Acessibilidade / Reportar erro

The ichthyofauna of the Potiritá River basin: assessing the conservation status in a mining area in the Eastern Amazon

A ictiofauna da bacia do Rio Potiritá: avaliando o status de conservação em uma área de mineração na Amazônia Oriental

Abstract

Aim

Considering the importance of knowing the organisms that make up the environments impacted by human activities, we aimed to create an inventory of the ichthyofauna of a bauxite mining area in the Eastern Amazon in this work.

Methods

Specimens were collected with sieves, trawls, and gill nets at 37 points in rivers and streams during two expeditions (July 2017 and September and October 2017). After euthanasia and laboratory processes, we identified each individual to the lowest possible taxonomic level, and samples were deposited in scientific collections. We analyzed the conservation status of the species on state, national, and international lists.

Results

A total of 109 species were identified, belonging to 28 families and six orders, emphasizing the Characiformes order (57 species) and the Characidae family (22 species). We identified two new species, and none are threatened with extinction.

Conclusions

The high species richness recorded in the Potiritá River basin is noteworthy, considering its relatively small area. This diversity should be considered in future environmental impact studies and in monitoring the ichthyofauna in areas affected by human activities.

Keywords:
bauxite; fish richness; inventory; neotropical region; taxonomy

Resumo

Objetivo

Considerando a importância de se conhecer os organismos que compõem os ambientes impactados por atividades humanas, o presente trabalho trata-se de um inventário da ictiofauna de uma área de mineração de bauxita na Amazônia Oriental.

Métodos

Os espécimes foram coletados com peneiras, redes de arrasto e de espera em 37 pontos localizados em rios e riachos durante duas expedições (julho de 2017 e setembro e outubro de 2017). Após a eutanásia e processos de laboratório, cada indivíduo foi identificado até o menor nível taxonômico possível e amostras estão sendo depositadas em coleções científicas. O status de conservação das espécies foi analisado em listas no âmbito estadual, nacional e internacional.

Resultados

Foram identificadas 109 espécies pertencentes a 28 famílias e seis ordens, com destaque para as ordens Characiformes (57 espécies) e para a família Characidae (22 espécies). Duas espécies novas foram identificadas e nenhuma encontra-se ameaçada de extinção.

Conclusões

Destaca-se a alta riqueza de espécies registrada na bacia do Rio Potiritá em contraste com sua área relativamente pequena. Esta diversidade deve ser considerada em futuros estudos de impacto ambiental e em monitoramentos da ictiofauna em áreas afetadas por atividades antrópicas.

Palavras-chave:
bauxita; riqueza de peixes; inventário; região neotropical; taxonomia

1. Introduction

In recent decades, the Amazon region has become one of the main areas of expansion of economic activities in Brazil (Carvalho & Domingues, 2016Carvalho, T.S., & Domingues, E.P., 2016. Projeção de um cenário econômico e de desmatamento para a Amazônia Legal brasileira entre 2006 e 2030. Nova Econ. 26(2), 585-621. http://doi.org/10.1590/0103-6351/2665.
http://doi.org/10.1590/0103-6351/2665...
; Ometto et al., 2016Ometto, J.P., Sousa-Neto, E.R., & Tejada, G., 2016. Land use, land cover and land use change in the Brazilian Amazon (1960-2013). In: Nagy, L., Forsberg, B.R., & Artaxo, P., eds. Interactions between biosphere, atmosphere and human land use in the Amazon basin. Springer, 369-383, Ecological Studies, no. 227. http://doi.org/10.1007/978-3-662-49902-3_15.
http://doi.org/10.1007/978-3-662-49902-3...
; Siqueira-Gay et al., 2020Siqueira-Gay, J., Sonter, L.J., & Sánchez, L.E., 2020. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662. http://doi.org/10.1016/j.resourpol.2020.101662.
http://doi.org/10.1016/j.resourpol.2020....
). Concomitantly, with this expansion, there was an increase in the impacts caused by different human activities on the aquatic and terrestrial environments in the region (Sonter et al., 2017Sonter, L.J., Herrera, D., Barrett, D.J., Galford, G.L., Moran, C.J., & Soares-Filho, B.S., 2017. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8(1), 1013. PMid:29044104. http://doi.org/10.1038/s41467-017-00557-w.
http://doi.org/10.1038/s41467-017-00557-...
; Siqueira-Gay et al., 2020Siqueira-Gay, J., Sonter, L.J., & Sánchez, L.E., 2020. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662. http://doi.org/10.1016/j.resourpol.2020.101662.
http://doi.org/10.1016/j.resourpol.2020....
). This scenario created the need to develop and implement biomonitoring programs and techniques, mainly to assess biodiversity in these areas and possible natural and anthropogenic variations in ecosystems (Artaxo et al., 2014Artaxo, P., Dias, M.A.F.S., Nagy, L., Luizão, F.J., Cunha, H.B., Quesada, C.A.N., Marengo, J.A., & Krusche, A., 2014. Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Cienc. Cult. 66(3), 41-46. http://doi.org/10.21800/S0009-67252014000300014.
http://doi.org/10.21800/S0009-6725201400...
).

The issue involving the relationship between the exploitation of natural resources and the need to mitigate socio-environmental impacts still requires attention from the various sectors of society (Fearnside, 1997Fearnside, P.M., 1997. Serviços ambientais como estratégia para o desenvolvimento sustentável na Amazônia rural. In: Cavalcanti, C. ed. Meio ambiente, desenvolvimento sustentável e políticas públicas. São Paulo: Cortez, 314-344.; Nepstad et al., 2006Nepstad, D., Schwartzman, S., Bamberger, B., Santilli, M., Ray, D., Schlesinger, P., Lefebvre, P., Alencar, A., Prinz, E., Fiske, G., & Rolla, A., 2006. Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv. Biol. 20(1), 65-73. PMid:16909660. http://doi.org/10.1111/j.1523-1739.2006.00351.x.
http://doi.org/10.1111/j.1523-1739.2006....
). The negative impacts related to the exploitation of natural resources, such as the extraction of minerals, are caused mainly by deforestation, changes in the physical-chemical characteristics of water, and aggradation of water bodies, which result in changes in the structure and dynamics of animal and plant assemblages (Foley et al., 2007Foley, J., Asner, G., Costa, M., Coe, M., Defries, R., Gibbs, H., Howard, E., Olson, S., Patz, J., Ramankutty, N., & Snyder, P., 2007. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5(1), 25-32. http://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2.
http://doi.org/10.1890/1540-9295(2007)5[...
; Lobo et al., 2016Lobo, F.D.L., Costa, M., Novo, E.M.L.D.M., & Telmer, K., 2016. Distribution of artisanal and small-scale gold mining in the Tapajós river basin (Brazilian Amazon) over the past 40 years and relationship with water siltation. Remote Sens. 8(7), 579. http://doi.org/10.3390/rs8070579.
http://doi.org/10.3390/rs8070579...
). These are affected by changes in the richness and abundance of its populations, in addition to being impacted by changes in the availability of resources (shelters, food, among others) in altered environments (Bojsen & Barriga, 2002Bojsen, B.H., & Barriga, R., 2002. Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshw. Biol. 47(11), 2246-2260. http://doi.org/10.1046/j.1365-2427.2002.00956.x.
http://doi.org/10.1046/j.1365-2427.2002....
; Arantes et al., 2017Arantes, C.C., Winemiller, K.O., Petrere, M., Castello, L., Hess, L.L., & Freitas, C.E.C., 2017. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 55(1), 386-395. http://doi.org/10.1111/1365-2664.12967.
http://doi.org/10.1111/1365-2664.12967...
; Brejão et al., 2018Brejão, G.L., Hoeinghaus, D.J., Pérez-Mayorga, M.A., Ferraz, S.F.B., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061.
http://doi.org/10.1111/cobi.13061...
).

Mineral exploration in the Amazon region is one of the most important economic activities for regional and national development (Araújo & Fernandes, 2016Araújo, E.R., & Fernandes, F.R.C., 2016. Mineração no Brasil: crescimento econômico e conflitos ambientais. In: Guimarães, P.E., & Cebada, J.D.P., eds. Conflitos ambientais na indústria mineira e metalúrgica: o passado e o presente. Rio de Janeiro: CETEM, 65-88.; Ribeiro & Silva, 2018Ribeiro, J.C.J., & Silva, L.C.N., 2018. A Mineração no Estado do Pará e as Barragens de Rejeito: o Paradigma Entre a Exploração e os Impactos Negativos Decorrentes. In: Costa, B.S., ed. Anais do V Congresso Internacional de Direito Ambiental e Desenvolvimento Sustentável: Pan-Amazônia – Integrar e Proteger e do I Congresso da Rede Pan Amazônia. Belo Horizonte: Dom Helder Escola de Direito, 122-139.). However, due to its potential to cause impacts due to the removal of forests, contamination of rivers and streams, and even recent accidents with tailings dams, this type of exploration needs attention (Salvador et al., 2020aSalvador, G.N., Leal, C.G., Brejão, G.L., Pessali, T.C., Alves, C.B.M., Rosa, G.R., Ligeiro, R., & Montag, L.F.A., 2020a. Mining activity in Brazil and negligence in action. Perspect. Ecol. Conserv. 18(2), 139-144. http://doi.org/10.1016/j.pecon.2020.05.003.
http://doi.org/10.1016/j.pecon.2020.05.0...
; Azevedo-Santos et al., 2021Azevedo-Santos, V.M., Arcifa, M.S., Brito, M.F.G., Agostinho, A.A., Hughes, R.M., Vitule, J.R.S., Simberloff, D., Olden, J.D., & Pelicice, F.M., 2021. Negative impacts of mining on Neotropical freshwater fishes. Neotrop. Ichthyol. 19(3), e210001. http://doi.org/10.1590/1982-0224-2021-0001.
http://doi.org/10.1590/1982-0224-2021-00...
;). In this sense, mitigating measures for the conservation and recovery of ecosystems must be taken when considering the sustainable development of the activity in the social, economic, and environmental spheres (Santos, 2002Santos, B.A., 2002. Recursos minerais da Amazônia. Estud. Av. 16(45), 123-152. http://doi.org/10.1590/S0103-40142002000200009.
http://doi.org/10.1590/S0103-40142002000...
; Monteiro, 2005Monteiro, M.A., 2005. Meio século de mineração industrial na Amazônia e suas implicações para o desenvolvimento regional. Estud. Av. 19(53), 187-207. http://doi.org/10.1590/S0103-40142005000100012.
http://doi.org/10.1590/S0103-40142005000...
).

