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Abstract: Aim: Knowledge of hydrological characteristics is essential for understanding ecological 
processes in floodplains, which can support sustainable management. We evaluated environmental 
variations in a shallow floodplain lagoon located in the Chapada Diamantina, Andaraí, Bahia. We 
aim to identify phases of the hydrologic cycle and their influence on desmid density, which is a group 
of algae known for its potential as bioindicator of trophic changes. Methods: Bimonthly samplings 
were performed at four points in the lagoon. Abiotic (temperature, conductivity, pH, transparency, 
depth, dissolved oxygen, total and dissolved nutrients) and biotic (macrophyte cover, phytoplankton 
chlorophyll-a, and desmid density) variables were determined. The Trophic State Index (TSI) was 
calculated based on phytoplankton chlorophyll-a, and total phosphorus concentration. Results: The 
lagoon was characterized by well-oxygenated, slightly acidic waters with low electrical conductivity. 
According to the TSI, the lagoon varied from mesotrophic to hypereutrophic during the study period. 
The driest months (August and October) were marked by high water transparency, low depth, nitrogen 
concentration, and macrophyte coverage. The highest value of accumulated precipitation was registered 
in December, when there was an increase in depth and a decrease in electrical conductivity and PT 
concentration. Two phases of the hydrologic cycle were evidenced and determined by the depth and 
nutrient concentrations. The highest abundance of desmids occurred at the end of the rainy season 
when the nutrient availability and pH were higher, and the depth was reduced. Conclusions: Our 
results suggest that the flood pulse was the determining factor of the local environmental conditions 
and that, together with the macrophyte morphological traits, it influenced desmid abundance and 
distribution in a floodplain lagoon in the semiarid region. 
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Resumo: Objetivo: O conhecimento das características hidrológicas é essencial para a compreensão 
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richness and abundance (Coesel, 1996; Rodrigues 
& Bicudo, 2001; Felisberto et al., 2014).

Most desmids have preference for slightly 
acidic and nutrient-poor environments (Coesel, 
1996). The simple occurrence of these organisms 
in water can provide valuable information about 
the trophic state of the ecosystem, which is why 
they are often used in biomonitoring studies 
(Shetty & Gulimane, 2022; Garraza & Mataloni, 
2019). From measurements of diversity and rarity 
of desmids species present in the community, 
it is also possible to determine the degree of 
conservation of the aquatic body (Krasznai et al., 
2008; Hansen,  et  al. 2018) or the occurrence of 
disturbances (Neustupa et al., 2023). Experimental 
studies indicate that the group also has potential for 
bioremediation and is able to act in the extraction 
of trace elements present in aquatic environment 
(Krejci et al., 2011). In Brazil, studies on desmid 
diversity are still fragmented, which complicates the 
identification of temporal and spatial distribution 
patterns (Flora do Brasil, 2022). In the Caatinga 
domain, knowledge of desmids was restricted to data 
from Förster (1964), who carried out a taxonomic 
inventory of periphytic material with 116 taxa for 
Bahia, Piauí. However, an advance in the knowledge 
of the taxonomy and ecology of desmids in the lakes 
and rivers in Chapada Diamantina was observed 
(Ribeiro  et  al., 2015; Costa  et  al., 2018, 2020; 
Ramos et al., 2019, 2020, 2021 a, b, c). Currently, 
studies have revealed the high biodiversity of 
desmids in the region.

1 Introduction

Tropical floodplains are highly productive 
and dynamic ecosystems, where the flood pulse is 
considered the main regulatory force of ecological 
processes (Junk, 2002; Thomaz  et  al., 2007). 
The complex land-water interaction promotes 
high environmental heterogeneity, thereby creating 
different types of habitats (lakes, rivers, swamps, 
transition zones) that vary in their physical and 
limnological characteristics (Roberto et al., 2013; 
Junk  et  al., 2013). Such variations influence the 
structure and dynamics of aquatic communities, 
thereby affecting the composition, richness, density, 
and diversity of organisms (Dunk  et  al., 2016; 
Algarte et al., 2017; Adame et al., 2018).

