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ABSTRACT
Objective: To investigate the relationship between fasting blood glucose (FBG) and carotid intima-
media thickness (IMT) in premenopausal and postmenopausal women. Subjects and methods: 
The study enrolled 2,959 women seen at the Maanshan People’s Hospital of Anhui Province from 
December 2013 to December 2018. Carotid IMT was measured using Doppler ultrasound. Linear 
regression and R smoothing curves were used to analyze the relationship between blood glucose 
level and carotid IMT in the premenopausal and postmenopausal groups. Results: Postmenopausal 
compared with premenopausal women had higher mean IMT (mIMT; 0.81 ± 0.23 mm versus 0.70 ± 
0.14 mm, respectively, p < 0.001) and maximum IMT (maxIMT; 0.86 ± 0.35 mm versus 0.74 ± 0.16 mm, 
respectively, p < 0.001) values. On linear regression analysis, mIMT values increased with increasing 
FBG values when FBG level was ≤ 7 mmol/L, but no significance was found between FBG and maxIMT. 
After stratification by menopausal status, mIMT and maxIMT increased with increasing FBG when 
FBG was ≤ 7 mmol/L in the premenopausal group. In the postmenopausal group, mIMT and maxIMT 
increased with increasing FBG. After adjustment for covariate factors, the relationship between FBG 
and mIMT remained the same as before the adjustment, but when FBG was ≤ 11 mmol/L, the maxIMT 
increased with increasing FBG. In the stratification analysis, maxIMT increased with increasing FBG 
when FBG was ≤ 7 mmol/L in the premenopausal group, while both mIMT and maxIMT increased 
with increasing FBG when FBG was > 10 mmol/L in the postmenopausal group. Conclusion: Levels 
of FBG contributed more to increased IMT in postmenopausal than premenopausal women. The 
influence of FBG was greater on maxIMT than mIMT. Additionally, FBG was helpful in assessing focal 
thickening of the carotid intima.
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INTRODUCTION

Early detection of atherosclerosis is currently an 
important topic in medicine, and the carotid 

intima-media thickness (IMT) is being increasingly 
used as a noninvasive marker of atherosclerosis (1-3). 
Atherosclerosis-related vascular complications are the main 
cause of reduced life quality and expectancy in individuals 
with diabetes mellitus (4,5). Fasting blood glucose (FBG) 
is the most ordered test to diagnose diabetes and is mainly 
influenced by endogenous insulin secretion capacity (6,7). 
However, epidemiological studies have shown conflicting 
associations between FBG and cardiovascular events (8,9). 
Levitzky and cols. analyzed data from 4,058 Framingham 
Offspring cohort participants and found that impaired 
FBG (between 5.50 mmol/L and 6.25 mmol/L) was 
associated with a higher 4-year risk of coronary heart 
disease or cardiovascular disease in women but not in men 
(10). Yeboah and cols., analyzing 6,753 participants from 
the Multi-Ethnic Study of Atherosclerosis (MESA), found 
that impaired FBG at baseline was not independently 
associated with incident cardiovascular events after 7.5 years 
of follow-up (11). To date, the association between FBG 
and subclinical carotid atherosclerosis in Asian populations 
has not been fully studied. 

The menopausal transition is a period of rapid change 
in physiologic characteristics, including endogenous 
sex steroid hormones, body composition and fat 
distribution, and lipid and metabolic profiles (12,13). 
These changes suggest a potential association between 
blood glucose levels and menopause (14). Studies have 
shown that menopause, but not age, is an independent 
risk factor for fasting plasma glucose levels in women 
without diabetes (15,16). However, the 8-year 
Australian Longitudinal Study on Women’s Health (17) 
and the 3-year Diabetes Prevention Program (18) found 
no association between natural postmenopausal status 
and diabetes risk. This indicates that the relationship 
between menopause and diabetes remains controversial. 
Therefore, this study explored the role and significance 
of FBG levels in premenopausal and postmenopausal 
women with diabetes mellitus and stroke.

SUBJECTS AND METHODS
Study design and population
This cross-sectional study was conducted in Maanshan 
People’s Hospital and included women who underwent 
carotid artery examination in the institution’s Ultrasound 
Department from December 2013 to December 2018. 

The study included 2959 women, of whom 855 
(21.6%) were premenopausal and 2104 (71.1%) were 
postmenopausal. The inclusion criteria were (1) women 
aged 18-80 years, (2) examination of both carotid 
arteries, and (3) available data on FBG, mean IMT 
(mIMT), maximum IMT (maxIMT), age, coronary 
heart disease (CHD), hypertension, dyslipidemia, 
smoking, alcohol consumption, body mass index (BMI), 
total cholesterol (TC), triglycerides (TG), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), and uric acid (UA). The exclusion 
criteria included (1) heart disease, (2) cancer, (3) renal 
insufficiency, (4) history of intracerebral hemorrhage 
or cerebral thrombosis, and (5) history of carotid artery 
surgery. 

