) 18.3 (±3.7) 21.0 (±4.3) 20.7 (±4.7) 19.6 (±3.1) 20.3 (±4.7)

17.6-25.0 15.0-22.6 14.5-23.7 14.4-22.0 13.9-23.0 17.7-27.0 14.8-26.0 15.5-23.0 15.0-26.0

pH
7.3(±0.1) 7.2 (±0.1) 7.2 (±0.1) 7.0 (±0.06) 7.1 (±0.1) 7.3 (±0.5) 6.9(±0.03) 7.2 (±0.1) 7.7 (±0.9)

7.2-7.5 7.1-7.3 7.1-7.4 6.9-7.1 6.9-7.1 7.0-8.0 6.8-6.9 7.1-7.4 7.1-9.2

DO (mg.L-1)
7.6 (±1.5) 6.9 (±0.7) 7.4 (±0.6) 6.93 (±0.4) 7.0 (±0.8) 7.7 (±0.6) 6.5 (±0.8) 6.9 (±0.4) 8.03 (±0.4)

6.4-9.8 5.5-7.4 6.6-7.9 6.4-7.4 6.2-8.1 6.7-8.2 5.7-7.7 6.6-7.6 7.5-8.4

BOD (mg.L-1)
1.9 (±1.1) 1.3 (±1.0) 1.6 (±1.2) 2.0 (±1.4) 2.8 (±0.7) 1.7 (±1.6) 1.2 (±1.2) 3.1 (±1.7) 2.0 (±1.7)

0.7-2.9 0.6-2.4 0.3-2.5 0.6-3.4 2.0-3.3 0.0-3.3 0.0-2.5 0.9-5.1 0.3-3.5

TN (mg.L-1)
0.6 (±0.8) 0.3 (±0.1) 1.1 (±1.7) 0.7 (±0.8) 0.5 (±0.6) 0.7 (±0.8) 2.4 (±3.7) 1.2 (±0.7) 1.0 (±0.6)

0.0-1.7 0.2-0.4 0.0-3.7 0.0-1.5 0.0-1.4 0.1-1.9 0.3-8.0 0.5-2.1 0.4-1.5

TP (mg.L-1)
0.2 (±0.1) 0.2 (±0.1) 0.2 (±0.1) 0.2 (±0.1) 0.1 (±0.1) 0.3 (±0.5) 0.3 (±0.4) 0.2 (±0.2) 0.3 (±0.4)

0.06-0.43 0.06-0.25 0.08-0.33 0.08-0.43 0.00-0.25 0.00-1.02 0.06-0.83 0.08-0.54 0.06-0.97

EC (μS.cm-1)
83.6 (±18.2) 66.5 (±17.1) 64.0 (±18.6) 61.2 (±16.7) 58.3 (±15.4) 43.4 (±4.3) 65.2 (±26.6) 64.0 (±14.5) 54.8 (±17.1)

68.0-106.7 48.6-86.7 46.2-86.7 46.9-83.0 45.8-78.2 38.5-48.5 50.1-105.0 49.1-80.5 39.8-79.5

TDS (mg.L-1)
39.7 (±9.0) 31.5 (±8.0) 30.5 (±8.6) 28.7 (±7.9) 27.7 (±7.3) 21.0 (±2.1) 30.7 (±12.8) 31.0 (±8.1) 25.7 (±7.8)

32.0-51.0 23.0-41.0 22.0-41.0 22.0-39.0 22.0-37.0 18.0-23.0 23.0-50.0 23.0-41.0 19.0-37.0

Turb (NTU)
7.8 (±3.2) 9.6 (±3.9) 7.6 (±0.6) 7.56 (±1.3) 10.6 (±1.4) 14.5 (±5.1) 22.6 (±4.4) 18.2 (±10.7) 14.1 (±4.6)

3.2-10.6 6.4-15.3 6.8-8.2 6.1-8.9 8.6-11.8 8.3-20.1 18.6-27.3 10.8-34.2 10.7-20.8