Regarding primary producers, studies show 
that each algal community is associated with an 
equilibrium state in the ponds (Goldsborough & 
Robinson, 1996). For example, phytoplankton 
was dominant in the open state, and epiphyton in 
the open state in a subtropical lake of a floodplain 
(Cano  et  al., 2008). Thus, periphyton can play 
a role in floodplain ecosystem functioning, as 
demonstrated in the Florida Everglades (Gaiser et al., 
2006; Gaiser, 2009) and Paraná River Basin 
(Algarte et al., 2016; Dunk et al., 2016). Periphyton 
participates in primary production, nutrient cycling, 
and the food web (Vadeboncoeur & Steinman, 
2002). In periphyton, desmids form one of the most 
representative algal groups especially in tropical 
regions where the community has high species 

dos processos ecológicos nas planícies de inundação, o que pode subsidiar um gerenciamento 
sustentável. Nós avaliamos as variações ambientais em uma lagoa rasa de planície de inundação, 
localizada na Chapada Diamantina, Andaraí, Bahia. Nosso objetivo foi identificar as fases do ciclo 
hidrológico e sua influência na densidade de desmídias, um grupo de algas conhecido por seu potencial 
como bioindicador de mudanças tróficas. Métodos: Amostragens bimestrais foram realizadas em 
quatro pontos da lagoa. Foram determinadas as variáveis abióticas (temperatura, condutividade, pH, 
transparência, profundidade, oxigênio dissolvido, concentração de nutrientes totais e dissolvidos) e 
bióticas (cobertura de macrófitas, clorofila-a do fitoplâncton e densidade de desmídias). O Índice de 
Estado Trófico (IET) foi calculado com base na clorofila-a do fitoplâncton e concentração de fósforo 
total. Resultados: A lagoa foi caracterizada por águas bem oxigenadas, levemente ácidas e com 
baixa condutividade elétrica. De acordo com o IET, a lagoa variou de mesotrófica a hipereutrófica 
durante o período de estudo. Os meses mais secos (agosto e outubro) foram marcados pela elevada 
transparência, baixa profundidade, concentração de nitrogênio e cobertura de macrófitas. O maior valor 
de precipitação acumulada foi registrado em dezembro, quando houve um aumento da profundidade 
e a diminuição da condutividade elétrica e concentração de PT. Evidenciou-se ocorrência de duas fases 
limnológicas, as quais foram determinadas pela profundidade e concentração de nutrientes. A maior 
abundância de desmídias ocorreu no final da época chuvosa, quando a disponibilidade de nutrientes 
e pH eram elevados e a profundidade reduzida. Conclusões: Nossos resultados sugerem que o pulso 
hidrológico foi o fator determinante da condição limnológica e que, juntamente com as características 
morfológicas das macrófitas, tenha influenciado na abundância e distribuição das desmídias em uma 
lagoa de planície de inundação no semiárido. 

Palavras-chave: caatinga; fases do ciclo hidrológico; pulso de inundação; desmídias perifíticas.
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Thus, we investigated the occurrence of 
the hydrological period in a floodplain lagoon, 
aiming to answer the following question: Does 
the hydrological period influence the abundance 
of desmids? Considering the potential of desmids 
to indicate environmental changes (Coesel, 1983; 
Santos et al., 2022), this study contributes to a better 
understanding of changes in local environmental 
conditions, which can support the management 
and monitoring of the ecological quality of tropical 
floodplain lakes, particularly in the study area.

2 Material and Methods

2.1 Study area

The Baiano Lagoon is in the Pantanal dos 
Marimbus floodplain, situated in the Andaraí 
municipality, Chapada Diamantina, northeast 
Brazil (12°45’52.4” S, 41°18’34.5” W). Chapada 
Diamantina comprises the highest mountain 
complex in the Caatinga, which is a uniquely 
Brazilian biome. The climate of the Caatinga is 
marked by high temperatures and irregular rainfall, 
which is characteristic of the semi-arid environment 
(Giulietti  et al., 1997; INEMA, 2020). Chapada 
Diamantina is composed of a landscape and 
altitudinal mosaic, including a variety of habitats, 
in which many new species of plants and algae have 
been discovered (Pataro et al., 2013; Ramos et al., 
2019, 2021a).