The protocol of the study was approved by the 
Hospital Review Committee (NO. 2014001). The 
study was conducted according to the ethical guidelines 
of the 1975 Declaration of Helsinki, and all study 
participants signed an informed consent form (19).

Research methods
Questionnaire
The study’s questionnaire was developed by radiologists 
and epidemiologists and was reviewed and revised by 
clinicians and radiologists. All investigators received 
uniform training prior to the study. The questionnaire 
collected data on general demographic and behavioral 
characteristics, as well as past medical history. All surveys 
were administered through face-to-face interviews with 
participants or their accompanying family members.

Physical examination, including blood pressure 
measurement and body mass index calculation
The data were obtained by professionally trained sur-
veyors skilled in operating instruments and equipment 
according to standard measurement methods. For 
blood pressure measurement, the participants rested in 
a quiet environment for 15 minutes. The measurements 
were obtained at the brachial artery of the right arm at 
the level of the heart, with the participants sitting down 
with legs positioned vertically and feet flat on the floor. 
The measurements were performed using a table mer-
cury sphygmomanometer (Fish Jump, Jiangsu, China). 
Systolic and diastolic blood pressure were indicated 
by Korotkoff sounds (phase I and V readings, respec-
tively). Blood pressure was measured three times, with 
the participant resting for 1-2 minutes between mea-
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surements, and the average of the measurements was 
considered. If the results of the three measurements 
differed substantially, new measurements were per-
formed. The average of the last two measurements was 
then used for the analysis (20). For BMI calculation, all 
participants removed shoes and socks, stood upright, 
looked straight ahead with straightened chest and arms 
resting comfortably at their sides, heels together, and 
heels, hips, and shoulder blades aligned on the same 
plane. Height and weight measurements are accurate to 
0.1 cm and 0.1 kg, respectively. The BMI formula used 
was weight (in kg) divided by squared height (in m2).

Carotid ultrasound
The participants were placed in a supine position, with 
a pillow under the neck, and the neck fully exposed 
for the examination. The participant’s head was tilted 
to one side during examination of the opposite side. 
First, we explored the carotid artery bilaterally to rule 
out the possible presence of atherosclerotic plaque. The 
specialists performing the examination used 5-13 MHz 
linear array probes (AlOKA-A7 and AlOKA-A10, Tokyo; 
and Philips iU22, Colombia), starting at the anterior 
edge of the sternocleidomastoid muscle and visualizing 
the proximal, mid, and distal ends of the participant’s 
left common carotid artery and right common carotid 
artery. Multiangle scans of the left internal carotid 
artery and right internal carotid artery were performed 
for visualization of carotid plaques. When one side 
was finished, the other side was examined to ensure 
complete inspection. Color Doppler flow imaging was 
used to measure blood flow, and the average value was 
calculated from three measurements.

Definitions
(1)  Hypertension: use of antihypertensive drugs, 

or systolic blood pressure of 140 mmHg, or 
diastolic blood pressure of 90 mmHg (21).

(2)  Diabetes mellitus: blood glucose level of 11.1 
mmol/L at any time, FPG ≥ 7.0 mmol/L, or 
glucose level of 11.1 mmol/L at 2 hours in the 
oral glucose tolerance test (OGTT) (22).

(3)  Smoking: history of continuous or cumulative 
smoking for ≥ 6 months (23).

(4)  Alcohol: consumption of ≥ 50 mL of alcoholic 
drinks daily and at least 5 times a week (24).

(5)  Carotid artery disease: presence of a plaque, 
defined as a focal structure invading the lumen 

of the artery with at least 0.5 mm, or 50% of 
the peripheral IMT value, or largest thickness > 
1.5 mm when measured from the intima-lumen 
interface to the media-adventitia interface (25).

(6)  Carotid IMT: distance between the boundary 
between the lumen of blood vessels and the 
vascular endothelial layer, which is identified by 
double hypoechoic lines that do not protrude 
into the lumen of blood vessels. The IMT of 
the distal wall of the right common carotid 
artery was calculated in the longitudinal axis, 
according to the method described by Touboul 
and cols. (26). Echo measurements were used 
to obtain arithmetic mIMT values and were 
performed in the following three regions:
• Proximal zone: about 2 cm above the shunt
• Distal zone: about 1/2 cm above the shunt
• Middle area

Statistical analysis
The statistical analysis was performed using SPSS, version 
26.0 (IBM Corp., Armonk, NY, USA). Continuous 
variables are expressed as median (minimum–maximum) 
for nonnormally distributed data and mean ± standard 
deviation for normally distributed data. The Mann-
Whitney U, Student’s t, and chi-square tests were used 
to analyze differences in demographic characteristics, 
laboratory tests, and hemodynamic characteristics.

