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Abstract

Background: Multivariate prognostic analysis has been traditionally performed by regression models. However, many 
algorithms capable of translating an infinity of patterns into probabilities have emerged. The comparative accuracy of 
artificial intelligence and traditional statistical models has not been established in the medical field.

Objective: To test the artificial intelligence as an accurate algorithm for predicting coronary disease in the scenario of 
acute chest pain and evaluate whether its performance is superior to traditional statistical model.

Methods: A consecutive sample of 962 patients admitted with chest pain was analyzed. Two probabilistic models 
of coronary disease were built using the first two-thirds of patients: a machine learning algorithm and a traditional 
logistic model. The performance of these two predictive strategies were evaluated in the remaining third of patients. 
The final logistic regression model had significant variables only, at the 5% significance level.

Results: The training sample had an average age of 59 ± 15 years, 58% males, and a 52% prevalence of coronary 
disease. The logistic model was composed of nine independent predictors. The machine learning algorithm was 
composed of all candidates for predictors. In the test sample, the area under the ROC curve for prediction of coronary 
disease was 0.81 (95% CI = 0.77 - 0.86) for the machine learning algorithm, similar to that obtained in logistic model 
(0.82; 95% CI = 0.77 - 0.87), p = 0.68.

Conclusion: The present study suggests that an accurate machine learning prediction tool did not prove to be superior 
to the statistical model of logistic regression.

Keywords: Validation Studies; Artificial Intelligence; Coronary Artery Disease/diagnostic; Data Interpretacion, Statistical.

Introduction
In the last decades, computers’ ability to generate and 

store data has improved substantially, leading to highly 
complex and large datasets. Traditional statistical modeling 
has the advantage of simplicity, as it fits the relationship 
between predictors and outcomes into a regression formula. 
However, these models have many assumptions that are 
difficult to be satisfied in complex sets of information: limited 
number of variables, adequate distribution, independence 
of observations, no multicollinearity, and concerns with 
interactions. In contrast, the prediction mechanism of artificial 
intelligence is algorithm-based, with no assumptions or limit 
of variables. Therefore, different from statistical modelling, 

prediction algorithms do not become less accurate as data get 
complex. In these scenarios of “big data”, artificial intelligence 
becomes more accurate than traditional statistics.1,2 

Medical data can suffer from bias if not collected under 
a pre-established protocol. For this reason, the traditional 
epidemiological approach of small sets of data, prospectively 
collected, is the most appropriate choice in medical research.3 
Therefore, it is important to explore whether artificial 
intelligence remains superior to statistical modelling if exposed 
to samples of moderate size and limited number of variables, 
as in most epidemiological studies. 

Prediction of coronary artery disease (CAD) in patients 
with acute chest pain is a major challenge for the emergency 
physician who has to decide whether to discharge the patient, 
proceed with further non-invasive tests or go directly to 
invasive angiography. Discharging a patient with unstable 
coronary disease may be devastating, but admitting anybody 
with chest pain could have unintentional consequences.4 
In this process, the probability of obstructive CAD should 
drive medical decision-making.5

In the present study, we utilized data from a prospective 
registry of chest pain5 to build a machine learning model to 
predict obstructive coronary disease. We aimed to evaluate 
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whether an artificial intelligence algorithm  is a better 
predictor than logistic regression in a traditional set of simple 
epidemiological data, considering both discrimination and 
calibration properties.

Methods

Sample selection
From September 2011 to November 2017, all patients 

admitted with chest pain and clinical suspicion of CAD 
(regardless of electrocardiogram or troponin results) to the 
coronary care unit of our hospital were included in the study. 
Exclusion criterion was patient’s refusal to participate. As defined 
a priori, a total of 962 patients were divided into the derivation 
sample (first two-thirds, n=641) and validation sample (last third, 
n= 321). The study was approved by an institutional review 
committee and that the subjects gave informed consent.