As mentioned above, the process of extracting ores, such as bauxite, can also have an impact on the aquatic environment. Waste from this activity can be carried by rain and introduced into these ecosystems (Carvalho et al., 2017Carvalho, M.S., Ribeiro, K.D., Moreira, R.M., & Almeida, A.M., 2017. Concentração de metais no rio Doce em Mariana, Minas Gerais, Brasil. Acta Brasiliensis 1(3), 37-41. http://doi.org/10.22571/Actabra13201758.
http://doi.org/10.22571/Actabra13201758...
; Santos et al., 2021Santos, L.A.B., Gomes, N.S., Hugo, K.S., Amaral, M.A.L., & Rossoni, H.A.V., 2021. Qualidade da água no Médio Paraopeba e seus impactos socioambientais após rompimento da Barragem da Mina do Córrego do Feijão, Brumadinho, Minas Gerais, Brasil. Rev. Bras. Gest. Ambient. Sustentabilidade 8(18), 291-300. http://doi.org/10.21438/rbgas(2021)081818.
http://doi.org/10.21438/rbgas(2021)08181...
). The changes suffered by aquatic environments involve impacts on the structure of habitats, which can result in limiting the occurrence and distribution of organisms, in addition to interfering with the availability of resources and the integrity of food webs (Callisto & Esteves, 1998Callisto, M., & Esteves, F.A, 1998. Biomonitoramento da macrofauna bentônica de Chironomidae (Diptera) em dois igarapés amazônicos sob influência das atividades de uma mineração de bauxita. Oecol. Bras. 5(1), 20. http://doi.org/10.4257/oeco.1998.0501.21.
http://doi.org/10.4257/oeco.1998.0501.21...
; Azevedo-Santos et al., 2021Azevedo-Santos, V.M., Arcifa, M.S., Brito, M.F.G., Agostinho, A.A., Hughes, R.M., Vitule, J.R.S., Simberloff, D., Olden, J.D., & Pelicice, F.M., 2021. Negative impacts of mining on Neotropical freshwater fishes. Neotrop. Ichthyol. 19(3), e210001. http://doi.org/10.1590/1982-0224-2021-0001.
http://doi.org/10.1590/1982-0224-2021-00...
).

Brazilian ecosystems are home to the greatest diversity of species in the world, and the Amazon region concentrates a large part of this biodiversity. This biome has the largest area of tropical forest on the planet, covering nine countries in South America (Myers et al., 2000Myers, N., Mittermeier, R., Mittermeier, C., Fonseca, G.A., & Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853-858. PMid:10706275. http://doi.org/10.1038/35002501.
http://doi.org/10.1038/35002501...
). Estimates indicate that, in the Amazon, there are at least 50,000 species of plants, 399 of mammals, 1,292 of birds, 381 of reptiles, 388 of amphibians, and between 1,300 and 3,500 of fish (Paglia et al., 2012Paglia, A.P., Fonseca, G.A.B., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello, A.G., Leite, Y.R.L., Costa, L.P., Siciliano, S., Kierulff, M.C.M., Mendes, S.L., Tavares, V.C., Mittermeier, R.A., & Patton, J.L., 2012. Lista anotada dos mamíferos do Brasil. Washington, D.C.: Conservation International, Occasional Papers in Conservation Biology, 2 ed.; Aleixo, 2016Aleixo, M., 2016. Censo da Biodiversidade da Amazônia Brasileira: aves. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
http://www.museu-goeldi.br/censo/...
; Cardoso et al., 2017Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C., Fiaschi, P., Funk, V.A., Giacomin, L.L., Goldenberg, R., Heiden, G., Iganci, J., Kelloff, C.L., Knapp, S., Lima, H.C., Machado, A.F.P., Santos, R.M., Mello-Silva, R., Michelangeli, F.A., Mitchell, J., Moonlight, P., Moraes, P.L.R., Mori, S.A., Nunes, T.S., Pennington, T.D., Pirani, J.R., Prance, G.T., Queiroz, L.P., Rapini, A., Riina, R., Rincon, C.A.V., Roque, N., Shimizu, G., Sobral, M., Stehmann, J.R., Stevens, W.D., Taylor, C.M., Trovó, M., Berg, C.V.D., van der Werff, H., Viana, P.L., Zartmann, C.E., & Forzza, R.C., 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 114(40), 10695-10700. PMid:28923966. http://doi.org/10.1073/pnas.1706756114.
http://doi.org/10.1073/pnas.1706756114...
; Prudente, 2017Prudente, M., 2017. Censo da biodiversidade da Amazônia Brasileira: serpentes. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
http://www.museu-goeldi.br/censo/...
; Ávila-Pires, 2018Ávila-Pires, T.C.S., 2018. Censo da biodiversidade da Amazônia brasileira: quelônios e jacarés. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
http://www.museu-goeldi.br/censo/...
, 2021Ávila-Pires, T.C.S., 2021. Censo da biodiversidade da Amazônia brasileira: lagartos. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
http://www.museu-goeldi.br/censo/...
; Hoogmoed, 2018Hoogmoed, M., 2018. Censo da biodiversidade da Amazônia Brasileira: anfíbios. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
http://www.museu-goeldi.br/censo/...
; Dagosta & de Pinna, 2019Dagosta, F.C.P., & de Pinna, M., 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431(1), 1-163. http://doi.org/10.1206/0003-0090.431.1.1.
http://doi.org/10.1206/0003-0090.431.1.1...
) In addition, it is believed that there is a much larger number of species that have not yet been described. Therefore, fauna and flora inventories represent indispensable sources of information for implementing management, conservation and mitigation actions of environmental impacts in mineral exploration areas (Costello et al., 2013Costello, M., May, R., & Stork, N., 2013. Can we name earth’s species before they go extinct? Science 339(6118), 413-416. PMid:23349283. http://doi.org/10.1126/science.1230318.
http://doi.org/10.1126/science.1230318...
).

The Amazonian water bodies have a high diversity of fish. This species richness and the abundance of individuals may vary due to changes that occur naturally in the environment, such as flood pulses (Claro-Junior et al., 2004Claro-Junior, L., Ferreira, E., Zuanon, J., & Araujo-Lima, C., 2004. O efeito da floresta alagada na alimentação de três espécies de peixes onívoros em lagos de várzea da Amazônia Central, Brasil. Acta Amazon. 34(1), 133-137. http://doi.org/10.1590/S0044-59672004000100018.
http://doi.org/10.1590/S0044-59672004000...
; Barbosa et al., 2015Barbosa, T.A.P., Benone, N.L., Begot, T.O.R., Gonçalves, A., Sousa, L., Giarrizzo, T., Juen, L., & Montag, L.F.A., 2015. Effect of waterfalls and the flood pulse on the structure of fish assemblages of the middle Xingu River in the eastern Amazon basin. Braz. J. Biol. 75(3, Suppl. 1), 78-94. PMid:26691079. http://doi.org/10.1590/1519-6984.00214BM.
http://doi.org/10.1590/1519-6984.00214BM...
). However, variations can also affect anthropic activities, such as mining (Brejão et al., 2018Brejão, G.L., Hoeinghaus, D.J., Pérez-Mayorga, M.A., Ferraz, S.F.B., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061.
http://doi.org/10.1111/cobi.13061...
; Siqueira-Gay et al., 2020Siqueira-Gay, J., Sonter, L.J., & Sánchez, L.E., 2020. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662. http://doi.org/10.1016/j.resourpol.2020.101662.
http://doi.org/10.1016/j.resourpol.2020....
). Thus, it is important to know the organisms that make up these environments, and in this work, we present an inventory of the ichthyofauna based on primary and secondary data, aiming to obtain a better understanding about the conservation status of the Ichthyofauna under the influence of a bauxite mining area in the Potiritá River region, in the Capim River basin, Eastern Amazon.

2. Material and Methods

2.1. Study area

The Potiritá River basin has 1.834 km2 and is part of the Capim drainage located northeast of Pará, Brazil (Figure 1). It drains a major axis of economic circulation in Pará, the Belém-Brasília Road (BR 010), which is important for activities related to industry, logging, and agriculture (Lima & Ponte, 2012Lima, A.M.M., & Ponte, M.X., 2012. Dinâmica da Paisagem da Bacia do Rio Capim-PA. Rev. Bras. Geogr. Fis. 5(1), 127-142. http://doi.org/10.26848/rbgf.v5i1.232779.
http://doi.org/10.26848/rbgf.v5i1.232779...
).