The relationships between FBG and mIMT 
and between FBG and maxIMT were tested using 
generalized smoothing splines, and the points (“knots”) 
locations were generated automatically in generalized 
additive models using the R package MGCV, version 
(Mixed Generalized Additive Models Computation 
Vehicle; Wood, 2006). The adjusted factors were age, 
CHD, hypertension, dyslipidemia, smoking, alcohol, 
BMI, TC, TG, HDL-C, LDL-C, and UA. According 
to the location of FBG nodes, the relationships between 
FBG and mIMT and between FBG and maxIMT in 
different FBG segments were further analyzed using 
a linear regression model and adjusted for age, CHD, 
hypertension, dyslipidemia, smoking, alcohol, BMI, 
TC, TG, HDL-C, LDL-C, and UA. Postmenopausal 
stratification was then carried out, and the relationships 
between FBG-mIMT and FBG-maxIMT were analyzed 
using generalized smoothing splines, while the 
relationship between FBG-mIMT and FBG-maxIMT 
in different FBG segments was analyzed using linear 
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regression according to the node positions before and 
after stratification. The adjusted factors were age, CHD, 
hypertension, dyslipidemia, smoking, alcohol, BMI, 
TC, TG, HDL-C, LDL-C, and UA. The p values were 
two-sided, and the significance level was set at p < 0.05.

RESULTS
Basic characteristics of premenopausal and 
postmenopausal participants
As shown in Table 1, mIMT, maxIMT, FBG, 
LDL-C, UA, hypertension, diabetes mellitus, and 
smoking differed significantly (p < 0.05) between the 
premenopausal and postmenopausal groups.

Relationship of fasting blood glucose to mean and 
maximum intima-media thickness 
Figure 1 shows the relationship of FBG to mIMT 
and maxIMT. After adjustment for BMI, TC, TG, 
HDL-C, LDL-C, UA, hypertension, and smoking, 
mIMT increased with increasing FBG for FBG 
levels ≤ 7 mmol/L; for FBG levels > 7 mmol/L, no 
significant relationship was observed between FBG and 
mIMT. Similarly, maxIMT increased with increasing 
FBG for FBG levels ≤ 11 mmol/L; for FBG levels > 
11 mmol/L, no significant relationship was observed 
between FBG and maxIMT. The results of the linear 
regression analysis are shown in Table 2.

Table 1. Anthropometric, biochemical, and ultrasound findings of the participants in the premenopausal and postmenopausal groups

Findings Premenopausal group  (n = 855) Postmenopausal group  (n = 2104) Z/t/χ2 p