The Pantanal dos Marimbus floodplain has an 
extension of approximately 48 km2 and remains 
permanently flooded due to the inflow of water 
from the Santo Antônio River and its tributaries, 
the Utinga and São José Rivers (Funch, 2002; 
Gonçalves, 2021). The Marimbus floodplain is 
part of the Marimbus/Iraquara Environmental 
Protection Area (EPA) and is subdivided into the 
following four regions: Marimbus da Fazenda 
Velha, Marimbus do Ferreira, Marimbus do 
Remanso, and Marimbus do Baiano. The Marimbus 
region located to the south is formed by several 
interconnected lagoons, including the Baiano 
Lagoon. The lagoon has dark waters and large 
banks of aquatic macrophytes composed mainly of 
emergent, floating (fixed and free), and submerged 
plants (França  et  al., 2010). The Baiano lagoon 
has an area of approximately 0.41 km2, a length of 
974 m, and a width of 532 m. The average depth 
is approximately 2.5 m, and the maximum depth 
is 4.5 m. The region’s climate varies from sub-
humid to dry, with an average annual temperature 
and precipitation of 24.2ºC and 1.049 mm, 
respectively (Proclima, 2021). The rainy season is 

from November to April, and the dry season is from 
May to October (Proclima, 2021).

The Pantanal dos Marimbus (Figure 1) floodplain 
has great ecological value but is under increasing 
human pressure due to various anthropological 
activities, including tourism, agriculture, and 
deforestation. Despite the intense human activities, 
knowledge about the functioning of the floodplain 
lagoons is still poorly understood (Lima et al., 2018; 
Gonçalves, 2021).

2.2 Sampling and analyzed variables

Bimonthly samplings were carried out at 
the four points randomly selected in the Baiano 
Lagoon totaling 24 samplings throughout 2018. 
The distance between each sampling station was 
approximately 200 m. Sampling sites include 
the most abundant macrophytes in the lagoon: 
Cabomba caroliniana Gray, submerged, rooted, 
with cut leaves; Nymphaea amazonum Mart. 
et Zucc., rooted with whole and floating leaves; and 
Utricularia foliosa L., free-floating with cut leaves. 
Periphyton was sampled in the three macrophyte 
species above mentioned.

For periphyton sampling, 30 cm long fragments 
of each macrophyte species were removed (including 
stems, petioles, and leaves) and randomly selected. 
Only macrophytes at an intermediate stage of 
maturation were sampled, thus, minimizing 
problems related to colonization time (Santos et al., 
2013). Macrophyte fragments were transported 
to the laboratory at low temperatures and in the 
absence of light. In the laboratory, the periphyton 
was removed from the fragments of macrophyte by 
scraping using a brush and jets of distilled water. 
The total area of each fragment was determined 
using the ImageJ software to identify the total size 
area colonized by periphyton.

After scraping, the samples were adjusted to 
a constant volume with distilled water. Aliquots 
were taken for taxonomic and quantitative 
analysis. Samples for taxonomic analysis were 
fixed in Transeau’s solution (Bicudo & Menezes, 
2017) and observed under a binocular optical 
microscope (Olympus BX45). Quantitative samples 
were fixed in 0.5% Lugol solution, and counting 
was performed under an inverted microscope 
(Leica MIC5256) according to Utermöhl (1958), 
while respecting the settling time determined by 
Lund et al. (1958). The count limit was established 
by the species rarefaction curve and counting of 
10 random fields without taxonomic novelties. 
At each sampling site, macrophyte coverage was 
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determined using a PVC square (1 m2) divided into 
100 smaller squares (Thomaz et al., 2004).

