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Objective - To study the healing process of the myo-
cardium in hypertensive rats undergoing inhibition of
nitric oxide synthesis.

Methods – Two groups of animals were studied: one
received L-NAME, 12mg/kg/day, and the other was a
control group. The presence of type III collagen, fibro-
nectin, and α-smooth muscle actin-positive cells was
assessed by immunohistochemistry.

Results – Fibronectin was seen in both early and late
lesions, while type III collagen was seen mainly in areas of
incomplete healing, situated among myocytes and around
the intramyocardial branches of the coronary arteries.
Areas representing early and late lesions showed a
population of spindle-shaped cells. Immunohistoche-
mistry showed that these cells were positive for α-smooth
muscle actin.

Conclusion –  In the myocardium of hypertensive rats,
the α-smooth muscle actin-positive cells are related to the
accumulation of type III collagen and fibronectin in the
areas of myocardial damage.
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The discovery of the role of nitric oxide (NO) in the
maintenance of vascular tonus led to the development of an
experimental model for hypertension induced by the chronic
inhibition of the NO synthase (NOS), the enzyme responsible
for the synthesis of NO from the amino acid L-arginin 1,2.
This experimental model for hypertension, known as “NO-
deficient hypertension” 3, inspired a series of studies aimed
at defining the structural and functional features of the heart
in this kind of hypertension 4-7.

The NG-nitro-L-arginine methyl ester (L-NAME) is one
of the most well known NOS inhibitors and is commonly
used in experimental models 8,9. The continuous use of this
compound leads to the development of high blood pressure
(HBP) as a result of generalized vasoconstriction 2,9,10,
reduction in the intracellular levels of cGMP, and morpholo-
gical changes in the renal microvasculature 11,12.

The use of high doses of L-NAME leads to the deve-
lopment of marked hypertension in rats 2,8,9. The effects of
this kind of NOS inhibition were studied using stereology to
examine the structural changes in the myocardium.  Signi-
ficant changes, such as an increase in the size of myocytes,
and interstitial and perivascular fibrosis, were shown 8,13,14.

Left ventricular hypertrophy (LVH) is one of the most
common manifestations of HBP. When LVH is caused by
HBP, it involves 2 different, but interrelated, processes. The
first process is myocyte hypertrophy and the second is an
increased synthesis of fibrillar collagens, mainly type I and
type III 15-17. Myocyte death has been suggested as one of
the factors that accounts for the increased amount of colla-
gen (substitutive fibrosis). 16,18,19. However, this topic is
controversial 15,20,21.

The extracellular matrix (ECM) is the myocardial com-
partment mostly involved in the process of myocardial
healing following the loss of myocytes 22-24. At the site of the
lesion, the ECM consists of macromolecules that are
responsible for the formation of the fibrin-fibronectin
network and for the invasion by neutrophils, monocytes,
macrophages, fibroblasts and phenotypically transformed
fibroblasts (myofibroblasts [MFs]) 24.
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MFs show features of both fibroblasts and smooth
muscle cells, and the characterization of MFs is based on
ultrastructural criteria 25,26. The production of collagen by
MFs is regulated by autocrine and paracrine signs. MFs are
also related to the production of cellular fibronectin 23-24,27,28.

The main components of the myocardial ECM are type
I and III fibrillar collagen and fibronectin 29-31. Changes in
the amount and distribution of these proteins are mainly
related to changes in heart function; thus, these changes
may also affect myocardial compliance 32-34.

According to previous studies of cardiac hypertro-
phy in rats caused by pressure overload, the presence of
fibronectin in ischemic myocardial areas precedes the
development of collagen 29,31. In addition, other experimental
studies have shown that the general myocardial healing
process is characterized by an initial accumulation of
fibronectin which, in the late stages of this process, is
associated with an increase in collagen production 34-36.

The objective of this report is to study the healing
process of the myocardium during the experimental inhi-
bition of NO synthase.

