Acessibilidade / Reportar erro

Cardioprotective Effect of Maternal Supplementation with Resveratrol on Toxicity Induced by Doxorubicin in Offspring Cardiomyocytes

Abstract

Background

Doxorubicin (DOX) is frequently used to treat many types of cancers, despite its dose-dependent cardiotoxicity. Alternatively, resveratrol is a polyphenol that has shown useful cardioprotective effects in many heart dysfunction models.

Objective

This study investigated whether resveratrol treatment in pregnant rats protects against doxorubicin-induced toxicity in offspring cardiomyocytes.

Methods

Wistar rats (n=8) were supplemented with dietary resveratrol during pregnancy. Upon the offspring’s birth, hearts (9-11) were used to obtain the primary culture of cardiomyocytes. DOX-induced cardiotoxicity and the effects of resveratrol supplementation were evaluated by oxidative stress markers, such as dichlorofluorescein diacetate oxidation, decrease in the activity of antioxidant enzymes, and oxidation of total sulfhydryl content, in addition to cell viability evaluation, DNA damage generation, and DNA damage repair response. A value of p<0.05 was considered statistically significant.

Results

Neonatal cardiomyocytes from resveratrol supplemented rats exhibiting an increase (p<0.01) in cell viability and lower (p<0.0001) apoptotic/necrotic cells after DOX treatment, which correlates with the activities of antioxidant enzymes and dichlorofluorescein production. Moreover, resveratrol protected cardiomyocytes from DOX-induced DNA damage, showing a decrease (p<0.05) in DNA breaks induced by oxidative stress, evaluated by the activity of DNA-repair enzymes endonuclease III and formamidopyrimidine glycosylase. Supplementation with resveratrol increased (p<0.05) the expression of the repair protein Sirt6 in the cardiomyocytes of the pups.

Conclusion

This research indicates that supplementation with resveratrol during the gestational period has a notable cardioprotective effect on the offspring’s heart against DOX-induced toxicity, which may well be due to its antioxidant function, and the increase in the DNA damage repair response.

Rats; Resveratrol; Doxorubicin; Cardiomyocytes; DNA Repair Enzymes

Sociedade Brasileira de Cardiologia - SBC Avenida Marechal Câmara, 160, sala: 330, Centro, CEP: 20020-907, (21) 3478-2700 - Rio de Janeiro - RJ - Brazil, Fax: +55 21 3478-2770 - São Paulo - SP - Brazil
E-mail: revista@cardiol.br