Figure 1
Sample sites located in rivers and streams along the Potiritá River basin, Paragominas district, State of Pará, northern Brazil, where the specimens were sampled during two expeditions in 2017.

In general, the vegetation is composed of secondary forests and open grassland due to agricultural activities. Some forests in various regeneration processes also occur. In addition, floodplains are abundant and have low vegetation, subject to seasonal flooding. These areas suffer impacts related to sand dredging, agriculture, livestock and settlements (Lima, 2007Lima, A.M.M., 2007. O planejamento estratégico e a gestão da oferta hídrica baseados no estudo da paisagem, na bacia do rio Capim – PA [Tese de doutorado em Desenvolvimento Sustentável do Trópico Úmido]. Núcleo de Estudos Amazônicos, Universidade Federal do Pará.).

The region’s climate is classified as Aw4, with a well-defined dry winter, according to the Köppen classification (Peel et al., 2007Peel, M.C., Finlayson, B.L., & McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11(5), 1633-1644. http://doi.org/10.5194/hess-11-1633-2007.
http://doi.org/10.5194/hess-11-1633-2007...
). Precipitation varies between 1500 and 2000 mm per year, with the greatest rainfall from February to April and the driest months between August and September. The average annual temperature is 26 °C and the annual humidity is around 75% (Lima, 2007Lima, A.M.M., 2007. O planejamento estratégico e a gestão da oferta hídrica baseados no estudo da paisagem, na bacia do rio Capim – PA [Tese de doutorado em Desenvolvimento Sustentável do Trópico Úmido]. Núcleo de Estudos Amazônicos, Universidade Federal do Pará.). The region has a low slope and an irregular drainage network. The flow of the Potiritá River varies between 200 and 1,000 m3/s (Lima, 2005Lima, A.M.M., 2005. Sistema de informação de recursos hídricos como subsídio à elaboração do plano diretor da bacia do Rio Capim – PA. In: Epiphanio, J.C.N., ed. Anais do XII Simpósio Brasileiro de Sensoriamento Remoto. São José dos Campos: INPE, 3789-3796.).

2.2. Sampling and data analysis

We sampled 37 sites of rivers and streams within the Norsk Hydro company area and along the Potiritá River basin. Specimens were collected in two field expeditions. The first one took place from July 10 to 24, 2017 (19 sample sites), and fish were sampled from a specific manual for streams (Peck et al., 2006Peck, D.V., Lazorchak, J.M., & Klemm, D.J., 2006. Environmental monitoring and assessment program: surface waters: western pilot study field operations manual for wadeable streams. Washington, D.C.: Environmental Protection Agency.), which also includes the collection of macroinvertebrates and assessment of the physical habitat of the streams. The second expedition was carried out from September 25 to October 3, 2017 (18 sample sites) to increase knowledge of fish diversity. Both expeditions took place during the dry season.

During the first expedition, specimens were collected in a 150 m segment of the streams for three hours using two 55 cm diameter sieves with a 3 mm mesh between opposite nodes. In the second expedition, we sampled fish using various methods such as sieves, trawls (5 m long, 1.5 m high, and a 3 mm mesh between opposite nodes), and gillnets (10 m long, 2 meters high and meshes varying between 3 and 5 cm between opposite nodes).

We defined the rivers and streams sampled in the second expedition according to the possibility of access from roads or trails, seeking to cover the largest possible area along the Potiritá River basin. The sampling effort was defined according to the environmental characteristics of the stream and river, aiming to access all the aquatic microhabitats observed in the sampling site.

After collection, the fishes were euthanized using eugenol following the technical guidelines of the National Council for Animal Experimentation Control (Brasil, 2018aBrasil. Conselho Nacional de Controle de Experimentação Animal – CONCEA, 22 fev. 2018a. Resolução Normativa CONCEA nº 37, de 15.02.2018. Diretriz da Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, , Seção 1, pp. 5.) (CEUA/UFPA number 8293020418), fixed with a 10% formalin solution, and, after 48 hours, transferred and preserved into 70% alcohol. We identified all individuals to the lowest taxonomic level possible, using dichotomous keys and specialized bibliography (e.g. Géry, 1977Géry, J., 1977. Characoids of the world. Neptune City: T.F.H., 672 p.; Planquette et al., 1996Planquette, P., Keith, P., & Le Bail, P.-Y., 1996. Atlas des poissons d’eau douce de Guyane (tome 1). Paris: IEGB-MNHN, INRA, CSP, Min. Env., Collection du Patrimoine Naturel, no. 22.; Queiroz et al., 2014Queiroz, L.J., Torrente-Vilara, G., Ohara, W.M., Pires, T.H.S., Zuanon, J., & Doria, C.R.C., 2014. Peixes do Rio Madeira. São Paulo: Dialeto.). Samples of some species are deposited in Museu Paraense Emílio Goeldi (MPEG) and Museu de Zoologia da UFPA (MZUFPA). Some of the samples are in the process of accessioning and do not yet have a voucher.

To assess the conservation status of the species, we searched state, national and international lists (e.g., Pará, 2007Pará. Secretaria de Estado de Meio Ambiente – SEMAS, 2007. Resolução nº 54, de 24 de outubro de 2007. Homologa a lista de espécies da flora e da fauna ameaçadas no estado do Pará. Retrieved in 2021, August 27, from https://www.semas.pa.gov.br/2009/03/27/9439
https://www.semas.pa.gov.br/2009/03/27/9...
; Brasil, 2018bBrasil. Ministério do Meio Ambiente – MMA. Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio, 2018b. Livro vermelho da fauna brasileira ameaçada de extinção: volume VI – peixes. Brasília: ICMBio., 2023Brasil. Ministério do Meio Ambiente – MMA. Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio, 2023. Sistema de Avaliação do Risco de Extinção da Biodiversidade (SALVE). Brasília: ICMBio. Retrieved in 2023, May 5, from https://salve.icmbio.gov.br/
https://salve.icmbio.gov.br/...
; IUCN, 2021International Union for Conservation of Nature and Natural Resources – IUCN, 2021. The IUCN Red List of Threatened Species. Version 2021-2. Cambridge. Retrieved in 2021, August 27, from www.iucnredlist.org
www.iucnredlist.org...
;). The status of native or exotic species was based on Tedesco et al. (2017)Tedesco, P.A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J.F., Dias, M.S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S., & Oberdorff, T., 2017. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4(1), 170141. PMid:28972575. http://doi.org/10.1038/sdata.2017.141.
http://doi.org/10.1038/sdata.2017.141...
, while endemism was evaluated according to the proposal of Dagosta & de Pinna (2019)Dagosta, F.C.P., & de Pinna, M., 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431(1), 1-163. http://doi.org/10.1206/0003-0090.431.1.1.
http://doi.org/10.1206/0003-0090.431.1.1...
.

3. Results

We identified a total of 109 species belonging to 81 genera, 28 families and six orders (Table 1; Figures 2 -4). Characiformes was the most representative order (57 species), followed by Siluriformes (20 species), Cichliformes (15 species) and Gymnotiformes (13 species). The orders Cyprinodontiformes and Synbranchiformes were represented by two and one species, respectively. The most representative families were Characidae (22 species), followed by Cichlidae (15 species) and Hypopomidae (five species). Five or fewer species represented the remaining families. Two possible new species were found (Characidium sp. and Moenkhausia sp.) and will be described in future papers.

Table 1
List of species sampled at 37 sites located in rivers and streams in the Potiritá River basin, Pará, Brazil, in 2017.
Figure 2
Species of the Potiritá River basin photographed just after the fixation process. (a) Erythrinus erythrinus; (b) Microcharacidium weitzmani; (c) Bario steindachneri; (d) Moenkhausia comma; (e) Moenkhausia collettii; (f) Hyphessobrycon heterorhabdus; (g) Hemigrammus rhodostomus; (h) Curimatopsis crypticus.
Figure 3
Species of the Potiritá River basin photographed just after the fixation process. (a) Copella arnoldi; (b) Nannostomus trifasciatus; (c) Anostomus anostomus; (d) Anablepsoides urophthalmus; (e) Megalechis thoracata; (f) Bunocephalus coracoideus; (g) Helogenes marmoratus; (h) Farlowella amazonum.
Figure 4
Species of the Potiritá River basin photographed just after the fixation process. (a) Apistogramma agassizii; (b) Apistogramma gr. Regain; (c) Satanoperca jurupari; (d) Aequidens tetramerus; (e) Steatogenys duidae; (f) Gymnotus anguillaris; (g) Synbranchus marmoratus.

All species sampled are native to the Amazon region, and there was no endemic taxon. In addition, considering the state, national and international lists of threatened species, just Gymnotus anguillaris had Data Deficit (DD) status on the international list (IUCN, 2021International Union for Conservation of Nature and Natural Resources – IUCN, 2021. The IUCN Red List of Threatened Species. Version 2021-2. Cambridge. Retrieved in 2021, August 27, from www.iucnredlist.org
www.iucnredlist.org...
), but was not evaluated on the national list. Only Pyrrhulina capim have not been evaluated on any list (regional, national and international).