mIMT (mm) 0.70 ± 0.14 0.81 ± 0.23 -15.289 <0.001

maxIMT (mm) 0.74 ± 0.16 0.86 ± 0.35 -13.535 <0.001

FBG (mmol/L) 7.49 ± 3.61 6.61 ± 3.09 6.216 <0.001

TC (mmol/L) 4.56 ± 1.10 4.50 ± 1.18 1.166 0.244

TG (mmol/L) 1.73 ± 1.44 1.66 ± 1.36 1.264 0.207

HDL-C (mmol/L) 1.2 (0.44-3.01) 1.23 (0.52-3.08) -1.639 0.101

LDL-C (mmol/L) 2.48 (0.65-6.86) 2.42 (0.38-8.21) -2.376 0.018

UA (μmol/L) 267.15 ± 77.03 295.68 ± 93.75 -8.049 <0.001

BMI (kg/m2) 24.03 ± 3.66 23.97 ± 5.90 0.250 0.802

Hypertension (%) 396 (46.32) 1362 (64.73) 85.523 <0.001

Dyslipidemia (%) 235 (27.49) 614 (29.18) 0.856 0.355

Diabetes (%) 412 (48.19) 877 (41.68) 10.462 <0.001

Smoking (%) 49 (5.73) 83 (3.94) 4.551 0.033

Alcohol (%) 67 (7.84) 136 (6.46) 1.792 0.181

Abbreviations: BMI, body mass index; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; mIMT: mean intima-media thickness; 
maxIMT, maximum intima-media thickness; t, Student’s t test; TC, total cholesterol; TG, triglycerides; UA, uric acid; χ2, chi-square test; Z, Mann-Whitney U test.
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Figure 1. Generalized smoothing spline models of fasting blood glucose (horizontal axis) and (A) mean intima-media thickness (vertical axis) and (B) maximum 
intima-media thickness (vertical axis). Solid lines, no adjustment; dotted lines, adjustment for body mass index, total cholesterol, triglycerides, high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, hypertension, alcohol, and smoking. The shaded areas indicate the 95% confidence intervals.
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Relationship of fasting blood glucose to mean 
and maximum intima-media thickness in 
premenopausal and postmenopausal participants
Figures 2 and 3 show the relationship of FBG to mIMT 
and maxIMT after stratification of the participants 
into premenopausal and postmenopausal groups 
with and without adjustment. In the premenopausal 
group (Figure 2 and Table 3), mIMT increased with 
increasing FBG for FBG levels ≤ 7 mmol/L before 
adjustment, but this relationship lost significance 
after adjustment. In contrast, maxIMT increased with 
increasing FBG for FBG levels ≤ 7 mmol/L after 
adjustment; for FBG levels > 7 mmol/L, no significant 
relationship was observed between FBG and maxIMT. 
In the postmenopausal group (Figure 3 and Table 4), 
no significant relationship was observed between FBG 
and mIMT when FBG levels were ≤ 7 mmol/L, but 

for FBG levels > 10 mmol/L, mIMT increased with 
increasing FBG. In contrast, maxIMT increased with 
increasing levels of FBG.

DISCUSSION
In a previous study, Faeh and cols. demonstrated a close 
association between blood glucose and carotid IMT by 
fitting multiple regression models with different sets 
of risk factors for atherosclerosis and anthropometric 
variables adjusted for multiple metabolic risk factors 
(27). Since two values exist for two-sided carotid IMT 
estimates in practice, it is difficult to determine which 
IMT measurement should be used. The options for 
IMT measurements include calculating the average 
of the maximum values from both sides and different 
arterial sites; mIMT values over the entire distance are 
less susceptible to outliers, while maxIMT may reflect a 

Table 2. Linear regression analysis of the relationship between fasting blood glucose and mean and maximum intima-media thickness

FBG (mmol/L)
Unadjusted Adjusted

β SE t p β SE t p

mIMT (mm) ≤7 0.017 0.004 4.139 <0.001 0.022 0.005 0.005 <0.001

>7 0.002 0.002 0.973 0.331 0.003 0.002 1.233 0.218

maxIMT (mm) ≤11
>11

0.008
-0.002

0.003
0.010

2.265
-0.234

0.024
0.815

0.015
-0.003

0.004
0.010

3.349
-0.251

0.001
0.802

Abbreviations: FBG, fasting blood glucose; mIMT, mean intima-media thickness; maxIMT, maximum intima-media thickness. The variables included in the adjusted model were body mass index, 
total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, triglycerides, hypertension, alcohol, and smoking.

Figure 2. Generalized smoothing spline models of fasting blood glucose (horizontal axis) and (C) mean intima-media thickness (vertical axis), and (D) 
maximum intima-media thickness (vertical axis) in the premenopausal group. Solid lines, no adjustment; dotted lines, adjustment for body mass index, 
total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, hypertension, alcohol, and smoking. The 
shaded areas indicate the 95% confidence intervals.
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Figure 3. Generalized smoothing spline models of fasting blood glucose (horizontal axis) and (E) mean intima-media thickness (vertical axis) and (F) 
maximum intima-media thickness (vertical axis) in the postmenopausal group. Solid lines, no adjustment; dotted lines, adjustment for body mass index, 
total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, hypertension, alcohol, and smoking. The 
shaded areas indicate the 95% confidence intervals.
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Table 3. Linear regression analysis of the relationship between fasting blood glucose and mean and maximum intima-media thickness in the 
premenopausal group

FBG (mmol/L)
Unadjusted Adjusted

β SE t p β SE t p

mIMT(mm) ≤7 0.033 0.009 3.825 <0.001 0.001 0.001 1.004 0.316

>7 -0.003 0.002 -1.287 0.199

maxIMT(mm) ≤7 0.038 0.011 3.637 <0.001 0.041 0.011 3.608 <0.001

>7 -0.005 0.002 -1.911 0.057 -0.006 0.003 -2.316 0.021

Abbreviations: FBG, fasting blood glucose; mIMT, mean intima-media thickness; maxIMT, maximum intima-media thickness. The variables included in the adjusted model were body mass index, 
total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, triglycerides, hypertension, alcohol, and smoking.

