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Influence of the Elevation of the Left Ventricular Diastolic
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Ventricular Pressure (dP/dt)
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Purpose — To assess the effects of the elevation of the
left ventricular end-diastolic pressure (LVEDP) on the
value of the 1* temporal derivative of the ventricular
pressure (dP/dt).

Methods— Nineteen anesthetized dogs were studied.
The dogs were mechanically ventilated and underwent
thoracotomy with parasympathetic nervous system block.
The LVEDP was controlled with the use of a perfusion
circuit connected to the left atrium and adjusted to the
height of a reservoir. The elevation of the LVEDP was
achieved by a sudden increase in the height of a reservoir
filled with blood. Continuous recordings of the electro-
cardiogram, the aortic and ventricular pressures and the
dP/dt were performed.

Results — Elevation of the LVEDP did not result in
any variation of the heart rate (167+16.0bpm, before the
procedure; 167+15.5bpm, after the procedure). All the
othervariables assessed, including systolic blood pressure
(128+18.3mmHg and 150+21.5mmHg), diastolic blood
pressure (98+16.9mmHg and 115+19.8mmHg), LVEDP
(5.5+2.49 and 9.3+3.60mmHg), and dP/dt (4,855 £ 1,082
mmHg/s and 5,149+1,242mmHg/s) showed significant
increases following the expansion of the ventricular
cavity. Although the elevation of the dP/dt was statis-
tically significant, 6 dogs curiously showed a decrease in
the values of dP/dt.

Conclusion —Sudden elevation of the LVEDP resul-
ted in increased values of dP/dt; however, in some dogs,
this response was not uniform.
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Therateof changein pressurewith time (dP/dt), usua-
[ly known as the 1% temporal derivative of ventricular
pressure, isoneof the parametersempl oyed for the assess-
ment of theleft ventricular function.

Inthe60’ sand 70’ s, the maximal valuesof dP/dt (dP/
dtmax) were largely employed to assess the inotropic
capacity of theheart **. Fromthe studies conducted at that
time, it wassuggested that dP/dt did not reliably reflect the
inotropic state. The concept that finally prevailed wasthat
dP/dtmax had limited practical applicationsasanindicator
of theinotropic capacity . Themajor limitation 8’ wasthe
lack of specificity of thisparameter, since other factors, in
addition to myocardial inotropic capacity, interfered with
themaximal valueof dP/dt. Thefactorscapableof interfering
withtheva uesof thedP/dtmax include: theafterload "8, the
preload °*° and the presence of myocardia hypertrophy 2™,

Thecorrectinterpretation of therel ationship between
the degree of myocardial stretching (preload) and dP/dtis
particularly complex. According to the most traditional
version of the conceptsrelated to ventricular function, the
inotropic capacity of the heart and the variation of the
performanceof the heart asaresult of changeinthemuscu-
lar length during rest (Frank-Starling mechanism) were
consideredindependent myocardial characteristics. Yet, the
influence of the Frank-Starling mechanism on dP/dtmax
would not berelated to changesintheinotropic capacity of
theheart. For thisreason, variationsintheventricular volu-
me occurring during the evaluation of dP/dt max would
preclude an exact definition of theinotropic state.

Advancesintheknowledgeof the physiological basis
of myocardial contraction make this traditional view
guestionabl e, currently allowing aternative explanations.
More recent information 217 about the subcel lular adjust-
mentsinvolved in therel ationship between theventricular
stretching during rest and the mechani cal performance of
theventriclesindicatethat myocardial stretchinginterferes
with the degree of activation of the contractile phenome-
non, i.e., withmyocardial contractility. Theidentification of
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afunctional interaction between the Frank-Starling mecha-
nism and myocardial contractility requires adequate
conceptsrelated to the vaidity of dP/dtmax when evalua-
ting the inotropic capacity of the heart in the presence of
changesinthepreload.

A number of authorshave described adirect relation-
ship between theincrease of theventricular volumeandthe
values of dP/dt 1*#2, Others32-22, however, report lack of
association between both parameters. It should be under-
scored that these studies were conducted according to
protocolsthat established a period of time for the stabili-
zation of the preparation after el evation of the prel oad, thus
allowing circulatory accommodation. Consequently, the
direct relationship between theventricular volumeand dP/
dt wasinfluenced by the circulatory adjustment.

In astudy conducted in our laboratory, using prepa-
rations of isolated canine hearts, we noted that the sudden
ventricular dilation wasinvariablyfollowed by anincrease
inthevaluesof dP/dt . In thisexperiment, the behavior of
dP/dt wasonly indicative of theresponse of theheart to the
expansion of theventricular cavity. No similar protocol was
conductedin canineheartsin situ.

Thus, the objective of thisstudy wasto assessthe be-
havior of thevalues of dP/dtmax after asuddenincreasein
the diastolic pressure of the left ventricle (LV) and to
discuss these findings in light of the current concept
relating myocardial stretchingand myocardia contractility.

