Acessibilidade / Reportar erro

Downregulated miR-181a alleviates H2O2-induced oxidative stress and cellular senescence by targeting PDIA6 in human foreskin fibroblasts Study conducted at the Wuhan Third Hospital, Wuhan, China.

Abstract

Background

Oxidative stress is strongly associated with cellular senescence. Numerous studies have indicated that microRNAs (miRNAs) play a critical part in cellular senescence. MiR-181a was reported to induce cellular senescence, however, the potential mechanism of miR-181a in hydrogen peroxide (H2O2)-induced cellular senescence remains obscure.

Objective

The aim of this study is to investigate the role and regulatory mechanism of miR-181a in H2O2-induced cellular senescence.

Methods

Human foreskin fibroblasts (HFF) transfected with miR-181a inhibitor/miR-NC with or without H2O2 treatment were divided into four groups: control + miR-NC/miR-181a inhibitor, H2O2 + miR-NC/miR-181a inhibitor. CCK-8 assay was utilized to evaluate the viability of HFF. RT-qPCR was used to measure the expression of miR-181a and its target genes. Protein levels of protein disulfide isomerase family A member 6 (PDIA6) and senescence markers were assessed by western blotting. Senescence-associated β-galactosidase (SA-β-gal) staining was applied for detecting SA-β-gal activity. The activities of SOD, GPx, and CAT were detected by corresponding assay kits. The binding relation between PDIA6 and miR-181a was identified by luciferase reporter assay.

Results

MiR-181a inhibition suppressed H2O2-induced oxidative stress and cellular senescence in HFF. PDIA6 was targeted by miR-181a and lowly expressed in H2O2-treated HFF. Knocking down PDIA6 reversed miR-181a inhibition-mediated suppressive impact on H2O2-induced oxidative stress and cellular senescence in HFF.

Study limitations

Signaling pathways that might be mediated by miR-181a/PDIA6 axis were not investigated.

Conclusion

Downregulated miR-181a attenuates H2O2-induced oxidative stress and cellular senescence in HFF by targeting PDIA6.

Keywords
Cellular senescence; Oxidative stress; Protein disulfide-isomerases

Sociedade Brasileira de Dermatologia Av. Rio Branco, 39 18. and., 20090-003 Rio de Janeiro RJ, Tel./Fax: +55 21 2253-6747 - Rio de Janeiro - RJ - Brazil
E-mail: revista@sbd.org.br