Predictors of obstructive CAD
At admission (baseline), three sets of variables were recorded 

as candidates for prediction of obstructive CAD. First, 13 
variables related to medical history and clinical presentation; 
second, 14 characteristics of chest discomfort; third, 11 
variables related to abnormalities in imaging or laboratory 
tests at admission: ischemic changes on electrocardiogram (T 
wave inversion ≥ 1 mm or dynamic ST deviation ≥  0.5 mm), 
positive troponin (> 99th percentile for the general population; 
Ortho-Clinical Diagnostics, Rochester, NY, USA), N-terminal 
pro-B-type natriuretic peptide (NT-proBNP, enzyme-linked 
fluorescent assay, Biomérieux, France), high-sensitivity 
C-reactive protein (CRP, nephelometry, Dade-Behring, 
USA), D-Dimer (immunoenzymatic essay, Biomérieux, 
France), low-density lipoprotein (LDL)-cholesterol (Friedwald 
equation), creatinine, white cell count, platelets, plasma 
glucose, and hemoglobin. Laboratory tests were performed 
in plasma material collected at presentation to the emergency 
department. Medical history and chest pain characteristics 
were recorded by three investigators (M.C., A.M.C., R.B.), 
trained to interview participants in a standardized manner to 
minimize bias and improve reproducibility. Radiologic signs of 
ventricular failure and the electrocardiogram were interpreted 
by the same investigator (L.C.).

Outcomes
The primary outcome to be predicted by the model was 

diagnosis of obstructive CAD, defined by subsequent tests 
performed during hospital stay. Outcome data was collected 
by three investigators (M.C., A.M.C., R.B.) and confirmed by 
a fourth investigator (L.C.). For diagnostic evaluation, patients 
underwent invasive coronary angiography or a provocation test 
(perfusion magnetic resonance imaging, single-photon emission 
computed tomography or dobutamine stress echocardiogram), 
at the discretion of the assistant cardiologist. In case of a positive 
non-invasive test, patients had angiography for confirmation. 
Based on this diagnostic algorithm, obstructive CAD was defined 
as a stenosis ≥ 70% by angiography. A normal non-invasive test 

indicated absence of obstructive CAD and no further test was 
required. Regardless of coronary tests, patients were classified 
as “no obstructive CAD” if one of the following conditions was 
diagnosed by imaging test – pericarditis, pulmonary embolism, 
aortic dissection, or pneumonia. 

Statistical analysis
Shapiro-Wilk test was used to assess whether the data was 

normally distributed. For descriptive analysis, we used mean 
and standard deviation for continuous variables with normal 
distribution, and median and interquartile range for continuous 
variables without normal distribution. Category variables 
were described as frequencies. In the derivation sample, 
we first used unpaired Student’s t test for normally distributed 
continuous variables and Pearson’s chi-square test for univariate 
analysis of categorical variables. Numeric variables without 
normal distribution were analyzed by the non-parametric 
Mann-Whitney test. Then, variables with a p-value < 0.20 in 
the univariate analysis were included in the multivariate logistic 
regression analysis for prediction of obstructive CAD. 

Multivariate models were developed by the stepwise 
method; all variables were fitted into a logistic regression 
model by using the forced entry and, at each step, the least 
significant stepwise term was removed from the model, using 
the Wald test. Initially, three intermediate models were built, 
according to the type of predictive variables (medical history, 
chest pain characteristics or physical exam/laboratory tests). 
Independent predictors (p < 0.10) in each intermediate model 
were included as covariates in the final model, constructed by 
including significant variables only, at the 5% significance level.

The machine learning algorithm recognizes patterns of 
clinical characteristics associated with outcome probabilities. 
Fisher discriminant analysis was used to generate dendrograms, 
which were combined repeatedly until the error ratio indicated 
optimal performance. The derivation sample was used for 
building the machine learning algorithm. Different from 
logistic regression, there was no preselection of variables and 
all 55 parameters were included with no further elimination. 
The influence of each variable on the probability calculation 
was defined by the purity of nodes and the percentage increase 
of associated error.  As the result of the graphical analysis, we 
made 8,000 combination interactions. 

The two models were compared in the validation sample. 
Area under the receiver operating characteristic (ROC) 
curves were used to test discrimination and compared 
between the models by DeLong's test. Calibration was 
evaluated by the Hosmer-Lemeshow test (applied to the 
probabilities generated by the models), and by calculating 
the calibration slope and intercept of the linear plot of mean 
predicted probability against observed incidence of events 
per deciles of prediction (a perfectly calibrated model has 
an intercept of 0 and slope of 1). Before performing linear 
regression, the following assumptions had to be verified: 
linear relationship, independence of observations, normality 
of residuals, homoscedasticity of residuals. 