Methods

Male and female Wistar rats weighing 250-300g were
used in this study. The rats were divided into 2 groups: a
control group and an L-NAME group, having 10 and 14
animals, respectively. The rats were fed a standard diet and
unrestricted water. The rats in the L-NAME group were
given the NO synthase inhibitor (NG-nitro-L-arginine
methyl ester hydrochloride, Sigma Co, lot 44H0102) at a
dosage of 12mg/kg/day for 15 weeks. The blood pressure
(BP) in the tail was measured weekly with the use of a
plethysmograph 37. After the rats were anesthetized with
ethyl ether, their hearts were exposed and a high volume of
10% KCl was injected in the left ventricle (LV). This proce-
dure induced heart arrest in diastole.

A series of fragments of the free left ventricular wall
were obtained and fixed by immersion in a solution of 4%
formalin and phosphate buffer (pH 7.2) at room temperature.
The samples were subsequently dehydrated in increasing
concentrations of ethanol, embedded in paraffin and cut in
sections of 5µm thickness. The sections were then stained
with hematoxylin-eosin and Masson’s trichrome.

The tissue blocks employed for light microscopy were
also used for immunohistochemistry. Paraffin sections of
5µm thickness were applied to glass slides, which were
pretreated with Silano® to warrant a better adherence of the
section to the glass slide during the various stages of the
technique. The presence of type III collagen, fibronectin
and α-smooth muscle actin-positive cells (α-SMA) was
examined with the use of the avidin-biotin peroxidase
method. Protein digestion with 1% trypsin was performed
only to assess the presence of type III collagen. The sec-
tions were incubated with rabbit polyclonal antibodies
specific for type III collagen (Pharmigen, AB757), in the

dilution of 1:200. They were also incubated with fibronectin
(Pharmigen, AB1942), in the dilution of 1:300 and with
mouse monoclonal antibody specific for α-SMA (DAKO,
M851), in the dilution of 1:200. Peroxidase activity was
shown in a solution of diaminobenzidine tetrahyhdro-
chloride (Sigma Co., 5mg) in 10ml of TRIS at pH 7.0, con-
taining 200µl of 10% hydrogen peroxide at room tempe-
rature. The positive control for type III collagen was per-
formed through the observation of the positivity of the
tunica adventitia of the intramyocardial branches of the
coronary arteries of the rats in the control and L-NAME
groups. For fibronectin, this same control was performed
with the use of kidneys from control rats, in which the
glomerular positivity was observed. The negative control
was performed omitting the primary antibody.

The differences in BP levels between the L-NAME
and control groups were tested with the Student’s t test,
with a level of significance of 0.05 38.

Results

In the control group, BP remained unchanged during
the entire experiment. In the L-NAME group, however, BP
increased gradually up to 150.0 mmHg after the 10th week of
the experiment (tab. I).

At light microscopy, the myocardium of the animals
undergoing NO synthase inhibition showed multiple areas
of myofibrillar degeneration, necrosis and fibrosis, greatly
evidenced in the free wall of the LV. After 100 days using L-
NAME, necrotic myofibers characterized by acidophilic
stain of the cytoplasm, loss of striations and, sometimes,
focal groups of lymphocytes, were observed in all spe-
cimens studied. Neutrophils were sometimes observed,
especially in early lesions. A diffuse increase in the
interstitial collagenous connective tissue next to the vessels
was frequently seen. In contrast, the animals in the control
group did not show any sign of myocardial damage.