4. Discussion

The species richness observed in this study (109) is similar to that expected for the region, with records ranging from 20 to more than 1,400 species (Dagosta & de Pinna, 2019Dagosta, F.C.P., & de Pinna, M., 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431(1), 1-163. http://doi.org/10.1206/0003-0090.431.1.1.
http://doi.org/10.1206/0003-0090.431.1.1...
; Jézéquel et al., 2020Jézéquel, C., Tedesco, P.A., Bigorne, R., Maldonado-Ocampo, J.A., Ortega, H., Hidalgo, M., Martens, K., Torrente-Vilara, G., Zuanon, J., Acosta, A., Agudelo, E., Barrera Maure, S., Bastos, D.A., Bogotá Gregory, J., Cabeceira, F.G., Canto, A.L.C., Carvajal-Vallejos, F.M., Carvalho, L.N., Cella-Ribeiro, A., Covain, R., Donascimiento, C., Dória, C.R.C., Duarte, C., Ferreira, E.J.G., Galuch, A.V., Giarrizzo, T., Leitão, R.P., Lundberg, J.G., Maldonado, M., Mojica, J.I., Montag, L.F.A., Ohara, W.M., Pires, T.H.S., Pouilly, M., Prada-Pedreros, S., Queiroz, L.J., Rapp Py-Daniel, L., Ribeiro, F.R.V., Ríos Herrera, R., Sarmiento, J., Sousa, L.M., Stegmann, L.F., Valdiviezo-Rivera, J., Villa, F., Yunoki, T., & Oberdorff, T., 2020. A database of freshwater fish species of the Amazon Basin. Sci. Data 7(1), 96. PMid:32193422. http://doi.org/10.1038/s41597-020-0436-4.
http://doi.org/10.1038/s41597-020-0436-4...
). However, the species richness recorded in the Potiritá River basin may be considered high, given its relatively small area (1,834 km2).

Species richness may be related to the area sampled in a given system (Matthews & Robison, 1998Matthews, W.J., & Robison, H.W., 1998. Influence of drainage connectivity, drainage area and regional species richness on fishes of the interior highlands in Arkansas. Am. Midl. Nat. 139(1), 1-19. http://doi.org/10.1674/0003-0031(1998)139[0001:IODCDA]2.0.CO;2.
http://doi.org/10.1674/0003-0031(1998)13...
), as found in the present study. However, works in other Neotropical basins indicate a lower relationship between species richness and drainage area, as is the case of tributaries of the São Francisco River (Alves & Leal, 2010Alves, C.B.M., & Leal, C.G., 2010. Aspectos da conservação da fauna de peixes da Bacia do Rio São Francisco em Minas Gerais. MG. Biota 2(6), 26-50.; Salvador et al., 2020bSalvador, G.N., Casarim, R., Rosa, G.R., Caldeira, Y.M., & Pompeu, P.S., 2020b. The ichthyofauna of the Rio Carinhanha basin, one of the main tributaries of the Rio São Francisco. Arq. Zool. 51(4), 31-44. http://doi.org/10.11606/2176-7793/2020.51.04.
http://doi.org/10.11606/2176-7793/2020.5...
) and even of the Paraná River, another megadiverse Neotropical basin (Langeani et al., 2007Langeani, F., Castro, R.M.C., Oyakawa, O.T., Shibatta, O.A., Pavanelli, C.S., & Casatti, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotrop. 7(3), 181-197. http://doi.org/10.1590/S1676-06032007000300020.
http://doi.org/10.1590/S1676-06032007000...
; Ribeiro et al., 2019Ribeiro, D.C., Chagas, J.M.A., Thereza, M.R., & Langeani, F., 2019. Checklist and key for the identification of fish fauna of the Uberaba River, Upper Paraná River system, Brazil. ZooKeys 875, 129-155. PMid:31579131. http://doi.org/10.3897/zookeys.875.31977.
http://doi.org/10.3897/zookeys.875.31977...
; Jarduli et al., 2020Jarduli, L.R., Garcia, D.A.Z., Vidotto-Magnoni, A.P., Casimiro, A.C.R., Vianna, N.C., Almeida, F.S.D., Jerep, F.C., & Orsi, M.L., 2020. Fish fauna from the Paranapanema river basin, Brazil. Biota Neotrop. 20(1), e20180707. http://doi.org/10.1590/1676-0611-bn-2018-0707.
http://doi.org/10.1590/1676-0611-bn-2018...
;). Our results may be due to the dedicated sampling effort in the basin (Hughes et al., 2012Hughes, R.M., Herlihy, A.T., Gerth, W.J., & Pan, Y., 2012. Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ. Monit. Assess. 184(5), 3185-3198. PMid:21713475. http://doi.org/10.1007/s10661-011-2181-9.
http://doi.org/10.1007/s10661-011-2181-9...
; Pompeu et al., 2021Pompeu, P.S., Carvalho, D.R., Leal, C.G., Leitão, R.P., Alves, C.B.M., Braga, D.F., Castro, M.A., Junqueira, N.T., & Hughes, R.M., 2021. Sampling efforts for determining fish species richness in megadiverse tropical regions. Environ. Biol. Fishes 104(11), 1487-1499. http://doi.org/10.1007/s10641-021-01184-7.
http://doi.org/10.1007/s10641-021-01184-...
), but other studies carried out with a great collection effort concerning the drainage area indicate a different richness/area ratio (Azevedo-Santos et al., 2020Azevedo-Santos, V.M., Pelicice, F.M., & Henry, R., 2020. Knowing biodiversity: fishes from the Guareí River basin, a tributary of the Jurumirim reservoir, Paranapanema River, Brazil. Biota Neotrop. 20(3), e20201031. http://doi.org/10.1590/1676-0611-bn-2020-1031.
http://doi.org/10.1590/1676-0611-bn-2020...
), even in the Amazon region itself (Casatti et al., 2013Casatti, L., Pérez-Mayorga, M.A., Carvalho, F.R., Brejão, G.L., & Costa, I.D., 2013. The stream fish fauna from the Rio Machado basin, Rondônia State, Brazil. Check List 9(6), 1496-1504. http://doi.org/10.15560/9.6.1496.
http://doi.org/10.15560/9.6.1496...
).

The distribution of species recorded in the Potiritá River basin, about the Orders, follows the pattern predicted for the Neotropical region, with a predominance of Characiformes and Siluriformes (Lowe-McConnell, 1999Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: Edusp.; Albert et al., 2020Albert, J.S., Tagliacollo, V.A., & Dagosta, F., 2020. Diversification of neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 51(1), 27-53. http://doi.org/10.1146/annurev-ecolsys-011620-031032.
http://doi.org/10.1146/annurev-ecolsys-0...
). This pattern is widely observed in South America and has already been recorded in other basins, such as rivers in the Amazon (Vari et al., 2009Vari, R.P., Ferraris Junior, C.J., Radosavljevic, A., & Funk, V.A., 2009. Checklist of the freshwater fishes of the Guiana Shield. Bull. Biol. Soc. Wash. 17(1), 8-18. http://doi.org/10.2988/0097-0298-17.1.8.
http://doi.org/10.2988/0097-0298-17.1.8...
; Dutra et al., 2020Dutra, G.M., Freitas, T., Prudente, B.S., Salvador, G.N., Leão, M.D., Peixoto, L.A., Mendonça, M.B., Netto-Ferreira, A.L., Silva, F.R., Montag, L.F.A., & Wosiacki, W.B., 2020. Rapid assessment of the ichthyofauna of the southern Guiana Shield tributaries of the Amazonas River in Pará, Brazil. Acta Amazon. 50(1), 24-36. http://doi.org/10.1590/1809-4392201901402.
http://doi.org/10.1590/1809-439220190140...
), Paraná (Langeani et al., 2007Langeani, F., Castro, R.M.C., Oyakawa, O.T., Shibatta, O.A., Pavanelli, C.S., & Casatti, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotrop. 7(3), 181-197. http://doi.org/10.1590/S1676-06032007000300020.
http://doi.org/10.1590/S1676-06032007000...
; Ota et al., 2018Ota, R.R., Deprá, G.D.C., Graça, W.J.D., & Pavanelli, C.S., 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop. Ichthyol. 16(2), e170094. http://doi.org/10.1590/1982-0224-20170094.
http://doi.org/10.1590/1982-0224-2017009...
), Mearim (Guimarães et al., 2020Guimarães, E.C., Brito, P.S., Gonçalves, C.S., & Ottoni, F.P., 2020. An inventory of ichthyofauna of the Pindaré River drainage, Mearim River basin, Northeastern Brazil. Biota Neotrop. 20(4), e20201023. http://doi.org/10.1590/1676-0611-bn-2020-1023.
http://doi.org/10.1590/1676-0611-bn-2020...
), Munim (Vieira et al., 2023Vieira, L.O., Campos, D.S., Oliveira, R.F., South, J., Coelho, M.S.P., Paiva, M.J.S., Bragança, P.H.N., Guimarães, E.C., Katz, A.M., Brito, P.S., Santos, J.P., & Ottoni, F.P., 2023. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers. Data J. 11, e98632. PMid:38327355. http://doi.org/10.3897/BDJ.11.e98632.
http://doi.org/10.3897/BDJ.11.e98632...
), and São Francisco (Alves & Leal, 2010Alves, C.B.M., & Leal, C.G., 2010. Aspectos da conservação da fauna de peixes da Bacia do Rio São Francisco em Minas Gerais. MG. Biota 2(6), 26-50.; Salvador et al., 2020bSalvador, G.N., Casarim, R., Rosa, G.R., Caldeira, Y.M., & Pompeu, P.S., 2020b. The ichthyofauna of the Rio Carinhanha basin, one of the main tributaries of the Rio São Francisco. Arq. Zool. 51(4), 31-44. http://doi.org/10.11606/2176-7793/2020.51.04.
http://doi.org/10.11606/2176-7793/2020.5...
). Furthermore, these are species-rich fish families, and many more species are being described. Thus, Characiformes and Siluriformes are fish families with wide distribution (Dutra et al., 2020Dutra, G.M., Freitas, T., Prudente, B.S., Salvador, G.N., Leão, M.D., Peixoto, L.A., Mendonça, M.B., Netto-Ferreira, A.L., Silva, F.R., Montag, L.F.A., & Wosiacki, W.B., 2020. Rapid assessment of the ichthyofauna of the southern Guiana Shield tributaries of the Amazonas River in Pará, Brazil. Acta Amazon. 50(1), 24-36. http://doi.org/10.1590/1809-4392201901402.
http://doi.org/10.1590/1809-439220190140...
).