Methods

Nineteen dogs, weighing 19.6+4.4kg (x+sd), were
studied. The dogs were anesthetized with meperidine
(2.0mg/kg) intramuscul arly combined with anintravenous
mixtureof chloralose(60mg/kg) and urethane (600mg/kg).
After being anesthetized, the dogswereplacedin thehori-
zontal supine position, intubated and mechanically ven-
tilated. Cetheterization of thefemord veinwasperformedfor
drug administration and fluid replacement. Subsequently, a
median thoracotomy with pericardiotomy wasperformed. A
catheter (length: 4cm; internal diameter: 1.4mm) wasinserted
intotheleft ventricular cavity through puncture of theapex,
and the extremity of another catheter, which wasinserted
through the femoral artery, was placed in the ascending
aorta. The distal tips of these catheterswere connected to
Statham P23-ID transducers, which were coupled to
amplifiers(1205model, with VR-12 polygraph, Electronics
for Medicine). In order to control the ventricular filling
pressure, aperfusion circuit connected to the left auricle
andtotheexternal jugular veinswasdesigned. Thecircuit
(fig. 1) contained tubes, areservoir with alevel limiting
system, astick to sustain thereservoir, allowing itsmove-
ment inthevertical direction, and aperfusion pump.

Thepressuresof theLV andtheaorta, thedP/dt and a
bipolar lead of the electrocardiogram were continuously
monitored. After the surgical procedures and adminis-
tration of atropine (0.5mg/kg V), the preparation was
alowedtorest for 30mintoreach stabilization. Thereservoir
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Fig. 1 — Schematic representation of the perfusion circuit used in the experiment.
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wasfilled with blood and itsheight was adjusted so that the
blood level initsinterior corresponded to the | eft atrial
pressure. During 10s of sustained expiratory apnea, the
reservoir wassuddenly elevated to promotearapidincrease
inatrial pressure. These maneuversenabled therecording
of theventricular and aortic pressures, aswell asof dP/dt, in
acontrol scenario and during the elevation of the ventri-
cular filling pressure.

In order to assessthe significance of thevariationsin
thevalues of dP/dtmax, the Student t test for paired values
was employed; when the differences whose probabilities
depended on chancewere <5% (p<0.05), they were consi-
dered statistically significant. To characterizethe magnitu-
deof theincrease of theleft ventricul ar end-diastolic pres-
sure (LVEDP), of the systolic blood pressure (SBP) and of
thediastolic blood pressure (DBP), 95% confidenceinter-
valswere constructed.

Results

The mean values and the standard deviations of the
variables assessed in the control scenario and during the
elevationof theLV dfiastolic pressureareexhibitedin Table
I. The heart rate did not show significant variation (167 +
16.0bpmand 167+15.5bpm). Inall dogs, increased valuesof
SBP, DBPand LVEDPwereobserved. The SBPincreased
from 128+18.3mmHg to 150+21.5mmHg, and the 95%
confidenceinterval for thevariationwas17.7-26.5mmHg.
TheDBPincreased from 98+16.9mmHgt0 115+19.8mmHg,
and the 95% confidenceinterval for thevariationwas 12.9-
22.2mmHg. TheL VEDPincreased from 5.5+2.49mmHgto
9.3£3.60mmHg, with a 95% confidence interval of 2.94-
4.64mmHgfor thevariation. InregardtodP/dtmax, therewas
anincreasefrom4,855+1,082mmHg/sto5,149+1,242mmHg/
sanditwasstatistically significant (p=0.0169). Theanalysis
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Table I - Hemodynamic data in the control scenario and during
elevation of the left ventricular diastolic pressure

Control Elevation
HR (bpm) 167+16.0 167+15.5"
SBP(mmHg) 128+18.3 150+21.5%
DBP (mmHg) 98+16.9 115+19.8%
LVEDP (mmHg) 5.5+2.49 9.3+3.60*
AP/t (MMHY/S) 4,855+1,082 5,149+1,242*

HR- heart rate; SBP- systolic blood pressure; DBP- diastolic blood
pressure; LVEDP — left ventricular end-diastolic pressure; dP/dt .-
maximal value of the 1% temporal derivative of the ventricular pressure;
# p<0,05; ns- p>0,05; *- the elevation occurred in all dogs.

of theindividual dataof thisvariable (fig. 2) enabled usto
verify that, unexpectedly, and on a significant number of
occasions (6 dogs), the values of the dP/dtmax decreased
following theelevation of theventricul ar filling pressure.

Discussion

Theincreased values of dP/dt noted in this study are
in accordance with previously reported data, when we
induced similar ventricular stretching in isolated canine
hearts perfused with the blood of another dog **. The
decreased values of dP/dt observed in the present study
were completely unexpected, considering the previous
experiment. In the preparation of isolated heart, the
ventricular expansion wasfollowed by anincreasein the
valuesof dP/dtinall the experiments®.
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Fig. 2—Individual values of the 1% temporal derivative of the ventricular pressure
(dP/dt) before and after the elevation of theleft ventricular end-diastolic pressure.
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I'n this study, the fact that the values of dP/dtmax
might have been influenced by theincrease of blood pres-
sure(BP), changesintheviscoel asticity of themyocardium
and the Frank-Starling mechanism must be taken into
account.