Statistical significance was defined as p < 0.05. The SPSS 
software was used for data analysis. 
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Determination of sample size 
Machine learning does not have sample size assumptions. 

For logistic regression, the derivation set was planned to allow 
inclusion of at least 15 covariates in logistic regression model. 
Calculation was based on the following assumptions: 50% 
prevalence of obstructive CAD and the need for 10 events 
for each covariate in the logistic regression model.6,7 
Therefore, a minimum of 300 patients would be required 
in the derivation sample. The validation sample was set to 
test the discriminatory accuracy by the ROC curve analysis. 
Based on the assumption of an AUC of 0.70, to provide 90% 
power to reject the null hypothesis of AUC equal 0.50, with 
an alpha of 5%, a minimum of 85 patients was required. 
Therefore, a minimum of 100 patients would be required 
in the validation group. These assumptions were satisfied. 
The analysis of this sample was performed and completed 
in January 2018 to avoid multiple testing.

Results

Characteristics of the derivation sample
Six hundred forty-one patients were studied, aged 

59 ± 15 years, 58% males, 30% with previous history of 
coronary disease. Median time elapsed between the onset 
of symptoms and first clinical evaluation in the hospital was 
4.2 hours (interquartile range 1.9 - 14 hours). By using the 
study protocol, we identified 330 patients with obstructive 
CAD, a prevalence of 52%. All these cases had the diagnosis 
confirmed by invasive coronary angiography. Regarding the 
311 patients without CAD, 93 were classified by a negative 
angiography, 169 by a negative noninvasive test and 52 had 
other dominant diagnosis (14 pulmonary embolism, five aortic 
dissection, 28 pericarditis, two pneumonia).

Characteristics of the validation sample
Three hundred twenty-one patients were studied, with 

some characteristics similar to the derivation group, age of 
59 ± 16 years, 58% males, 22% with previous history of 
coronary disease. Time elapsed between onset of symptoms 
and first clinical evaluation in the hospital had a median of 
7.0 hours (interquartile range = 2.4 - 23 hours). Using the 
study protocol, we identified 163 patients with obstructive 
CAD, a prevalence of 51%. All these cases had the diagnosis 
confirmed by invasive coronary angiography. Regarding the 
158 patients without CAD, 88 were classified by a negative 
angiography, 13 by a negative non-invasive test and 57 had 
another dominant diagnosis (25 pulmonary embolism, two 
aortic dissection, 25 pericarditis, five pneumonia).

Development of the logistic model
Among the 13 variables related to medical history and 

clinical presentation, seven were positively associated with 
obstructive CAD at a significance level < 10%: age, male 
gender, acute left ventricular dysfunction, previous history of 
CAD, diabetes, smoking, and symptoms triggered by exercise 
– Table 1. When these seven variables were included in the 
logistic regression, previous history of CAD lost significance and 

all others remained significant at a level < 5% - (Intermediate 
Model 1, Table 2).

Regarding chest pain characteristics, among 14 variables, 
six had positive association with CAD: oppressive nature, 
irradiation to left arm, severe intensity, duration in minutes, 
relief with nitrates, similarity to previous infarction; and 
three had negative association with CAD: worsening with 
compression, arm movement and deep breath (Table 1). 
When these nine variables were added to the logistic 
regression, only three remained significant at a level < 5 – 
worsening with compression, deep breath and severe 
intensity (intermediate model 2, Table 2).

Among 11 laboratory tests, seven were positively associated 
with CAD: ischemic electrocardiogram, positive troponin, 
creatinine, glycaemia, NT-pro-BNP, CRP, white cell count 
(Table 1). When these seven variables were included in 
the logistic regression, only ischemic electrocardiogram 
and positive troponin remained significant at a level < 5% 
(intermediate model 3, Table 2).

The 11 significant variables in the intermediate model 
were included in the final logistic regression analysis, 
generating a final model with nine significant variables to 
predict the presence of CAD: age, male gender, ischemic 
electrocardiogram, positive troponin, left ventricular 
dysfunction, exercise induction, smoking, diabetes, and 
worsening with deep breath as the only “protective variable”. 
Regression coefficients and odds ratios are depicted in Table 3.