In our study, two species considered new to science were registered, which shows the importance of systematic surveys to expand knowledge about the biodiversity of freshwater fish. In the Capim River basin, some works were carried out in small-order stream environments (Leal et al., 2018Leal, C.G., Barlow, J., Gardner, T.A., Hughes, R.M., Leitão, R.P., Mac-Nally, R., Kaufmann, P.R., Ferraz, S.F.B., Zuanon, J., de Paula, F.R., Ferreira, J., Thomson, J.R., Lennox, G.D., Dary, E.P., Röpke, C.P., & Pompeu, P.S., 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55(3), 1312-1326. PMid:32831394. http://doi.org/10.1111/1365-2664.13028.
http://doi.org/10.1111/1365-2664.13028...
; Maia, 2019Maia, C., 2019. Efeito da mineração e de práticas agrícolas sobre a estrutura do hábitat e assembleias de peixes em riachos da Amazônia Oriental [Dissertação de mestrado em Ecologia Aquática e Pesca]. Belém: Instituto de Ciências Biológicas, Universidade Federal do Pará.), but they were focused on ecological issues and assessments of the effects of land use on the fish community. Still, such studies can be considered as efforts to understand how freshwater biodiversity is distributed along the Capim River basin. It is worth mentioning that in-depth studies of a small watershed can reveal many clues to understanding not only the environmental impacts on small streams, but also how the entire watershed can be affected. Thus, to expand knowledge, it is also necessary to study higher-order freshwater bodies, similar to the study carried out by Carvalho et al. (2007)Carvalho, L.N., Zuanon, J., & Sazima, I., 2007. Natural history of Amazon fishes. In: Del-Claro, K., ed. Tropical biology and natural resources: Encyclopedia of Life Support Systems (EOLSS). Paris: EOLSS Publishers..

Information about fish communities in water bodies is essential for identifying taxa with different habitat uses, including species from groups known as indicators of environmental degradation, which are essential for assessing and monitoring degraded areas, including the ones affected by mining companies activities (De Paula Gutiérrez & Agudelo, 2020De Paula Gutiérrez, B.F., & Agudelo, C.A.R., 2020. Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems. Environ. Sci. Pollut. Res. Int. 27(22), 27541-27562. PMid:32418107. http://doi.org/10.1007/s11356-020-09159-4.
http://doi.org/10.1007/s11356-020-09159-...
; Azevedo-Santos et al., 2021Azevedo-Santos, V.M., Arcifa, M.S., Brito, M.F.G., Agostinho, A.A., Hughes, R.M., Vitule, J.R.S., Simberloff, D., Olden, J.D., & Pelicice, F.M., 2021. Negative impacts of mining on Neotropical freshwater fishes. Neotrop. Ichthyol. 19(3), e210001. http://doi.org/10.1590/1982-0224-2021-0001.
http://doi.org/10.1590/1982-0224-2021-00...
). Fishes are known as good bioindicators due to the functional role they play in the environment, their high diversity and abundance, in addition to their sensitivity to environmental changes reflected in ecological aspects related to feeding and reproduction (Chovanec et al., 2003Chovanec, A., Hofer, R., & Schiemer, F., 2003. Fish as bioindicators. In: Markert, B.A., Breure, A.M., & Zechmeister, H.G., eds. Trace metals and other contaminants in the environment. Amsterdam: Elsevier, chap. 18, 639-676. http://doi.org/10.1016/S0927-5215(03)80148-0.
http://doi.org/10.1016/S0927-5215(03)801...
; Gadzala-Kopciuch et al., 2004Gadzala-Kopciuch, R., Berecka, B., Bartoszewicz, J., & Buszewski, B., 2004. Some considerations about bioindicators in environmental monitoring. Pol. J. Environ. Stud. 13(5), 453-462.).

In our study, we found several species of fish of the order Characiformes, which have several taxa that inhabit the water column, using vision in foraging activities and, therefore, being good indicators of the condition of this micro-habitat, mainly in relation to water turbidity (Araújo et al., 2003Araújo, F.G., Fichberg, I., Pinto, B.C.T., & Peixoto, M.G., 2003. A preliminary Index of Biotic Integrity for monitoring the condition of the Rio Paraiba do Sul, Southeast Brazil. Environ. Manage. 32(4), 526. PMid:14986900. http://doi.org/10.1007/s00267-003-3003-9.
http://doi.org/10.1007/s00267-003-3003-9...
; Masson et al., 2021Masson, I., Castelain, J.G., Dubny, S., Othax, N., & Peluso, F., 2021. Index of Biotic Integrity based on fish assemblages for pampean streams and its implementation along the Del Azul stream (Buenos Aires province, Argentina). Acta Limnol. Bras. 33, e4. http://doi.org/10.1590/s2179-975x8220.
http://doi.org/10.1590/s2179-975x8220...
). Siluriformes has species with benthic habits capable of producing an electric field to detect prey between the banks of leaves and branches of adjacent vegetation (Zuanon et al., 2015Zuanon, J., Mendonça, F.P., Espírito-Santo, H.M.V., Dias, M.S., Galuch, A.V., & Akama, A., 2015. Guia de peixes da Reserva Ducke - Amazônia Central. Manaus: INPA, 1 ed.). Such species may be considered highly specialized, as they need natural or favorable environmental conditions for their development. Environmental alterations such as marginal erosion, channel sedimentation, and alterations in the electrical conductivity of the water can alter the foraging capacity of these species and, consequently, cause a local extinction (Araújo et al., 2003Araújo, F.G., Fichberg, I., Pinto, B.C.T., & Peixoto, M.G., 2003. A preliminary Index of Biotic Integrity for monitoring the condition of the Rio Paraiba do Sul, Southeast Brazil. Environ. Manage. 32(4), 526. PMid:14986900. http://doi.org/10.1007/s00267-003-3003-9.
http://doi.org/10.1007/s00267-003-3003-9...
).

Environmental changes caused by human activities have affected the composition of fish species. Sensitive and more specialized species are harmed and even eliminated from the environment (Zeni & Casatti, 2014Zeni, J.O., & Casatti, L., 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726(1), 259-270. http://doi.org/10.1007/s10750-013-1772-6.
http://doi.org/10.1007/s10750-013-1772-6...
; Arantes et al., 2017Arantes, C.C., Winemiller, K.O., Petrere, M., Castello, L., Hess, L.L., & Freitas, C.E.C., 2017. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 55(1), 386-395. http://doi.org/10.1111/1365-2664.12967.
http://doi.org/10.1111/1365-2664.12967...
). Studies carried out in small streams have shown that degraded environments have greater abundance and biomass of aquatic insectivores fish, as well as detritivores and algivores. On the other hand, non-degraded stream environments have a greater abundance and biomass of insectivores and terrestrial herbivores fishes, followed by a greater diversity of trophic guilds (Zeni & Casatti, 2014Zeni, J.O., & Casatti, L., 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726(1), 259-270. http://doi.org/10.1007/s10750-013-1772-6.
http://doi.org/10.1007/s10750-013-1772-6...
). In rivers, the reduction of forest cover affects the composition of fish, harming species that are highly dependent on allochthonous material from the forest and favoring the increase in abundance and richness of species with high dispersal capacity and/or classified as ecological generalists (Arantes et al., 2017Arantes, C.C., Winemiller, K.O., Petrere, M., Castello, L., Hess, L.L., & Freitas, C.E.C., 2017. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 55(1), 386-395. http://doi.org/10.1111/1365-2664.12967.
http://doi.org/10.1111/1365-2664.12967...
). Given this, environmental changes caused by human activities can lead fish communities to be less rich and more similar, becoming homogeneous (Petsch, 2016Petsch, D.K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. Int. Rev. Hydrobiol. 101(3-4), 113-122. http://doi.org/10.1002/iroh.201601850.
http://doi.org/10.1002/iroh.201601850...
).