Accumulated precipitation and air temperature 
data were obtained from the Center for Weather 

Forecasting and Climate Studies of the National 
Institute for Space Research (CPTEC/INPE, 
2021). Portable multiparameter probes were used 
to measure water temperature, pH, electrical 

Figure 1. Map showing Andaraí municipality and Pantanal dos Marimbus (a), Bahia State, and sampling sites (white 
circles) in the Baiano Lagoon (dotted line), Marimbus do Baiano.
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conductivity, total suspended solids (Hanna - HI 
98129), and dissolved oxygen (Instrutherm - MO-
910). Water transparency was measured using a 
Secchi disk. The concentrations of ammonium 
(NH4-N, phenolic method), nitrite (NO2-N, 
diazotization method), nitrate (NO3-N, cadmium 
reduction method), orthophosphate (PO4-P, 
ascorbic acid method), orthosilicate (colorimetric 
method), total nitrogen (TN), dissolved inorganic 
nitrogen (DIN), and total phosphorus (TP) were 
determined according to APHA (2005). At each 
sampling point, we collected 500 ml of surface water 
for determination of phytoplankton chlorophyll-a. 
The algal community sampled in surface water was 
designated phytoplankton due to the absence of 
metaphyton among macrophytes. The analysis was 
carried out from samples filtered under low pressure 
(≤ 0.3 atm), using GF/F Whatman glass fiber filters 
and 90% ethanol as extractor (Marker et al., 1980; 
Sartory & Grobbelaar, 1984).

The Trophic State Index (TSI) of the lagoon was 
calculated based on phytoplankton chlorophyll-a 
and TP concentration as proposed by Lamparelli 
(2004) for tropical reservoirs.

Descriptors species were those with a 
contribution ≥ 10% to the total density in the 
periphyton of each macrophyte species.

2.3 Statistical analysis

We used the Moran Index to verify the existence 
of spatial autocorrelation between the sample units 
(Legendre & Legendre, 2012).

For joint evaluation of the abiotic data, we 
applied Principal Component Analysis (PCA), 
which reduces the dimensionality of the data. 
Abiotic data were logarithmized [log (x + 1)], 
except for pH. The axes that make up the graph 
were selected based on the Broken Stick criteria 
(Legendre & Legendre, 2012).

The permutational multivariate analysis of 
variance (Two-way PERMANOVA; α= 0.05) was 
used to evaluate the influence of time (months) 
and macrophyte species (Cabomba caroliniana, 
Nymphaea amazonum, and Utricularia foliosa) on 
the desmid community structure in the periphyton. 
This analysis was performed using Bray–Curtis 
similarity and 9999 permutations. All statistical 
analyzes were performed using the R software (R 
Development Core Team, 2021).

3. Results

The highest values of accumulated precipitation 
were registered in February, June and December 

(Figure 2). Low precipitation values were detected 
in August, and October (< 2.0 mm).

Local environmental conditions in Baiano 
Lagoon varied during the study period (Figure 3 a-l). 
However, the lagoon presented well-oxygenated 
waters (> 5.4 mg L), slightly acidic (5.1–8.5) 
and with low conductivity (< 0.007 μS.cm-1). 
In June and December, the local environmental 
conditions were characterized by the greatest 
depths (2.4–4.5 m), lowest transparency (< 0.7 m), 
and concentrations of PO4-P (< 14 µg L-1) and 
orthosilicate (< 0.20 mg L-1). In contrast, high 
transparency (> 0.7 m) and low depth (< 2.5 m) 
were found in August and October, when the 
highest orthosilicate concentrations also occurred. 
The highest phytoplankton chlorophyll-a occurred 
in February, August, and October (> 11 µg L-1).

Based on the average TSI, we found a variation 
in the trophic state of the lagoon during the 
study period (Figure  4). The lowest TSI was 
observed in December when the lagoon was 
mesotrophic. In other months, the lagoon was 
considered eutrophic, except in February when it 
was hypereutrophic.

The PCA of environmental variables summarized 
63.5% of the data variability in the first two axes 
(Figure 5). On the positive side of axis 1, sampling 
units from the wettest months (except April) 
were associated with greater depths (Pearson: r > 
0.95). On the negative side of the same axis, the 
sampling units of the driest months (except Oc2 and 
Oc4) were associated with the highest values of 

Figure 2. Mean and standard deviation of accumulated 
precipitation in the sampled monthly during the study 
period.
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electrical conductivity, orthosilicate, and water 
transparency (Pearson: r > 0.9). Axis 2 showed a 
negative correlation with orthophosphate (Pearson: 
r > 0.9) and a positive correlation with dissolved 
oxygen (Pearson: r > 0.8). Based on the PCA, two 
phases of the hydrologic cycle were evidenced and 
were associated with depth variation and nutrient 
availability.