In the myocardium of the control group, the immu-
noreactivity to type III collagen was identified as a delicate
septum among and surrounding the muscular fibers. In the
tunica adventitia of the intramyocardial coronary arteries, a

Table I - Blood pressure in the tail measured in animals of control
and L-NAME groups

Weeks Control L-NAME p

Before the administration of L- 99.4±1.0 99.6±1.7 0.78
NAME

After the administration of L-NAME
4th 99.5±0.7 114.5±1.3 <0.0001
8th 99.9±0.3 127.9±2.6 <0.0001
10th 100.8±0.5 142.9±2.6 <0.0001
13th 101.0±2.1 150.0±1.8 <0.0001
14th 101.5±2.4 150.0±2.1 <0.0001
15th 102.5±2.6 150.0±2.2 <0.0001

(mean ± standard deviation); p indicates the likelihood of the difference
between the groups to be significant.
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positive immunoreactivity to type III collagen, spreading
among the viable muscle fibers, was similarly noted. The
myocardium of the L-NAME group showed an increased
amount of type III collagen among the muscular fibers and
within the tunica adventitia of intramyocardial coronary
arteries. Type III collagen and fibronectin were noted in the
various foci of early and late myocardial lesions (figs. 1a-d).

There was an increased and uniform distribution of
fibronectin in the foci of myocardial lesions filled with
nonmuscular cells, i.e., endothelial cells, fibroblasts, MFs,
neutrophils and macrophages. These foci were morpho-
logically characterized as having early lesions. There was
also a clear distribution of fibronectin in the foci of incom-
pletely healed late lesions.

Type III collagen showed a more uniform distribution
in late lesions; however, it was also present in early lesions,
although randomly distributed. An increased intercellular
space and accumulation of type III collagen and fibronectin
in noninfarcted myocardial areas of L-NAME rats were also
noted.

Concomitantly, numerous spindle-shaped cells with
morphological features of interstitial fibroblasts and posi-
tivity for α-SMA (Fig. 1e) were seen in early and late lesions.
The vascular smooth muscle cells were also α-SMA-
positive and, in the healthy myocardium, they were the only
cells with positivity for this antibody (fig. 1f).

Discussion

The collagenous component of the healthy myo-
cardium is part of a system that contains a series of consti-
tuents of the ECM (heart interstitium). Its main components
are type I and III collagens, organized in a tridimensional
network around cardiac myocytes 39-41. These elements are
responsible for the viscoelastic properties of the myo-
cardium, which are mainly related to the type and propor-
tions of fibrillar proteins and glycoproteins, as well as to the
interaction of these proteins with the myocytes. 39,40. An
increase in the content or transformation of the structure of
these fibrillar components in relation to cardiac muscle
fibers could affect myocardial compliance 21,42,43.

The role of the myocytes and of the cardiac intersti-
tium in the dysfunction of the heart is still controversial 4,9.
However, previous studies have shown an increase in the
volume fraction of collagen in LVH as a result of pressure
overload 12,16,44-47.

The inhibition of NO biosynthesis using high doses of
L-NAME induces a significant elevation of the blood
pressure, LVH, myocyte necrosis, vascular damage, and
interstitial fibrosis 2,9,14,48. The current results with the low-
dose and long-term administration of L-NAME showed that
the pressure levels were not so high as those observed in
other studies, but myocardial abnormalities were similar to
those in the model with high-dosage and short-term
administration of L-NAME 8,44. When NOS is experimentally
inhibited, most myocardial abnormalities are probably the
result of a compensatory response to the overload of the

circulatory system 49. However, the extensive myocardial
fibrosis noted in these cases does not seem to be related
solely to the ventricular overload, but rather to the use of L-
NAME, probably as a result of the myocardial ischemia
inherent to this experimental model 9.