The increase of the aortic pressure could affect the
values of dP/dt, inducing variationsin the afterload®%, in
theperfusion pressureandinthe coronary flow?+%". A series
of publications®"#2 report that themaximal valuesof dP/dt
aredirectly proportional to the levels of BP; others®2.2,
however, suggest that the aortic pressure has no influence
on the dP/dt. The great variability of the models and the
investigational protocolsemployed in these studies may be
considered the determining factor of the controversial
results. The authors who assessed the relationship be-
tween these 2 variablesconsidered that, during oscillations
of BP, the values of dP/dt may be modified as aresult of
variationsin the afterload or in the coronary perfusion.
Studies conducted in our laboratory 2%, whose methods
were similar to those used in the present study, showed
that, inthe experimental conditionsthat we used, the sud-
denincreaseintheaortic pressuredid not affect thevalues
of dP/dtmax.

Another phenomenon that must be considered asa
factor that might affect theventricular functionwhen BPis
abruptly increasedisthe Anrep effect. The current concept
about the Anrep effect isthat, after asuddenincreasein BR,
atransient decrease of theinotropic capacity of theheartis
observed, dueto subendocardial ischemia. Asaresult of an
autoregulatory vasodilation 153233, the perfusion of the
heart is promptly restored, allowing the recovery of the
inotropic capacity of themyocardium. Aswe performed the
assessmentsof dP/dtmax afew secondsafter the heart load
(prel oad and afterl oad) underwent variation, thereisapos-
sibility that the Anrep effect might be responsible for the
decrease inthevauesof dP/dtmax observed in some dogs
inour study; that is, the evaluation of the dP/dt may have
occurred during aperiod whenatransient myocardial ische-
miawastaking place. Inaddition, some authors®+ noted a
worsening of themyocardial perfusion asaresult of theele-
vation of thediastolic pressureintheleft ventricular cavity.
Thiswas also aconsequence of the collapse of the suben-
docardial coronary vessels. Theabnormal myocardial per-
fusion islikely to be the mechanism accounting for the
decreaseinthevaluesof dP/dt noted in some experiments.

Considering the characteristics of our protocol,
another aspect to be considered istheviscoel asticity of the
myocardium 237*°_ The viscoel astic component of the
cardiac muscle confersresistance against the acute altera-
tionsinthemuscular length 37284, Thisresi stancedepends
ontherateof stretchingand ontheinitial musclelength“*42,
Thus, LeWinter et a ¥ noted that, to obtain thesamevalue
of LVEDP, thegreatest dilation of theLV wasseenwhenthe
maneuver of increasing the diastolic pressure was done
dowly. Inour study, itisnot possibleto determine precisely
theinfluenceof viscoe asticity inour results. However, if we
consider that thesefactorswouldlikely haveinfluenced our
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results, thiswould be towards limiting the magnitude of
ventricular dilation, probably decreasing the effects of the
Frank-Starling mechanism.

The main effect of the volume infusion maneuver
performed in our study was the improvement of the ven-
tricular performanceasaresult of theFrank-Starling mecha-
nism. Improvement of theventricular performanceiscurrently
considered aresult of the contributing physical factorsand
of factorsthat alter theintensity withwhichthecontractionis
activated 1215174344 The physical factors arerelated to the
spatial disposition of themyofilaments, that is, myocardial
stretching providesanincreased spatial interactionbetween
the myofilaments, increasing the number of active links
between myosin and actin, and eventually improving the
ventricular performance. Thefactorsthat activatecontraction
arerelated to myocardial contractility. It has been demons-
trated that myocardial stretching increasesthe transarco-
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lemmal inflow of calcium -, intensifiestherd easeof cacium
by the sarcoplasmic reticulum 3474 and increases the
affinity of troponin Cfor calcium“%2 Itisbelieved that the
mainfactor that contributesto theimprovement of theventri-
cular performance asaresult of stretching istheimproved
myocardial contractility 34953, Thus, our findingsof increa:
sed values of dP/dtmax asaresult of thee evation of theleft
ventricular diastolic pressurearelikely to beaspontaneous
result of theintensification of the processby which contrac-
tionisactivated. If thisstatement iscorrect, thecurrent focus
ontherel ationship between prel oad and dP/dt, which cons -
dersthemodifi cationsdueto stretching inadequate signs of
deviations of the contractile state, will no longer prevail.
Rather, the oscillations of dP/dt occurringin these circums-
tances may indicate the degree to which the contraction is
activated secondary to the mobilization of factors that
interveneinthekineticsof cacium.
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