Talk (mg.L-1 CaCO3)
27.3 (±4.4) 22.3 (±4.1) 19.5 (±2.5) 18.1 (±2.5) 17.0 (±2.6) 17.7 (±4.1) 17.8 (±2.7) 17.3 (±4.1) 15.5 (±2.6)

22.0-32.8 18.7-28.3 17.3-22.8 15.5-20.4 14.5-19.4 15.0-23.7 15.5-21.6 14.0-22.7 13.0-19.0

Chlorophyll a (μg.L-1)
1.1 (±2.2) 7.4 (±8.3) 0.1 (±0.2) 0.2 (±0.3) 0.1 (±0.3) 7.7 (±12.0) 1.9 (±1.5) 6.7 (±5.0) 21.1 (±3.2)

0.0-4.53 0.0-16.4 0.0-0.5 0.0-0.7 0.0-0.6 0.0-25.5 0.0-3.8 2.7-13.3 0.2-29.9

Figure 2. Species rarefaction curve for the 36 sampled sites between February and November 2012 on the streams Tigre and Retiro, western Santa Catarina, Brazil.
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Figure 3. Number of species per sampling sites during the study period (gamma diversity), distributed in taxonomic classes in each sampled river stretch.

Figure 4. Species richness (alpha diversity) and beta diversity for each sampling site on the streams Tigre and Retiro, western Santa Catarina, Brazil, between 
February and November 2012.

Figure 5. Dendrogram of Sørensen coefficient of similarity based on the floristic inventory of each sampling site. Co-phenetic Coefficient (r) = 0.86. pt 1 = site 1; 
pt2 = site 2; pt3 = site 3; pt4 = site 4; pt5 = site 5; pt6 = site 6; pt7 = site 7; pt8 = site 8; pt9 = site 9.
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similar to all the other sites. However, similarity coefficients 
at the sites ranged between 0.038 and 0.613, which revealed 
high flora similarity. Since the phytoplankton composition 
among the sites was very similar, it reinforced the low het-
erogeneity found for beta-diversity among the stretches. 
The co-phenetic coefficient rate was r = 0.86.

Discussion
As a whole, the hydrographical region exhibited high 

phytoplankton richness with 429 registered taxa or rather, 
88% of the expected richness. These results show that the 
sampling effort was successful at representing the richness 
present and in indicating consistent patterns of diversity. 
Although rarely employed in studies on phytoplankton, the 
jackknife indexes of the first and second orders (Nabout 
et al. 2007; Nogueira et al. 2008) were an important tool 
for assessing the efficacy of the sampling effort. It should 
be emphasized that closeness between the observed and 
the estimated expected species richness indicates that the 
sampling effort was adequate to reveal the diversity of phy-
toplankton in the two study rivers (Nogueira et al. 2010).

According to Vannote et al. (1980), a hypothetical lon-
gitudinal profile can be identified in rivers in which it is 
expected that there would be a lower amount of suspended 
substances and a lower nutrient load in the stretches closer 
to a river’s source. The conditions of the two study-rivers 
were far from this prediction. The highest rates for electri-
cal conductivity, total alkalinity and total dissolved solids 
were reported in the stretches closest to the source, whereas 
phosphorus load did not vary among all of the sampling 
sites. This fact indicates that, regardless of a stretch being 
protected or not by the forest, exposure to human interfer-
ence occurs at some level. The environment´s trophic level 
may have contributed to the high richness of algae along 
the rivers since phosphorus is usually a limiting resource 
for primary productivity (Ternus et al. 2011). The de-char-
acterization of the longitudinal profile may be attributed to 
land use and occupation in the areas close to the sources of 
the two rivers, where crop cultivation and intensive animal 
breeding predominate and the streams are not protected by 
riparian vegetation. The current investigation shows the 
importance of surface drainage in contributing electrolytes, 
which were much higher in the stretches close to the sources 
of the rivers. Research by Ternus et al. (2011) showed that 
nitrogen and phosphorus concentrations in lotic environ-
ments can be greatly affected by the use and occupation of 
the soil by agricultural activities. 