In chronic heart failure, changes in the composition of
the connective tissue are mainly related to systolic and

Fig. 1 – Photomicrographies of the areas of myocardial lesions in hypertensive rats
during the inhibition of nitric oxide synthesis. A) immunostaining anti-type III
collagen, accumulation of type III collagen in an area of myocardial necrosis with
incomplete healing; B) a delicate network of type III collagen in an area of early
lesion, with abundant cellular inflammatory infiltrate; C)  immunostaining
antifibronectin, accumulation of fibronectin in an area of late lesion with incomplete
healing; D) fibronectin network in an area of early lesion; E) photomicrography of an
area of myocardial lesion in hypertensive rats during the inhibition of nitric oxide
synthesis. Spindle α-SMA-positive cells are noted (arrows); F) photomicrography
of normal rat myocardium showing α-SMA positivity only in vascular smooth
muscle cells (arrowhead). Magnification (represented by the bar): 50µm in a; 120µm
in b-d and f; 30µm in e.

a b
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diastolic dysfunction, whereas in acute heart failure, the
changes occur mainly in the myocytes 50. Clinical and expe-
rimental studies have shown that the ventricular dysfunc-
tion induced by pressure overload relates more to the
duration of the overload and to the nature of the stimulus
than to the extent of the hypertrophic process 8,9,47,51-53.

Maintenance of the hypertensive stimulus for 15
weeks induced myocardial remodeling, which showed
cellular elements of the inflammatory cell infiltrate and
deposits of connective tissue. This latter may have occurred
as a result of the synthesis of the inflammatory cells and/or
from their growth factors. Myocardial lesions with loss of
myocytes, characterized by the presence of foci of myocy-
tolysis and necrotic myofibers, were also observed.

According to previous studies, there is an association
between the responses of the ECM and the cardiomyocytes
when the stimulus to the overload is sustained 54-56. However,
it has not yet been clarified if the changes in the components
of the ECM are merely a response to the necrosis of myocytes
and/or if these changes induce cellular loss 9,20-21,57,58.

In the present study, immunostaining for fibronectin
was observed in early myocardial lesions. This immunos-
taining was noted mainly in areas of myocyte loss, probably
as a result of the diffusion of fibronectin that originated from
platelets or of the diffusion of plasma into necrotic cardiac
myocytes 23. Fibronectin was also present in late lesions,
although the healing tissue does not usually show this
protein 33.

Many functions have been attributed to the increased
content of fibronectin in myocardial infarction, including
the chemotactic action. Fibronectin plays a role as a sus-
taining network for the growth and migration of endothelial
cells and fibroblasts, and it contributes to platelet aggre-
gation. The presence of fibronectin in myocardial lesions is
also related to the angiogenic process that occurs during the
healing of the infarction59. It may also work as a temporary

matrix for deposition and remodeling of other EMC pro-
teins, mainly collagen 33,42,60.

Type III collagen was noted in early lesions or in areas of
incomplete healing, as well as in intermuscular spaces and in
the tunica adventitia of the L-NAME animals. In accordance
with previous studies, the presence of type III collagen in
areas of interstitial fibrosis is important for the maintenance
of the cell-to-cell relation and for the distribution of the
mechanical forces during myocyte contraction 61,62.

The elongated cells noted in areas of myocardial
lesions may be remnants of endothelial cells from infarcted
areas or even MFs contributing to the local synthesis of
ECM proteins 22,23,59,63.

Cardiac response to pressure overload is characte-
rized by the genetic reexpression of a series of fetal proteins
of the ECM 27,31. Previous studies have shown that the
components of the ECM may modulate the phenotypic
features of the fibroblasts, increasing or decreasing the
expression by these cells of α-SMA, the typical actin
isoform of smooth muscle cells 24-25,34. The presence of MFs
during the deposition of connective tissue suggests the
regulatory function of these cells in the remodeling of the
ECM, mainly through the production of fibronectin and
type III collagen 22.

The experimental model of NOS inhibition 47 shows
myocyte hypertrophy, a factor that could account for the
expression of α-SMA in MFs. As described in previous
studies, in addition to growth factors (mainly transforming
growth factor β), the mechanical deformation is a significant
factor that accounts for the expression of α-SMA in fibro-
blasts 26,64. Willems et al 26 believe that the abundance of
myofibroblasts in myocardial lesions is related to the
maintenance of myocardial compliance, preventing the
rupture of the affected area during the rhythmic contractile
cycles of the heart.
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