Studies in mining areas indicate a reduction in the richness of fish assemblages in streams (Allard et al., 2016Allard, L., Popée, M., Vigouroux, R., & Brosse, S., 2016. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78(2), 315-325. http://doi.org/10.1007/s00027-015-0433-4.
http://doi.org/10.1007/s00027-015-0433-4...
; Apriadi et al., 2018Apriadi, T.R.I., Pratama, G., Putra, R.D., Jumsurizal, J., & Jaya, Y.V., 2018. Comparative study on the fish diversity from natural and bauxite post-mining in wetland system of Bintan Island, Indonesia. Biodiversitas 19(3), 967-973. http://doi.org/10.13057/biodiv/d190327.
http://doi.org/10.13057/biodiv/d190327...
; Salvador et al., 2023Salvador, G.N., Hughes, R.M., Vieira, F., Ligeiro, R., & Montag, L.F.A., 2023. Mine tailings storage dams modify upstream headwater fish assemblages. Water Biol. Secur. 2(2), 100136. http://doi.org/10.1016/j.watbs.2023.100136.
http://doi.org/10.1016/j.watbs.2023.1001...
). Removing natural vegetation and soil excavating along the watersheds are the main modifications. These activities lead to an intense increase in erosive processes and contribute to a high load of suspended sediments deposited on the channel bed, affecting the occurrence of fish specialized in benthic habitats, which hide in banks of leaves, woody debris or use electric fields to detect prey (Mol & Ouboter, 2004Mol, J.H., & Ouboter, P.E., 2004. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conserv. Biol. 18(1), 201-214. http://doi.org/10.1111/j.1523-1739.2004.00080.x.
http://doi.org/10.1111/j.1523-1739.2004....
; Brosse et al., 2011Brosse, S., Grenouillet, G., Gevrey, M., Khazraie, K., & Tudesque, L., 2011. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers. Conserv. 807(20), 1013-1026. http://doi.org/10.1007/s10531-011-0011-6.
http://doi.org/10.1007/s10531-011-0011-6...
; Allard et al., 2016Allard, L., Popée, M., Vigouroux, R., & Brosse, S., 2016. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78(2), 315-325. http://doi.org/10.1007/s00027-015-0433-4.
http://doi.org/10.1007/s00027-015-0433-4...
; Apriadi et al., 2018Apriadi, T.R.I., Pratama, G., Putra, R.D., Jumsurizal, J., & Jaya, Y.V., 2018. Comparative study on the fish diversity from natural and bauxite post-mining in wetland system of Bintan Island, Indonesia. Biodiversitas 19(3), 967-973. http://doi.org/10.13057/biodiv/d190327.
http://doi.org/10.13057/biodiv/d190327...
). In addition, some mining activities use substances such as mercury, which poison fish and other aquatic animals, also affecting human populations (Berzas Nevado et al., 2010Berzas Nevado, J.J., Rodríguez Martín-Doimeadios, R.C., Guzmán Bernardo, F.J., Jiménez Moreno, M., Herculano, A.M., Nascimento, J.L.M., & Crespo-López, M.E., 2010. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environ. Int. 36(6), 593-608. PMid:20483161. http://doi.org/10.1016/j.envint.2010.03.011.
http://doi.org/10.1016/j.envint.2010.03....
; Faial et al., 2015Faial, K., Deus, R., Deus, S., Neves, R., Jesus, I., Santos, E., Alves, C.N., & Brasil, D., 2015. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: fish consumption as a possible route of exposure. J. Trace Elem. Med. Biol. 30, 66-76. PMid:25467850. http://doi.org/10.1016/j.jtemb.2014.10.009.
http://doi.org/10.1016/j.jtemb.2014.10.0...
). This results in the loss of countless contaminated species, economic losses, and human health problems (Faial et al., 2015Faial, K., Deus, R., Deus, S., Neves, R., Jesus, I., Santos, E., Alves, C.N., & Brasil, D., 2015. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: fish consumption as a possible route of exposure. J. Trace Elem. Med. Biol. 30, 66-76. PMid:25467850. http://doi.org/10.1016/j.jtemb.2014.10.009.
http://doi.org/10.1016/j.jtemb.2014.10.0...
).

In the Potiritá River basin, the mineral extraction of bauxite, an important ore for industry and local development, takes place. However, the environmental changes caused by this activity affect aquatic environments and contribute to changes in species composition, causing the loss of some (Apriadi et al., 2018Apriadi, T.R.I., Pratama, G., Putra, R.D., Jumsurizal, J., & Jaya, Y.V., 2018. Comparative study on the fish diversity from natural and bauxite post-mining in wetland system of Bintan Island, Indonesia. Biodiversitas 19(3), 967-973. http://doi.org/10.13057/biodiv/d190327.
http://doi.org/10.13057/biodiv/d190327...
; Maia, 2019Maia, C., 2019. Efeito da mineração e de práticas agrícolas sobre a estrutura do hábitat e assembleias de peixes em riachos da Amazônia Oriental [Dissertação de mestrado em Ecologia Aquática e Pesca]. Belém: Instituto de Ciências Biológicas, Universidade Federal do Pará.). A study carried out with fish from streams in the Potiritá River basin region points out that environmental changes related, directly or indirectly, to mining activities, affect fish communities in the evaluated streams (Maia, 2019Maia, C., 2019. Efeito da mineração e de práticas agrícolas sobre a estrutura do hábitat e assembleias de peixes em riachos da Amazônia Oriental [Dissertação de mestrado em Ecologia Aquática e Pesca]. Belém: Instituto de Ciências Biológicas, Universidade Federal do Pará.). This happens because the bauxite mining activity encompasses numerous processes, from the removal of natural vegetation, flow of machinery, excavation of the soil along microbasins, and use of water from tributaries, and all these processes contribute to changes in fish communities (Brosse et al., 2011Brosse, S., Grenouillet, G., Gevrey, M., Khazraie, K., & Tudesque, L., 2011. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers. Conserv. 807(20), 1013-1026. http://doi.org/10.1007/s10531-011-0011-6.
http://doi.org/10.1007/s10531-011-0011-6...
; Maia, 2019Maia, C., 2019. Efeito da mineração e de práticas agrícolas sobre a estrutura do hábitat e assembleias de peixes em riachos da Amazônia Oriental [Dissertação de mestrado em Ecologia Aquática e Pesca]. Belém: Instituto de Ciências Biológicas, Universidade Federal do Pará.).

Given the current environmental scenario in Brazil, inventories such as the one carried out in this work are essential for the knowledge of the ichthyofauna in impacted areas. The diversity found in the Potiritá River basin should be considered in future environmental impact studies and in monitoring the ichthyofauna in areas affected by human activities. However, it is necessary to carry out research that deepens and expands the information obtained here, including ecological aspects such as feeding and reproduction of the species. In addition, future studies should apply similar methods in the Capim/Guamá basins, allowing comparisons between different areas and reducing the gap in ichthyological knowledge in the Amazon.

Acknowledgements

We are thankful to the Hydro Paragominas company for supporting the research project “Monitoring the Aquatic Biota in Streams in Mining Areas in Paragominas, Pará, Brazil” (process 011) through the Consortium for Research in Biodiversity Brazil-Norway (BRC) providing funding and logistical support. We would also like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the productivity research grant given to LFAM (process 302881/2022-0).

We are thankful to the Hydro Paragominas company for supporting the research project “Monitoring the Aquatic Biota in Streams in Mining Areas in Paragominas, Pará, Brazil”BRC (process 011) through the Consortium for Research in Biodiversity Brazil-Norway () providing funding and logistical support. We would also like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the productivity research grant given to LFAM (process 302881/2022-0).

  • Cite as: Barbosa, T.A.P. The ichthyofauna of the Potiritá River basin: assessing the conservation status in a mining area in the Eastern Amazon. Acta Limnologica Brasiliensia, 2024, vol. 36, e31. https://doi.org/10.1590/S2179-975X4623