The highest macrophyte coverage was found in 
April and the lowest was in December (Figure 6).

Despite differences in temporal variation, the 
highest desmid density in periphyton on Nymphaea 
amazonum and Utricularia foliosa was found in 
April, and the lowest in December (Figure 7a, c). 
However, desmid density on Cabomba caroliniana 

was high in April and October and the lowest in 
August and December (Figure 7b).

The Desmid community structure was 
significantly influenced by time and macrophyte 
species, with significant interaction between the 
factors (Two-way PERMANOVA: time: F = 
2.19, p = 0.0001; macrophyte species: F = 5.34, p = 
0.001; interaction: F = 1.48, p = 0.0003).

Only six species had, on average, a relative 
density ≥10% on Nymphaea amazonum, with 
emphasis on Cosmarium margaritatum var. 
margaritatum, which was present in all months 
sampled. The descriptor species contributed more 
than 50% of the total density in August and October 
on periphyton of Utricularia foliosa and Cabomba 

Figure 3. Median and standard error (n = 4) of environmental variables in a floodplain lagoon during the study period. 
a- Depth (m), b- Transparency (cm), c- Temperature (ºC), d- Dissolved Oxygen (mg.L), e- pH, f- Conductivity 
(μS.cm), g- Orthophosphate (P-PO4) (μg.L-1), h- Total Phosphorus (μg.L-1), i- Dissolved Inorganic Nitrogen (μg.L-1), 
j- Total Nitrogen (μg.L-1), k- Silicate (mg.L), l- Chlorophyll-a (μg.L).
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influenced the structure of the desmid community 
on different macrophyte species in the studied lake.

Communities of aquatic macrophytes generally 
form large stands in shallow lakes of floodplains, 
thereby promoting increased habitat heterogeneity 
that is recognized as one of the main drivers 
of biodiversity (McAbendroth  et  al., 2005; 
Algarte et al., 2009). Studies show that the increase 
in macrophyte cover can favor (Zhang  et  al., 

Figure 5. PCA of the limnological variables analyzed in 
a floodplain lagoon during the study period. Sampling 
unit abbreviations: the first letter indicates the sampling 
month, and the number indicates the sampling site (1, 
2, 3, 4).

Figure 6. Mean values and standard deviation of 
macrophyte coverage (n = 4) in a floodplain lagoon during 
the study period.

Figure 4. Trophic state index (TSI) in a floodplain lagoon 
during the study period.

caroliniana, with emphasis on Cosmarium blyttii var. 
blyttii, which had a high frequency of occurrence. 
In U. foliosa, Cosmarium subreinschii var. tholiforme 
and Staurastrum tetracerum var. tetracerum also had 
a high frequency of occurrence, the latter standing 
out for its high density, especially in the months of 
October and August (Figure 8).

4. Discussion

Our findings showed the occurrence of two 
phases of the hydrologic cycle in a shallow floodplain 
lagoon in the semiarid region. The variation in 
depth and nutrient availability were determinants 
of the limnonological phases. The high-water 
period, characterized by high rainfall, was marked 
by an increase in depth and nutrient concentrations 
(except in December), and a decrease in water 
transparency and phytoplankton biomass. The flood 
pulse is one of the main determinants of local 
environmental conditions and dynamics of aquatic 
communities in floodplain lakes (Junk, 2002, 
2005). Floods caused by increased precipitation or 
flooding of rivers increase lake depths and promote 
sediment resuspension, thereby increasing turbidity, 
conductivity, and nutrient concentration (Junk, 
2005, 2002; Mayora et al., 2013), as noted in the 
Baiano Lagoon. However, when the main river is 
poor in nutrients, the increase in the water volume 
caused by flooding can have a reverse effect and 
consequently dilute dissolved nutrients (Junk, 
2005; Depetris, 2007; Bozelli  et  al., 2015). This 
may explain the decrease in the PO4-P and DIN 
concentrations in June and December, respectively. 
Together, the increase in water turbidity and 
the change in the nutrient concentrations may 
have negatively influenced the phytoplankton 
community, which, in the period, presented the 
lowest averages of chlorophyll-a during the study 
period. Changes in environmental conditions 
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Figure 7. Mean values and standard deviation of desmid density in the periphyton on: a- Nymphaea amazonum, 
b- Cabomba caroliniana, and c- Utricularia foliosa, in a floodplain lagoon during the study period.

