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Abstract

Purpose: Spinal Cord injury represents, in veterinary medicine, most of the neurological 
attendances and may result in permanent disability, death or euthanasia. Due to inflammation 
resulting from trauma, it originates the glial scar, which is a cell interaction complex system. Its 
function is to preserve the healthy circuits, however, it creates a physical and molecular barrier 
that prevents cell migration and restricts the neuroregeneration ability.
Methods: This review aims to present innovations in the scene of treatment of spinal cord 
injury, approaching cell therapy, administration of enzyme, anti-inflammatory, and other active 
principles capable of modulating the inflammatory response, resulting in glial scar reduction 
and subsequent functional improvement of animals.
Results: Some innovative therapies as cell therapy, administration of enzymes, 
immunosuppressant or other drugs cause the modulation of inflammatory response proved to 
be a promising tool for the reduction of gliosis
Conclusion: Those tools promise to reduce gliosis and promote locomotor recovery in animals 
with spinal cord injury.
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	 After the injury, fibroblasts migrate 
into the epicenter of the lesion, forming a 
fibrotic scar filled with extracellular fibronectin, 
collagen and laminin16. The proliferation of 
A-type pericytes contributes to the formation 
of the fibrosis, even in contused injuries, when 
meninges are intact and responsible for most 
of the components of the fibrotic scar. The 
glial scar appears in its mature form within two 
weeks after injury17,18.
	 Actived macrophages and microglia 
increase significantly the expression of matrix 
metalloproteinases (MMPs), which contributes 
to vascular permeability and accumulation of 
more inflammatory cells in the lesion, which 
reaches its peak around thirty days after 
injury19-21. Therefore, these activated cells, 
although important for the debridement of 
injured tissue, may also lead to secondary 
damage by inflammatory process22. Studies 
have shown that activated macrophages are 
responsible for the gradual and progressive 
death of axons after injury, trough the activity 
of MMPs and direct physical interaction with 
injured cells19,20. 
	 The glial response is mainly characterized 
by hypertrophy of astrocytes migrate out of the 
inflammatory epicenter, where they increase 
in size and present high gene expression of 
Glial Fibrillary Acidic Protein (GFAP), vimetin 
and nestin23,24. Hyperatrophic astrocytes 
are restructured into a network of tangled 
filamentous process, which acts protecting 
viable neural cells, however, resulting in a 
major physical barrier for axonal regeneration. 
Furthermore, studies suggest that glial scar 
prevents the inflammatory process to spread 
the healthy tissue25,26

■■ Inflammatory response 
modulation as a therapeutic approach

	 Several authors associated gliosis 
modulation with the clinical response of spinal 

■■ Spinal cord injury in veterinary 
medicine

	 Spinal Cord Injury (SCI) may have an 
endogenous or exogenous origin. Regardless of 
the cause, SCI are related to injury, compression, 
transaction, laceration, traction of the neural 
tissue, hemorrhage and hematoma, hypoxia, 
spinal cord laceration or the associated roots 
and others injuries resulting in varying degrees 
of neurological disorders1,2. Furthermore, 
physical interruption of nerve impulses and 
loss of blood flow and auto regulation, other 
biochemical, vascular and inflammatory events 
are involved in the neuronal destruction and 
necrosis3,4. 
	 Endogenous capacity of self-repair 
and regenerate of the spinal cord is limited 
after injury5,6, due to the minor capacity of the 
replacement of damaged nerve cells7, as well 
as the production of growth inhibitory myelin 
associated axon and the formation of glial 
scar8. 
	 The consequences of SCI in veterinary 
medicine, depending on the injured segment 
can lead to permanent disability or euthanasia.

■■ Glial scar

	 Glial scar consists predominantly of 
reactive astrocytes, macrophages, microglia 
and Chondroitin Sulfate Proteoglycans (CSPGs)9, 
that leads to a dense deposit of extracellular 
collagen matrix, acting as protective barrier scar, 
however, inhibits cell and axonal migration10.
	 Damage of the blood-brain barrier, 
leukocytes extravasations and accumulation of 
inflammatory cells in the center of the lesion 
are crucial events in the formation of the 
gliosis. Several molecules derived from blood or 
produced via inflammatory has been identified 
as a trigger for their induction, including 
interleukin-1, Transformation Growth Factor 
beta (TGFβ) and fibrinogen11-15.
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cord injury in animais. In one study, Granulocyte-
Macrophage Colony-Stimulating Factor (GM-
CSF) was administered intraperitoneally, from 
3 to 4 weeks after spinal cord injury in rats. 
There was a decrease in the expression of 
CSPGs and neurocan, intense expression of 
GFAP, preservation of axonal arrangement and 
structure in inflammatory myelin and improved 
gray matter and gliosis reduction27.
	 Yazdani et al.28 compared the 
transplantation of cells from the olfactory 
epithelium and bone marrow-derived 
mesenchymal stem cells, neurally induced in 
rats with spinal cord injury. They concluded that 
the induced cells caused significantly motor 
improvement, reduction of the size of injury 
and axonal regeneration, making this strategy 
promising candidate for future therapies.
	 Another study has shown that 
Hepatocyte Growth Factor (HGF) has curative 
capacity by regulating TGFβ, completely 
blocking the secretion of these factors on 
reactive astrocytes in vitro. The transplantation 
of cells capable of secrete HGF reduced 
neurocan expression and glycosaminoglycan 
deposition in the lesion and promoted axonal 
growth around the gliosis and functional 
improvement of the hindlimbs in rats29.
	 Ahmed et al.30 used decorin – a 
proteoglycan associated with collagen fibers – 
to block the glial scar and cystic cavitation and 
induce fibrotic dissolution of gliosis in rats with 
chronic spinal cord injury. These mechanisms 
have been attributed to the induction capacity 
of MMPs and plasminogen activity, modulation 
of inflammation, removal of growth inhibitors 
and axonal regeneration promotion in the 
lesion.
	 Another study demonstrated the 
efficacy of transplantation dedifferentiated 
adipocytes in promoting locomotor 
improvement, remyelination, glial scar 
reduction and increased expression of 
neurotrophic factors in mice with spinal cord 