Development of the machine learning model
All 55 variables related to medical history, clinical 

presentation, chest pain characteristics and laboratory tests 
were included in the machine learning model. Performance 
of each variable in the model is depicted in Table 4 by 
the parameters of node purity and percentage increase in 
associated error. 

Machine Learning versus Logistic Regression 
(validation sample)

Regarding discrimination, the area under the ROC 
curve of the machine learning probabilities was 0.81 (95%  
CI = 0.77 – 0.86), very similar to the area under the curve 
of logistic regression model 0.82 (95% CI = 0.78 – 0.87),  
p = 0.68 (Figure 1).

Regarding calibration, both models were validated by the 
Hosmer-Lemeshow test, but the logistic model showed lower 
level of significance of the difference between predicted and 
observed values (chi-square = 6.2; p = 0.62), as compared 
with the machine learning (chi-square = 12.9; p = 0.11), 
suggesting a better calibration of the first model. 

Accordingly, linear regression between mean predictive 
probability and observed incidence of events per deciles of 
prediction showed an intercept of 0.010 (95% CI = -0.083 
– 0.103) and slope of 1.004 (95% CI = 0.840 – 0.168) 
for logistic regression (r = 0.981). For machine learning, 
an intercept = -0.119 (95% CI = -0.296 – 0.059) and  
slope = 1.228 (95% CI = 0.909 – 1.547; r = 0.953) were 
found (Figure 2).  
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Figure 1 – Scatter plot for linear regression analyses between mean predictive values per deciles and observed incidences. Panel A indicates calibration 
of machine learning model (intercept = -0.119, slope = 1.228, r = 0.953). Panel B shows calibration of logistic regression model (intercept = 0.010,  
slope = 1.004, r = 0.981).
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Machine Learning: Mean Predicted Probability by Deciles Logistic Regression: Mean Predicted Probability by Deciles

Figure 2 – Area under the ROC curves of probabilities by the machine learning model and logistic regression model, respectively 0.81 (95% CI = 0.77 – 
0.86) and 0.82 (95% CI = 0.78 – 0.87).
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Table 1 – Comparison of medical history, chest pain characteristics and laboratory tests between patients with and without obstructive 
coronary artery disease in the derivation sample  

Obstructive CAD
p-value

Yes (N = 330) No (N = 311)