Figure 8. Desmid species with a contribution of more than 10% to total density in the periphyton on: a- Nymphaea 
amazonum, b- Cabomba caroliniana, and c- Utricularia foliosa, in a floodplain lagoon during the study period.
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2020) or harm (Souza  et  al., 2015) the density 
of periphytic algae. This is because these plants 
can either provide an area for colonization and 
nutrients for the associated periphyton or compete 
with it for resources, such as nutrients and light 
(van Gerven et al., 2015). The higher macrophyte 
coverage in the rainy months favored the growth 
of desmids (except in December) probably by 
increasing the area available for colonization. In the 
same period, the increase in N concentration (except 
in December) may have been a crucial factor for the 
increase in algal biomass. N and P are generally the 
limiting macronutrients for algal growth (Esteves 
& Amado, 2011). In December, the dilution of 
nutrients, decrease in macrophyte cover, increase 
in depth, and decrease in water transparency was 
associated with a drastic reduction in the desmid 
density.

Considering the entire study period, we 
observed that the desmid density in Baiano Lagoon 
was high, especially when compared to other studies 
carried out in floodplain lakes in Brazil (Lopes & 
Bicudo, 2003; Camargo  et  al., 2009). Climatic 
and limnological characteristics may have favored 
the desmid growth, such as high temperatures and 
slightly acidic pH, which can promote the diversity 
group (Coesel, 1996). In floodplain lakes, studies 
report lower pH values, mainly due to the entry of 
humic compounds that tend to increase the acidity 
of the water (Carvalho et al., 2001).

The time (collection month), the macrophyte 
species, and the interaction between the two 
factors influenced the structure of the periphytic 
desmids. The variation in the physical and chemical 
characteristics of water over a given period directly 
affects on periphytic algae community (Neif et al., 
2013; Carapunarla  et  al., 2014), especially in 
floodplains, where the flood pulse is considered a 
key factor in the structure and dynamics of aquatic 
communities (Loverde-Oliveira & Huszar, 2007; 
Junk & Wantzen, 2004).

The density of desmids and distribution 
of descriptor species were similar in Cabomba 
caroliniana and Utricularia foliosa, both highly 
indented macrophytes, unlike Nymphaea amazonum, 
a macrophyte with simple morphology. Studies show 
that morphologically complex or cut substrates 
tend to have a greater biomass and diversity of 
periphytic algae (Ferreiro et al., 2013; Casartelli & 
Ferragut, 2017; NemesKókai et al., 2024), because 
they increase the availability of microhabitats for 
the associated community (Pacini  et  al., 2009). 
The complexity of the substrate also influences 

the distribution of species in the periphyton, as 
complex substrates tend to accommodate species of 
reduced size, such as Cosmarium blyttii var. blyttii, 
C. subreinschii var. tholiforme, and Staurastrum 
tetracerum var. tetracerum.

Our findings suggest that the flood pulse was 
the determining factor of local environmental 
conditions and that, together with the macrophyte 
morphological traits, it influenced desmid 
abundance and distribution during the study 
period. The flood pulse is a known determining 
factor for floodplain lagoons (e.g., Algarte  et  al., 
2006; Leandrini  et  al., 2008). Knowledge of 
hydrological characteristics is essential for a better 
understanding of ecological processes in floodplains 
and for supporting sustainable management (Junk, 
2002; Junk & Wantzen, 2004). Thus, more studies 
are needed to investigate and explore different 
hydrological aspects and support the development 
of management plans for biodiversity conservation 
in Chapada Diamantina.
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