ABSTRACT
Background
Myelodysplastic syndromes (MDS) mainly occur in the elderly but can rarely affect younger individuals too. The correct diagnosis relies on careful morphologic evaluation, cytogenetic/molecular results, and excluding reactive conditions mimicking MDS. We present the clinical, pathologic, cytogenetic, and molecular features of a case of MDS with excess blasts-2 (MDS-EB-2) in a 30-year-old male who was found to have pancytopenia during his hospitalization for coronavirus disease 2019 (COVID-19) and discuss the diagnostic challenges of MDS in patients with COVID-19.
Case presentation
A 30-year-old man presented to an outside hospital with fever, chills, weakness, coughing spells, dizziness and shortness of breath and was diagnosed with bilateral pneumonia due to COVID-19. At the outside hospital, he was found to be pancytopenic, and a subsequent bone marrow aspiration and biopsy raised concern for a COVID-19 induced hemophagocytic lymphohistiocytosis. In addition, MDS could not be ruled out. The patient was thus referred to our institute for further management. The patient’s peripheral blood showed pancytopenia with occasional dysplastic neutrophils and a few teardrop cells. Given the diagnostic uncertainty, a bone marrow aspiration and a biopsy were repeated revealing a hypercellular bone marrow with erythroid hyperplasia, megakaryocytic hyperplasia, trilineage dysplasia, increased blasts (13%), many ring sideroblasts, and mild to moderate myelofibrosis, consistent with MDS-EB-2. Chromosomal analysis revealed isochromosome 14. Next generation sequencing demonstrated SF3B1 K700E mutation.
Discussion and conclusion
The diagnosis of MDS can be challenging, particularly in young patients. Cytopenia and myelodysplastic features have been reported in COVID-19 patients, making the diagnosis of MDS more elusive. A careful pathologic examination of the bone marrow with ancillary studies including flow cytometry, immunohistochemistry, and cytogenetic and molecular studies in combination with a thorough clinical evaluation, leads to the accurate diagnosis.
Keywords
Myelodysplastic Syndromes; COVID-19; Bone Marrow; Cytogenetics; SARS-CoV-2