Medical History

Age (years) 63 ± 13 56 ± 16 < 0.001

Male gender 226 (69%) 148 (48%) < 0.001

Body Mass Index (Kg/m2) 28 ± 4.8 28 ± 5.9 0.86

Systolic Blood Pressure (mmHg) 154 ± 32 152 ± 30 0.55

Heart rate (bpm) 78.7 ± 19 79.4 ± 19 0.63

X-ray and clinical signs of LVF 41 (13%) 6 (2.0%) < 0.001

History of CAD 113 (34%) 77 (25%) 0.01

Diabetes 122 (37%) 74 (24%) < 0.001

Systemic hypertension 236 (72%) 210 (68%) 0.27

Current smoking 44 (13%) 26 (8.4%) 0.04

Family history of CAD 87 (26%) 79 (25%) 0.78

Exercise induction 50 (15%) 22 (7.1%) 0.001

Emotional induction 8 (2.4%) 15 (4.8%) 0.10

Chest pain characteristics

Anterior left side location 268 (81%) 261 (84%) 0.37

Oppressive nature 189 (57%) 157 (51%) 0.09

Irradiation to neck 82 (25%) 74 (24%) 0.76

Irradiation to left arm 120 (36%) 93 (30%) 0.08

Vagal symptoms 146 (44%) 132 (42%) 0.65

Severe intensity 185 (56%) 150 (48%) 0.05

Number of episodes 1 (1 – 2) 1 (1 – 3) 0.14

Duration (minutes) 75 (20 – 129) 60 (11 – 214) 0.07

Intensity (1 – 10 scale) 7.7 ± 2.4 7.3 ± 2.4 0.03

Relief with nitrate 134 (41%) 98 (32%) 0.02

Similar to previous infarction 105 (32%) 76 (24%) 0.04

Worsening with compression 19 (5.8%) 43 (14%) 0.001

Worsening with position change 53 (16%) 60 (19%) 0.28

Worsening with arm movement 19 (5.8%) 31 (10%) 0.05

Worsening with deep breath 34 (10%) 68 (22%) < 0.001

Laboratory tests at admission

Ischemic changes on ECG 219 (66%) 119 (38%) < 0.001

Positive troponin 215 (65%) 102 (33%) < 0.001

NT-proBNP (pg/ml) 432 (155 – 1212) 73 (24 – 301) < 0.001

Plasma creatinine (mg/dl) 0.90 (0.80 – 1.20) 0.80 (0.70 – 1.1) < 0.001

LDL-cholesterol (mg/dl) 104 ± 53 108 ± 74 0.46

Plasma glucose (mg/dl) 130 (99 – 160) 107 (90 – 145) 0.009

C-reactive protein (mg/L) 7.4 (2.4 – 15) 6.3 (1.6 – 15) 0.003

White cell count 7.600 (6.050 – 10.100) 7.200 (5.700 – 9.550) 0.04

Platelets 232 (192 – 290) 232 (197 – 274) 0.83

D-Dimer (ng/ml) 474 (279 – 981) 424 (278 – 913) 0.43

Hemoglobin (g/dl) 14.1 ± 1.9 13.7 ± 1.7 0.11

CAD: coronary artery disease; Family history of CAD implies a first-degree female relative with disease before 55 years of age or first-degree male relative 
before 45 years of age; LVF: left ventricular failure; NT-pro-BNP: N-terminal pro b-type natriuretic peptide; ECG: electrocardiogram; LDL: low-density lipoprotein.
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Table 2 – Intermediate logistic regression models of medical history (Model 1), chest pain characteristics (Model 2) and laboratory 
tests (Model 3)

Variables Multivariate significance level

Model 1 (medical history)

Age (years) < 0.001

Male gender < 0.001

X-ray or clinical signs of LVF < 0.001

Exercise trigger 0.005

Diabetes 0.009

Smoking 0.02

Previous CAD 0.32

Model 2 (pain characteristics)

Worsening with deep breath 0.001

Worsening with compression 0.01

Severe intensity 0.01

Oppressive nature 0.06

Similar to previous infarction 0.08

Irradiation to left arm 0.16

Relief with nitrate 0.25

Duration (minutes) 0.32

Worsening with arm movement 0.67

Model 3 (laboratory tests)

Ischemic changes on ECG < 0.001

Positive troponin < 0.001

NT-proBNP (pg/ml) 0.89

Plasma creatinine (mg/dl) 0.17

Plasma glucose (mg/dl) 0.12

C-reactive protein (mg/L) 0.58

White cell count 0.80

CAD: coronary artery disease; LVF: left ventricular failure; NT-pro-BNP: N-terminal pro b-type natriuretic peptide; ECG: electrocardiogram; LDL: low-density lipoprotein.

Table 3 – Final model of logistic regression defining the independent predictors of obstructive coronary artery disease

Variables βeta Odds Ratio (95% IC) p Value

Age (each year) 0.032 1.03 (1.02 – 1.05) < 0.001

Male gender 1.04 2.8 (1.9 – 4.2) < 0.001

Ischemic changes on ECG 1.05 3.0 (1.96 – 4.2) < 0.001

Positive troponin 1.03 2.8 (1.9 – 4.1) < 0.001

Signs of LVF 1.49 4.4 (1.7 – 12) 0.002

Exercise induction 0.93 2.5 (1.4 – 4.7) 0.003

Smoking 0.63 1.9 (1.5 – 3.4) 0.03

Diabetes 0.53 1.7 (1.1 – 2.6) 0.01

Worsening with deep breath - 0.93 0.39 (0.23 – 0.68) 0.001

Constant -3.70 ---- ----

Excluded Variables

Severe Intensity ---- ---- 0.06

Worsening with compression ---- ---- 0.20

Hosmer-Lemeshow test = 4.1; p = 0.85; Area under the ROC curve of the model = 0.81; 95%CI = 0.77 – 0.84; p < 0.001. ECG: electrocardiogram; 
LVF: left ventricular failure.
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Table 4 – Model of machine learning showing the weight of each variable in defining probability, according to the parameters of nodes 
purity and percentage increase of associated error