References

  • Albert, J.S., Tagliacollo, V.A., & Dagosta, F., 2020. Diversification of neotropical freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 51(1), 27-53. http://doi.org/10.1146/annurev-ecolsys-011620-031032
    » http://doi.org/10.1146/annurev-ecolsys-011620-031032
  • Aleixo, M., 2016. Censo da Biodiversidade da Amazônia Brasileira: aves. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
    » http://www.museu-goeldi.br/censo/
  • Allard, L., Popée, M., Vigouroux, R., & Brosse, S., 2016. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78(2), 315-325. http://doi.org/10.1007/s00027-015-0433-4
    » http://doi.org/10.1007/s00027-015-0433-4
  • Alves, C.B.M., & Leal, C.G., 2010. Aspectos da conservação da fauna de peixes da Bacia do Rio São Francisco em Minas Gerais. MG. Biota 2(6), 26-50.
  • Apriadi, T.R.I., Pratama, G., Putra, R.D., Jumsurizal, J., & Jaya, Y.V., 2018. Comparative study on the fish diversity from natural and bauxite post-mining in wetland system of Bintan Island, Indonesia. Biodiversitas 19(3), 967-973. http://doi.org/10.13057/biodiv/d190327
    » http://doi.org/10.13057/biodiv/d190327
  • Arantes, C.C., Winemiller, K.O., Petrere, M., Castello, L., Hess, L.L., & Freitas, C.E.C., 2017. Relationships between forest cover and fish diversity in the Amazon River floodplain. J. Appl. Ecol. 55(1), 386-395. http://doi.org/10.1111/1365-2664.12967
    » http://doi.org/10.1111/1365-2664.12967
  • Araújo, E.R., & Fernandes, F.R.C., 2016. Mineração no Brasil: crescimento econômico e conflitos ambientais. In: Guimarães, P.E., & Cebada, J.D.P., eds. Conflitos ambientais na indústria mineira e metalúrgica: o passado e o presente. Rio de Janeiro: CETEM, 65-88.
  • Araújo, F.G., Fichberg, I., Pinto, B.C.T., & Peixoto, M.G., 2003. A preliminary Index of Biotic Integrity for monitoring the condition of the Rio Paraiba do Sul, Southeast Brazil. Environ. Manage. 32(4), 526. PMid:14986900. http://doi.org/10.1007/s00267-003-3003-9
    » http://doi.org/10.1007/s00267-003-3003-9
  • Artaxo, P., Dias, M.A.F.S., Nagy, L., Luizão, F.J., Cunha, H.B., Quesada, C.A.N., Marengo, J.A., & Krusche, A., 2014. Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Cienc. Cult. 66(3), 41-46. http://doi.org/10.21800/S0009-67252014000300014
    » http://doi.org/10.21800/S0009-67252014000300014
  • Ávila-Pires, T.C.S., 2018. Censo da biodiversidade da Amazônia brasileira: quelônios e jacarés. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
    » http://www.museu-goeldi.br/censo/
  • Ávila-Pires, T.C.S., 2021. Censo da biodiversidade da Amazônia brasileira: lagartos. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
    » http://www.museu-goeldi.br/censo/
  • Azevedo-Santos, V.M., Arcifa, M.S., Brito, M.F.G., Agostinho, A.A., Hughes, R.M., Vitule, J.R.S., Simberloff, D., Olden, J.D., & Pelicice, F.M., 2021. Negative impacts of mining on Neotropical freshwater fishes. Neotrop. Ichthyol. 19(3), e210001. http://doi.org/10.1590/1982-0224-2021-0001
    » http://doi.org/10.1590/1982-0224-2021-0001
  • Azevedo-Santos, V.M., Pelicice, F.M., & Henry, R., 2020. Knowing biodiversity: fishes from the Guareí River basin, a tributary of the Jurumirim reservoir, Paranapanema River, Brazil. Biota Neotrop. 20(3), e20201031. http://doi.org/10.1590/1676-0611-bn-2020-1031
    » http://doi.org/10.1590/1676-0611-bn-2020-1031
  • Barbosa, T.A.P., Benone, N.L., Begot, T.O.R., Gonçalves, A., Sousa, L., Giarrizzo, T., Juen, L., & Montag, L.F.A., 2015. Effect of waterfalls and the flood pulse on the structure of fish assemblages of the middle Xingu River in the eastern Amazon basin. Braz. J. Biol. 75(3, Suppl. 1), 78-94. PMid:26691079. http://doi.org/10.1590/1519-6984.00214BM
    » http://doi.org/10.1590/1519-6984.00214BM
  • Berzas Nevado, J.J., Rodríguez Martín-Doimeadios, R.C., Guzmán Bernardo, F.J., Jiménez Moreno, M., Herculano, A.M., Nascimento, J.L.M., & Crespo-López, M.E., 2010. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environ. Int. 36(6), 593-608. PMid:20483161. http://doi.org/10.1016/j.envint.2010.03.011
    » http://doi.org/10.1016/j.envint.2010.03.011
  • Bojsen, B.H., & Barriga, R., 2002. Effects of deforestation on fish community structure in Ecuadorian Amazon streams. Freshw. Biol. 47(11), 2246-2260. http://doi.org/10.1046/j.1365-2427.2002.00956.x
    » http://doi.org/10.1046/j.1365-2427.2002.00956.x
  • Brasil. Conselho Nacional de Controle de Experimentação Animal – CONCEA, 22 fev. 2018a. Resolução Normativa CONCEA nº 37, de 15.02.2018. Diretriz da Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal. Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF, , Seção 1, pp. 5.
  • Brasil. Ministério do Meio Ambiente – MMA. Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio, 2018b. Livro vermelho da fauna brasileira ameaçada de extinção: volume VI – peixes. Brasília: ICMBio.
  • Brasil. Ministério do Meio Ambiente – MMA. Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio, 2023. Sistema de Avaliação do Risco de Extinção da Biodiversidade (SALVE). Brasília: ICMBio. Retrieved in 2023, May 5, from https://salve.icmbio.gov.br/
    » https://salve.icmbio.gov.br/
  • Brejão, G.L., Hoeinghaus, D.J., Pérez-Mayorga, M.A., Ferraz, S.F.B., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061
    » http://doi.org/10.1111/cobi.13061
  • Brosse, S., Grenouillet, G., Gevrey, M., Khazraie, K., & Tudesque, L., 2011. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodivers. Conserv. 807(20), 1013-1026. http://doi.org/10.1007/s10531-011-0011-6
    » http://doi.org/10.1007/s10531-011-0011-6
  • Callisto, M., & Esteves, F.A, 1998. Biomonitoramento da macrofauna bentônica de Chironomidae (Diptera) em dois igarapés amazônicos sob influência das atividades de uma mineração de bauxita. Oecol. Bras. 5(1), 20. http://doi.org/10.4257/oeco.1998.0501.21
    » http://doi.org/10.4257/oeco.1998.0501.21
  • Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C., Fiaschi, P., Funk, V.A., Giacomin, L.L., Goldenberg, R., Heiden, G., Iganci, J., Kelloff, C.L., Knapp, S., Lima, H.C., Machado, A.F.P., Santos, R.M., Mello-Silva, R., Michelangeli, F.A., Mitchell, J., Moonlight, P., Moraes, P.L.R., Mori, S.A., Nunes, T.S., Pennington, T.D., Pirani, J.R., Prance, G.T., Queiroz, L.P., Rapini, A., Riina, R., Rincon, C.A.V., Roque, N., Shimizu, G., Sobral, M., Stehmann, J.R., Stevens, W.D., Taylor, C.M., Trovó, M., Berg, C.V.D., van der Werff, H., Viana, P.L., Zartmann, C.E., & Forzza, R.C., 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Natl. Acad. Sci. USA 114(40), 10695-10700. PMid:28923966. http://doi.org/10.1073/pnas.1706756114
    » http://doi.org/10.1073/pnas.1706756114
  • Carvalho, L.N., Zuanon, J., & Sazima, I., 2007. Natural history of Amazon fishes. In: Del-Claro, K., ed. Tropical biology and natural resources: Encyclopedia of Life Support Systems (EOLSS). Paris: EOLSS Publishers.
  • Carvalho, M.S., Ribeiro, K.D., Moreira, R.M., & Almeida, A.M., 2017. Concentração de metais no rio Doce em Mariana, Minas Gerais, Brasil. Acta Brasiliensis 1(3), 37-41. http://doi.org/10.22571/Actabra13201758
    » http://doi.org/10.22571/Actabra13201758
  • Carvalho, T.S., & Domingues, E.P., 2016. Projeção de um cenário econômico e de desmatamento para a Amazônia Legal brasileira entre 2006 e 2030. Nova Econ. 26(2), 585-621. http://doi.org/10.1590/0103-6351/2665
    » http://doi.org/10.1590/0103-6351/2665
  • Casatti, L., Pérez-Mayorga, M.A., Carvalho, F.R., Brejão, G.L., & Costa, I.D., 2013. The stream fish fauna from the Rio Machado basin, Rondônia State, Brazil. Check List 9(6), 1496-1504. http://doi.org/10.15560/9.6.1496
    » http://doi.org/10.15560/9.6.1496
  • Chovanec, A., Hofer, R., & Schiemer, F., 2003. Fish as bioindicators. In: Markert, B.A., Breure, A.M., & Zechmeister, H.G., eds. Trace metals and other contaminants in the environment. Amsterdam: Elsevier, chap. 18, 639-676. http://doi.org/10.1016/S0927-5215(03)80148-0
    » http://doi.org/10.1016/S0927-5215(03)80148-0
  • Claro-Junior, L., Ferreira, E., Zuanon, J., & Araujo-Lima, C., 2004. O efeito da floresta alagada na alimentação de três espécies de peixes onívoros em lagos de várzea da Amazônia Central, Brasil. Acta Amazon. 34(1), 133-137. http://doi.org/10.1590/S0044-59672004000100018
    » http://doi.org/10.1590/S0044-59672004000100018
  • Costello, M., May, R., & Stork, N., 2013. Can we name earth’s species before they go extinct? Science 339(6118), 413-416. PMid:23349283. http://doi.org/10.1126/science.1230318
    » http://doi.org/10.1126/science.1230318
  • Dagosta, F.C.P., & de Pinna, M., 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431(1), 1-163. http://doi.org/10.1206/0003-0090.431.1.1
    » http://doi.org/10.1206/0003-0090.431.1.1
  • De Paula Gutiérrez, B.F., & Agudelo, C.A.R., 2020. Fish as bioindicators: coal and mercury pollution in Colombia’s ecosystems. Environ. Sci. Pollut. Res. Int. 27(22), 27541-27562. PMid:32418107. http://doi.org/10.1007/s11356-020-09159-4