Table 4. Linear regression analysis of the relationship between fasting blood glucose and mean and maximum intima-media thickness in the 
postmenopausal group 

FBG (mmol/L)
Unadjusted Adjusted

β SE t p β SE t p

mIMT (mm) ≤10 0.005 0.002 3.329 0.001 0.009 0.004 2.41 0.016

>10 0.007 0.002 3.389 0.001

maxIMT (mm) 0.008 0.002 3.246 0.001 0.008 0.003 2.959 0.003

Abbreviations: FBG, fasting blood glucose; mIMT, mean intima-media thickness; maxIMT, maximum intima-media thickness. The variables included in the adjusted model were body mass index, 
total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, uric acid, triglycerides, hypertension, alcohol, and smoking.

more advanced stage of focal thickening due to plaque 
formation (26,28,29). To avoid composite scoring, we 
analyzed the effects of FBG on mIMT and maxIMT 
separately. Because the incidence of atherosclerosis is 
much higher in men than women, most studies on the 
relationship between blood glucose and carotid IMT 
have focused less on women and more on men and 
the general population. This study analyzed mainly 
the relationship between FBG and carotid IMT in 
premenopausal and postmenopausal women.

Carotid atherosclerosis is an important cause 
of stroke, and there is growing evidence that 
hyperglycemia can induce excessive production of 
mitochondrial reactive oxygen species in cardiovascular 
cells and that this excessive production can promote 
atherosclerosis by activating multiple pathways, 
including increased substrate conversion by aldose 
reductase, increased formation of methylglyoxal, 
activation of major advanced glycosylation product 
precursors, and increased protein modification 
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by O-linked β-N-acetylglucosamine (30,31). The 
interaction between these factors can increase oxidative 
stress and proinflammatory reactions, promoting the 
atherosclerotic process. In addition, hyperglycemia 
may accelerate atherosclerosis by inducing endothelial 
cell dysfunction, reducing nitric oxide bioavailability, 
and promoting vasoconstriction or thrombosis, leading 
to changes in vascular tissue at the cellular level (32).

In this study, we found that atherosclerosis of 
the carotid arteries is more susceptible to FBG after 
menopause. The possible reason for this finding is a 
marked decrease in estrogen levels after menopause, 
affecting the protective effect of this hormone on 
blood vessels. Estrogen exerts bioactive effects mostly 
through estrogen receptors (ERs), which are widely 
distributed in vascular smooth muscle and vascular 
endothelial cells. There are multiple subtypes of ERs; 
ERα is the main subtype and mediates NO production 
in estrogen-promoting vascular endothelial cells. 
Studies have shown that vascular endothelial apoptosis 
induced by tumor necrosis factor-α (TNF-α) can be 
reversed by estrogen in a dose-dependent fashion, 
an effect that can be blocked by ER antagonists 
(33). In addition, Somjen and cols. found that when 
endothelial cells from human umbilical veins were 
treated with estrogen (0.3-300 nm/L), thymine 
intake increased in a dose-dependent fashion, while 
ER antagonists could block this effect (34), suggesting 
that estrogen can promote the synthesis of DNA and 
vascular endothelial cell growth factor in vascular 
endothelial cells. Estrogen also activates nitric oxide 
synthase (eNOS) and promotes NO release through 
a variety of pathways, including the gene pathway, 
phosphoinositide 3-kinase-serine/threonine kinase 
(PI3K-Akt) pathway, and the mitogen-activated protein 
kinase pathway (35). Estrogen also increases vascular 
endothelial cell synthesis and prostaglandin I2 (PGI2) 
release. Additionally, estrogen plays a role in improving 
vasodilation through regulation of smooth muscle 
cells, PGI2, NO, and calcium ion expression. Factors 
that occur in the postmenopausal period, including 
aging, reduced estrogen levels, vascular endothelial 
disorders, and NO utilization, among others, may 
lead to thrombosis. The postmenopausal period is also 
more likely to be affected by various risk factors and 
promote the formation of atherosclerosis compared 
with the premenopausal period. In the present study, 
mIMT and maxIMT were more likely to be affected by 

FBG in postmenopausal than premenopausal women. 
Additionally, the influence of FBG on maxIMT was 
greater than that on mIMT.

In conclusion, in summary, carotid IMT was 
more susceptible to FBG in postmenopausal than 
premenopausal women, and the influence of FBG on 
maxIMT was greater than that on mIMT. Additionally, 
FBG was helpful in assessing focal thickening with plaque 
formation. In women, FBG levels may be a marker of 
carotid atherosclerotic disease and, eventually, a tool 
for the prediction and treatment of atherosclerosis.
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