Parameters
Node purity Error increase (%)

Age (years) 9.966665 0.015613620
Male gender 2.8464500 0.007500700
Weight (kg) 4.1309610 0.001209398
Height (cm) 3.4111841 0.001045826
Systolic blood pressure (mmHg) 4.9687120 0.001186313
Diastolic blood pressure (mmHg) 3.8970542 0.000573540
Heart rate (bpm) 4.8355910 0.001049536
X-ray and clinical signs of LVF 1.5479285 0.002145387
History of CAD 0.774541 0.000883823
History of angioplasty 0.809141 0.000852728
Past surgical revascularization 0.407289 0.000246474
History of stroke 0.502479 0.000155925
Carotid disease 0.352677 0.000111797
Peripheral artery disease 0.237674 0.000046758
Diabetes 0.606332 0.00041533
Systemic hypertension 0.680378 0.00059024
Current smoking 0.515775 0.00027025
Family history of CAD 0.471644 0.00002877
Statin therapy 0.496937 0.00023743
Aspirin therapy 1.004764 0.00120421
Chronic renal failure 0.137357 -0.000055424
Dialysis 0.016785 0.000007401
Menopause 0.683362 0.00094085
Hormone replacement therapy 0.379223 0.00010860
Physical/emotional trigger 1.951236 0.00097193
Anterior left side location 0.42644 0.00011250
Oppressive nature 0.90551 0.00070792
Irradiation to neck 0.41147 -0.00011320
Irradiation to left arm 0.70464 0.00025748
Vagal symptoms 0.493875 0.00003483
Severe intensity 0.624608 0.00016137
Intensity (0 – 10) 0.696121 0.00053586
Number of episodes 1.701348 0.00006361
Duration (minutes) 0.493875 0.00089453
Intensity (1 – 10 scale) 2.604802 0.00053586
Relief with nitrate 4.880035 0.00140420
Similar to previous infarction 0.696121 0.000699946
Worsening with compression 0.905519 0.000707922
Worsening with position change 0.384833 0.000041857
Worsening with arm movement 0.295489 -0.000075263
Worsening with deep breath 1.006767 0.000973174
Ischemic changes on ECG 4.880035 0.009409961
Positive troponin 7.935190 0.002336380
NT-proBNP (pg/ml) 17.39237 0.00367361
Plasma creatinine (mg/dL) 4.497093 0.00040330
Total cholesterol (mg/dL) 4.291174 0.00298651
LDL-cholesterol (mg/dL) 4.246389 0.00159658
HDL-cholesterol (mg/dL) 6.131821 0.00596194
Triglycerides (mg/dL) 5.213428 0.00397991
Plasma glucose (mg/dL) 4.115463 0.00222222
C-reactive protein (mg/L) 3.948830 0.00315613
D-dimer 3.418193 -0.00010837
White cell count 4.7122731 0.00034806
Hemoglobin (g/dL) 6.0717680 0.00230890
Platelets 5.0908595 0.00103027

CAD: coronary artery disease; LVF: left ventricular failure; NT-pro-BNP: N-terminal pro b-type natriuretic peptide; ECG: electrocardiogram; LDL: low-density 
lipoprotein; HDL: high density lipoprotein.
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Discussion
In the present study, we tested the concept of building a 

machine learning tool for prediction of obstructive CAD in a 
small sample of patients with acute chest pain at admission, 
based on epidemiological data, prospectively collected, and a 
limited number of variables. First, we confirmed that artificial 
intelligence can be built from this type of data and be accurate 
in discrimination (yes or no) and calibration (probability 
prediction); second, our validation analysis suggested that 
artificial intelligence is not superior to traditional statistics in 
these circumstances. 

In the fifties, the psychologist Paul Meehl demonstrated that 
statistical prediction is generally superior to clinical prediction 
by human judgement.8 This idea was supported by the work 
of Nobel laureate Daniel Kahneman, who described an 
array of cognitive bias responsible for inaccuracies of human 
heuristics.9 Such concepts supported the emphasis on using 
statistical models as the best evidence-based approach to 
diagnostic and prognostic predictions. More recently, artificial 
intelligence rouses as a more robust technique for building 
prediction tools. 