Bacillariophyceae and Chlorophyceae were the two 
taxonomic classes with the greatest number of species 
recorded out of the nine classes encountered during the 
study. These groups are usually found in limnic environ-
ments and their occurrence demonstrates their ability to 
adapt to water fluxes. Similar results were reported in other 
Brazilian rivers by Monteiro et al. (2009) and Rodrigues et 

al. (2009), who reported that Diatomaceae, Chloroficeae 
and groups of cyanobacteria were the most abundant taxa. 
Although, according to Reviers (2006), Diatomaceae are 
widely distributed and may colonize all types of aquatic 
environments, Reynolds et al. (1994) states that the richness 
of Diatomaceae may be affected by water flow, intensity of 
light on the river, high nutrient availability, water quality and 
herbivory. This is due to the fact that species of Diatomaceae 
are fast growing organisms, especially in conditions of high 
nitrogen concentration, and to their status as opportunis-
tic or colonizing algae (r- and C-strategists, respectively) 
(Reynolds 1984; Sommer 1988). The above facts corroborate 
the results of the present study since the greatest richness 
of Diatomaceae occurred at P1, a site close to the source of 
the Tigre River and a site with low water flux, many stones, 
and scant shade, but a high degree of electrical conductivity. 

Among the Diatomaceae with the highest occurrence 
frequencies, Melosira varians and Cymbella are associated 
with slow water flow due to their weak fixing structure and 
their preference for habitats with high luminosity (Hermany 
2005). Maier & Rott (1988) and Salomoni et al. (2006) 
underscored that Nitzschia palea, Achnanthidium minutis-
simum, Navicula cryptocephala and Ulnaria ulna are widely 
distributed species and are generally dominant in eutrophic 
environments. Moreover, Gomphonema parvum has been 
classified by Van Dam et al. (1994) and Lobo et al. (2002) as 
a moderately pollution-tolerant species. On the other hand, 
the ubiquitous genus Aulacoseira is the most successful of 
all the centric Diatomaceae, being greatly abundant in the 
plankton of lakes, reservoirs and large rivers (Wetzel 2011).

Green algae (Chlorophyceae) form the second most di-
verse group of the floristic composition of the studied rivers. 
According to Silva et al. (2009), Chlorophyceae encompasses 
some of the most widely distributed phytoplankton groups, 
occurring in all types of continental waters, whereas Luzia 
(2009) reports that they typically occur in rivers, lakes and 
shallow reservoirs with turbulence. These observations 
corroborate the results of current study since the greatest 
richness of Chlorophyceae occurred at the sampling sites P8 
and P2, which are shallow and with few rapids. According 
to Peres & Senna (2000), Chlorophyceae survive in very dif-
ferent environments, ranging from slightly polluted waters 
to highly eutrophyzed environments, and exhibit several 
survival strategies due to their great diversity.

In the present study, β-diversity proved to be moderate 
(β-1 ranged between 24 and 38%) and revealed a relatively 
low level of heterogeneity in the species of the sampled 
stretches. Dissimilarities may be found among stretches of 
the same river and stretches of the two rivers, since other 
environmental characteristics may affect phytoplankton 
composition. These environmental characteristics may 
include either different limnological features of lakes, as 
registered by Nogueira et al. (2008) when they estimated 
the three diversity components (alpha, beta, gamma) of the 
four urban lakes in the municipality of Goiânia GO Brazil, 
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or interference by/with flood cycles (Nabout et al. 2007) or 
even the environment´s trophic degree (Pires 2014). Con-
sequently, the hypothesis regarding beta-diversity tested 
in by the present research is rejected since no significant 
co-relationship between the results has been observed.