injury31. 
	 Studies using curcimun – an active 
component of turmeric, which acts as an anti-
inflammatory – demonstrated the ability of 
the substance to reduces local inflammation, 
suppressing the formation of glial scar by 
inhiniting the process of reactive astrocytes 
cytokines and pro-inflammatory such as TNF- 
TNF-α, IL-1β e NK- κb, in addition to promote 
protection of neurons and axons after spinal 
cord injury in rodents32,33.
	 Rapamycin – an immunosuppressant 
used for the prophylaxis of organ transplant 
rejection – reduces infiltration of neutrophils 
and macrophages in the lesion, microglial 
activation, secretion of TNFβ, the number of 
cells expressing GFAP, inhibited the proliferation 
of astrocytes and promoted neuronal survival 
and axiogenesis around the injury, being a 
good tool in the treatment of spinal cord injury 
in mice34.
	 Naïve Schwann cells and Schawann cells 
transduced to express GDNF which were seeded 
into guidance channels and implanted at the 
spinal cord injury by Do-Thi et al.35, inhibit the 
formation of glial scar by promoting functional 
improvement in rats, when expressed Lv-
shGFAP (lentiviral-mediated RNA-interference 
against GFAP). It was also observed growing 
axons and increased serotonergic innervation, 
suggesting that this type of therapy aids in the 
treatment of spinal cord injury. 
	 Several studies using the enzyme 
chondroitinase ABC36-39 in ratis demonstrated 
their potential in digesting CSPGs – inhibitory 
molecules predominant in glial scar – modifying 
the intra and extracellular architecture, 
reducing the formation of gliosis, regenerating 
axons injured by improving neural connections 
and promoting neuroprotection. 
	 By intrathecal bone marrow cells 
transplantation, Zhu et al.40 demonstrated that 
gliosos is more associated with macrophages 
than microglia in mice. Depletion of these 
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macrophages resulted in a reduction of 
fibroblasts and the formation of basal lamina, 
leading to a scar less fibrotic and more 
conducive to axonal growth.
	 The transplantation of neural progenitor 
cells in the spinal Cord injury showed the ability 

of these cells to inhibit astrocyte activation, 
reduce gliosis and promote improved 
locomotor in treated rats41-43.
	 In the following Table 1, a summary of 
the therapies addressed in this review can be 
observed:

Table 1 - Therapies to promote glial scar-modulation.

Author Therapy Animal Route of 
administration

Zhu et al.40 Bone Marrow cells Mice Intrathecal
Yamada et al.31 Mature adipocyte-derived 

dedifferentiated fat cells Mice

Intramedullary

Yazdani et al.28 Olfactory epithelium and bone marrow-
derived mesenchymal stem cells 

(neurally induced) Rats

Jeong et al.29 HGF overexpressing mesenchymal stem 
cells derived from human bone marrow 

(HGF-MSCs) Rats

Ahmed et al.30 Decorin Rats
Do-Thi et al.35 Schwann cells Rats
Yick36, Xia et al.37, Huang 
et al.38, Ni et al.39

Chondroitinase ABC Rats

Bonner et al.41, Jin et al.42, 
Mitsui et al.43

Neural progenitor cells Rats

Huang et al.27 Granulocyte-Macrophage Colony-
Stimulating Factor (GM-CSF) Rats

Intraperitoneally
Yuan et al.33 Curcimun Rats
Wang et al.32 Curcimun Mice
Goldshmit et al.34 Rapamycin Mice

■■ Conclusion

	 Spinal Cord injuries represent the 
majority of neurological manifestations in 
veterinary medicine. Gliosis is characterizes 
by replacement of functional tissue by fibrous 
after injury, in order to promote protection of 
healthy cells. This process, however, implies 
a physical and molecular barrier that inhibits 
cell and axon migration and thus prevents the 
functional improvement.

	 As a way of reversing or deflecting this 
event, studies have shown that modulation of 
the inflammatory response at the wound site 
results in a reduction in lesions size, neuronal 
survival, protection growth, remyelination and 
increased innervations, leading to a reduction, 
inhibition or reversal of glial scar and promotes 
improved locomotor to treated animals. 
	 We conclude that either by cell 
therapy, administration of enzymes, 
immunosuppressant or other drugs, the 
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modulation of inflammatory response proved 
to be a promising tool for the reduction of 
gliosis, aiding locomotor recovery in animals 
with spinal cord injury.
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