Typically, artificial intelligence is derived from large 
databases, available from electronic records or web-based 
interfaces.10 It provides precision due to the enormous sample 
size and no assumptions regarding the number of variables, 
distribution, independence of observations, multicollinearity 
and concerns with interactions.1 However, since these large 
data sets are not collected for scientific purpose, they lack 
information quality.3 On the other hand, epidemiological 
prospective studies with planned, standardized, and a 
priori data collection, are the best method for generating 
data sets of ideal quality. In this circumstances, traditional 
statistical modellings usually have assumptions fulfilled 
and good performance. Thus, the question arises: in these 
ideal circumstances for statistical modeling, does artificial 
intelligence remain a superior technique?

In the scenario of acute coronary syndromes and traditional 
data sets, four authors have compared machine learning 
versus statistics. Three of the studies evaluated prognosis in 
acute coronary syndrome and compared machine learning 
with risk scores, showing some superiority in discrimination 
for artificial intelligence.11-13 However, in these studies, the 
variables used to build machine learning models were different 
from those of the TIMI and GRACE scores, which impairs any 
extrapolation for the concept of artificial intelligence versus 
statistics. The only study that built the two types of models from 
the same set of variables (sample size of 628; 38 variables) did 
not show consistent superiority of the several types of machine 
learning over logistic regression neither for discrimination nor 
calibration.14 Also, a systematic review that assessed 71 studies 
comparing machine learning and logistic regression, showed 
no superiority of the former over the latter.15 Therefore, 
based on the set of studies in patients with acute chest pain, 
whether machine learning is superior to traditional statistics 
is an unresolved issue. 

Our study indicates that artificial intelligence can build an 
accurate model from a sample of less than a thousand patients 
and a few dozens of predictive variables. However, in contrast 
with the current hype about artificial intelligence, we did not 
find it superior to the logistic regression model. Our study 
reinforces traditional statistics applied to a data set that meet 
its assumptions. Similar results in favor of traditional modelling 
were observed for prediction of deterioration of hospitalized 
patients16 or readmission of heart failure patients.17

Despite both models fulfilled the calibration criteria, logistic 
regression showed a better calibration than machine learning. 
This suggests that machine learning might need larger data sets 
to calibrate patterns and probabilities.  

On the other hand, our results may be interpreted in favor 
of machine learning. Considering that machine learning has 
the ability of constantly improve its predictive value as it is 
exposed to new data, starting with a reasonable accuracy at 
baseline, it might become a better model in the long run if 
exposed to continuous administrative data. Hypothesis that 
need to be tested, but the present study gives support to invest 
in this possibility.

One should also contextualize artificial intelligence in 
terms of medical decision making: it should not be confused 
with a concept of certainty. Machine learning will not be a 
paradigm shift in decision making, because if has the same 
concept of providing probabilities of an outcome, instead 
of certainty. In this sense, medicine continues to be the 
“science of uncertainty and art of probability”, as William 
Osler defined several decades ago.18 Furthermore, decision 
does not only depend on prediction of outcomes, but also 
on their negative effects. A highly probable outcome of 
no serious consequences might be preferable than a low 
probability outcome of devastating consequences. Thus, after 
assessing probability through a machine learning model, 
physician should exercise judgment. In addition to possible 
damage, judgment should be based on the cost of trying to 
prevent the event and possible unintended consequences. 
Thus, clinical judgement is not to be replaced by statistical 
models or machine learning algorithms. 

We believe our sample meets assumptions for building 
both statistical and artificial intelligence models. Number of 
events was large enough for the number of predictive variables 
entered into the logistic regression and for discrimination 
analysis. However, for calibration analysis, the number of 
events was low in each decile of predictive probability, making 
estimation of observed probabilities imprecise. These are our 
main limitations.

Conclusion
The present study suggests that an accurate machine 

learning prediction tool can be derived from a moderate size 
and relatively simple sample of patients. However, machine 
learning did not prove to be superior to the statistical model 
of logistic regression. 
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