The similarity analysis of species composition among 
sample sites found a co-phenetic coefficient of 0.86, reveal-
ing a good representation of the actual distances between 
genotypes (Sokal & Rohlf 1962). The dendrogram indicated 
that stretches without forest protection (P1, P2 and P7) were 
dissimilar from sites with extensive or total forest protection 
(P3, P4, P5), and sites P6, P8 and P9 had a composition 
that differed widely from the other sampled stretches. The 
classification shows that community composition can be 
affected by local environmental variables. Group 1, with 
approximately 78% similarity, was composed of only stream 
stretches with no forest protection. The above indicates that 
the removal of riparian vegetation increased the erosion of 
river-banks, thereby substituting the biota and changing 
the functional dynamics. The ecosystem did not remain 
predominantly heterotrophic, in which allochthonous en-
ergy is derived from leaves from riverside vegetation, but 
became a predominantly autotrophic ecosystem. In this 
case, the removal of riparian vegetation and, consequently, 
a greater penetration of light, benefitted autochthonous 
energy related to the algae of the streams (Novaes 2010).

Group 2, with approximately 65% similarity, was com-
posed of forest-protected stretches of the Tigre River (P3 
is partially protected; P4 and P5 are totally protected). 
Consequently, there was low alpha-diversity due to the low 
concentration of chlorophyll-a, which is associated with 
canopy density and shading of the river margins of the 
stretches. Luminosity is one of the factors that can limit the 
rate of development of a phytoplankton community (Silveira 
2004; Tundisi & Matsumura-Tundisi 2008). Algae inserted 
in ecosystems with scant light must adapt to such condi-
tions by improving their photosynthetic capacity with cells 
featuring great pigment amounts or by speeding their life 
cycle (Reynolds et al. 1994; Soares et al. 2007).

The stretches P6, P8 and P9 differed from all the other 
stretches (Groups 1 and 2), and with no similar composi-
tion among themselves. Since P6 and P9 lie at the mouths 
of the rivers where they empty into reservoirs, they are 
lotic to lentic transition environments. The two sites had 
low similarity, although they had the highest cyanobacteria 
concentrations. Cyanobacteria are organisms that exhibit 
ecological plasticity since they grow in almost all aquatic 
and land media, and are distributed throughout the planet 
and may be the most widespread photosynthetic organisms 
with regard to habitat (Badger et al. 2006; Melcher 2007). 
These organisms are sensitive to nutrient availability, and 
often bloom in eutrophyzed environments, thereby causing 
serious environmental changes and putting public health 
at risk due to the production of toxins (Yunes et al.1996; 
Ferrão-Filho et al. 2002).

A high concentration of chlorophyll-a, an indirect 
indication of algal biomass, could be perceived at site P9. 
Increase in algal biomass at this specific site may be as-
sociated with several factors, but mainly greater biological 
activity that usually occurs during the months with higher 
temperatures, hydraulic characteristics (less water move-
ment due to the lotic-lentic transition environment), and 
the features of the hydrographic basin in which the river 
lies (Cunha & Calijuri 2008).

The current investigation found high values of species 
richness for all of the sampled stretches, where beta-diver-
sity, however, was moderate. A high degree of similarity 
between sampled stretches with only slight differences in 
species composition was observed among the sites along the 
gradient of the two rivers. Bacillariophyceae and Chloro-
phyceae were the most represented classes. Consequently, 
the hypothesis that river stretches protected by the forest 
will have lower species richness and greater beta-diversity 
than non-protected stretches was only partially supported. 
Protected sites did have lower species richness in compari-
son to non-protected stretches, however, beta-diversity did 
not differ significantly among these sites. 

All of the 429 taxa registered in the present study are 
first records for the two study-rivers. This clearly illustrates 
the need for further floristic studies of larger streams and 
rivers in remote areas of the state of Santa Catarina, Brazil. 
Because of their rarity, some taxa could not be identified 
to the species level and, consequently, their distinguishing 
features could not be analyzed. 

Since human activities are more and more intense in this 
specific region due to the development of towns and cities 
or due to the broadening of agricultural frontiers, the need 
for further study on the biodiversity of hundreds of other 
lotic environments of the region should be emphasized. 
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