    » http://doi.org/10.1007/s11356-020-09159-4
  • Dutra, G.M., Freitas, T., Prudente, B.S., Salvador, G.N., Leão, M.D., Peixoto, L.A., Mendonça, M.B., Netto-Ferreira, A.L., Silva, F.R., Montag, L.F.A., & Wosiacki, W.B., 2020. Rapid assessment of the ichthyofauna of the southern Guiana Shield tributaries of the Amazonas River in Pará, Brazil. Acta Amazon. 50(1), 24-36. http://doi.org/10.1590/1809-4392201901402
    » http://doi.org/10.1590/1809-4392201901402
  • Faial, K., Deus, R., Deus, S., Neves, R., Jesus, I., Santos, E., Alves, C.N., & Brasil, D., 2015. Mercury levels assessment in hair of riverside inhabitants of the Tapajós River, Pará State, Amazon, Brazil: fish consumption as a possible route of exposure. J. Trace Elem. Med. Biol. 30, 66-76. PMid:25467850. http://doi.org/10.1016/j.jtemb.2014.10.009
    » http://doi.org/10.1016/j.jtemb.2014.10.009
  • Fearnside, P.M., 1997. Serviços ambientais como estratégia para o desenvolvimento sustentável na Amazônia rural. In: Cavalcanti, C. ed. Meio ambiente, desenvolvimento sustentável e políticas públicas. São Paulo: Cortez, 314-344.
  • Foley, J., Asner, G., Costa, M., Coe, M., Defries, R., Gibbs, H., Howard, E., Olson, S., Patz, J., Ramankutty, N., & Snyder, P., 2007. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5(1), 25-32. http://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
    » http://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
  • Gadzala-Kopciuch, R., Berecka, B., Bartoszewicz, J., & Buszewski, B., 2004. Some considerations about bioindicators in environmental monitoring. Pol. J. Environ. Stud. 13(5), 453-462.
  • Géry, J., 1977. Characoids of the world. Neptune City: T.F.H., 672 p.
  • Guimarães, E.C., Brito, P.S., Gonçalves, C.S., & Ottoni, F.P., 2020. An inventory of ichthyofauna of the Pindaré River drainage, Mearim River basin, Northeastern Brazil. Biota Neotrop. 20(4), e20201023. http://doi.org/10.1590/1676-0611-bn-2020-1023
    » http://doi.org/10.1590/1676-0611-bn-2020-1023
  • Hoogmoed, M., 2018. Censo da biodiversidade da Amazônia Brasileira: anfíbios. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
    » http://www.museu-goeldi.br/censo/
  • Hughes, R.M., Herlihy, A.T., Gerth, W.J., & Pan, Y., 2012. Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ. Monit. Assess. 184(5), 3185-3198. PMid:21713475. http://doi.org/10.1007/s10661-011-2181-9
    » http://doi.org/10.1007/s10661-011-2181-9
  • International Union for Conservation of Nature and Natural Resources – IUCN, 2021. The IUCN Red List of Threatened Species. Version 2021-2. Cambridge. Retrieved in 2021, August 27, from www.iucnredlist.org
    » www.iucnredlist.org
  • Jarduli, L.R., Garcia, D.A.Z., Vidotto-Magnoni, A.P., Casimiro, A.C.R., Vianna, N.C., Almeida, F.S.D., Jerep, F.C., & Orsi, M.L., 2020. Fish fauna from the Paranapanema river basin, Brazil. Biota Neotrop. 20(1), e20180707. http://doi.org/10.1590/1676-0611-bn-2018-0707
    » http://doi.org/10.1590/1676-0611-bn-2018-0707
  • Jézéquel, C., Tedesco, P.A., Bigorne, R., Maldonado-Ocampo, J.A., Ortega, H., Hidalgo, M., Martens, K., Torrente-Vilara, G., Zuanon, J., Acosta, A., Agudelo, E., Barrera Maure, S., Bastos, D.A., Bogotá Gregory, J., Cabeceira, F.G., Canto, A.L.C., Carvajal-Vallejos, F.M., Carvalho, L.N., Cella-Ribeiro, A., Covain, R., Donascimiento, C., Dória, C.R.C., Duarte, C., Ferreira, E.J.G., Galuch, A.V., Giarrizzo, T., Leitão, R.P., Lundberg, J.G., Maldonado, M., Mojica, J.I., Montag, L.F.A., Ohara, W.M., Pires, T.H.S., Pouilly, M., Prada-Pedreros, S., Queiroz, L.J., Rapp Py-Daniel, L., Ribeiro, F.R.V., Ríos Herrera, R., Sarmiento, J., Sousa, L.M., Stegmann, L.F., Valdiviezo-Rivera, J., Villa, F., Yunoki, T., & Oberdorff, T., 2020. A database of freshwater fish species of the Amazon Basin. Sci. Data 7(1), 96. PMid:32193422. http://doi.org/10.1038/s41597-020-0436-4
    » http://doi.org/10.1038/s41597-020-0436-4
  • Langeani, F., Castro, R.M.C., Oyakawa, O.T., Shibatta, O.A., Pavanelli, C.S., & Casatti, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotrop. 7(3), 181-197. http://doi.org/10.1590/S1676-06032007000300020
    » http://doi.org/10.1590/S1676-06032007000300020
  • Leal, C.G., Barlow, J., Gardner, T.A., Hughes, R.M., Leitão, R.P., Mac-Nally, R., Kaufmann, P.R., Ferraz, S.F.B., Zuanon, J., de Paula, F.R., Ferreira, J., Thomson, J.R., Lennox, G.D., Dary, E.P., Röpke, C.P., & Pompeu, P.S., 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J. Appl. Ecol. 55(3), 1312-1326. PMid:32831394. http://doi.org/10.1111/1365-2664.13028
    » http://doi.org/10.1111/1365-2664.13028
  • Lima, A.M.M., & Ponte, M.X., 2012. Dinâmica da Paisagem da Bacia do Rio Capim-PA. Rev. Bras. Geogr. Fis. 5(1), 127-142. http://doi.org/10.26848/rbgf.v5i1.232779
    » http://doi.org/10.26848/rbgf.v5i1.232779
  • Lima, A.M.M., 2005. Sistema de informação de recursos hídricos como subsídio à elaboração do plano diretor da bacia do Rio Capim – PA. In: Epiphanio, J.C.N., ed. Anais do XII Simpósio Brasileiro de Sensoriamento Remoto. São José dos Campos: INPE, 3789-3796.
  • Lima, A.M.M., 2007. O planejamento estratégico e a gestão da oferta hídrica baseados no estudo da paisagem, na bacia do rio Capim – PA [Tese de doutorado em Desenvolvimento Sustentável do Trópico Úmido]. Núcleo de Estudos Amazônicos, Universidade Federal do Pará.
  • Lobo, F.D.L., Costa, M., Novo, E.M.L.D.M., & Telmer, K., 2016. Distribution of artisanal and small-scale gold mining in the Tapajós river basin (Brazilian Amazon) over the past 40 years and relationship with water siltation. Remote Sens. 8(7), 579. http://doi.org/10.3390/rs8070579
    » http://doi.org/10.3390/rs8070579
  • Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: Edusp.
  • Maia, C., 2019. Efeito da mineração e de práticas agrícolas sobre a estrutura do hábitat e assembleias de peixes em riachos da Amazônia Oriental [Dissertação de mestrado em Ecologia Aquática e Pesca]. Belém: Instituto de Ciências Biológicas, Universidade Federal do Pará.
  • Masson, I., Castelain, J.G., Dubny, S., Othax, N., & Peluso, F., 2021. Index of Biotic Integrity based on fish assemblages for pampean streams and its implementation along the Del Azul stream (Buenos Aires province, Argentina). Acta Limnol. Bras. 33, e4. http://doi.org/10.1590/s2179-975x8220
    » http://doi.org/10.1590/s2179-975x8220
  • Matthews, W.J., & Robison, H.W., 1998. Influence of drainage connectivity, drainage area and regional species richness on fishes of the interior highlands in Arkansas. Am. Midl. Nat. 139(1), 1-19. http://doi.org/10.1674/0003-0031(1998)139[0001:IODCDA]2.0.CO;2
    » http://doi.org/10.1674/0003-0031(1998)139[0001:IODCDA]2.0.CO;2
  • Mol, J.H., & Ouboter, P.E., 2004. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical rainforest stream. Conserv. Biol. 18(1), 201-214. http://doi.org/10.1111/j.1523-1739.2004.00080.x
    » http://doi.org/10.1111/j.1523-1739.2004.00080.x
  • Monteiro, M.A., 2005. Meio século de mineração industrial na Amazônia e suas implicações para o desenvolvimento regional. Estud. Av. 19(53), 187-207. http://doi.org/10.1590/S0103-40142005000100012
    » http://doi.org/10.1590/S0103-40142005000100012
  • Myers, N., Mittermeier, R., Mittermeier, C., Fonseca, G.A., & Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853-858. PMid:10706275. http://doi.org/10.1038/35002501
    » http://doi.org/10.1038/35002501
  • Nepstad, D., Schwartzman, S., Bamberger, B., Santilli, M., Ray, D., Schlesinger, P., Lefebvre, P., Alencar, A., Prinz, E., Fiske, G., & Rolla, A., 2006. Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv. Biol. 20(1), 65-73. PMid:16909660. http://doi.org/10.1111/j.1523-1739.2006.00351.x
    » http://doi.org/10.1111/j.1523-1739.2006.00351.x
  • Ometto, J.P., Sousa-Neto, E.R., & Tejada, G., 2016. Land use, land cover and land use change in the Brazilian Amazon (1960-2013). In: Nagy, L., Forsberg, B.R., & Artaxo, P., eds. Interactions between biosphere, atmosphere and human land use in the Amazon basin. Springer, 369-383, Ecological Studies, no. 227. http://doi.org/10.1007/978-3-662-49902-3_15
    » http://doi.org/10.1007/978-3-662-49902-3_15
  • Ota, R.R., Deprá, G.D.C., Graça, W.J.D., & Pavanelli, C.S., 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop. Ichthyol. 16(2), e170094. http://doi.org/10.1590/1982-0224-20170094
    » http://doi.org/10.1590/1982-0224-20170094
  • Paglia, A.P., Fonseca, G.A.B., Rylands, A.B., Herrmann, G., Aguiar, L.M.S., Chiarello, A.G., Leite, Y.R.L., Costa, L.P., Siciliano, S., Kierulff, M.C.M., Mendes, S.L., Tavares, V.C., Mittermeier, R.A., & Patton, J.L., 2012. Lista anotada dos mamíferos do Brasil. Washington, D.C.: Conservation International, Occasional Papers in Conservation Biology, 2 ed.
  • Pará. Secretaria de Estado de Meio Ambiente – SEMAS, 2007. Resolução nº 54, de 24 de outubro de 2007. Homologa a lista de espécies da flora e da fauna ameaçadas no estado do Pará. Retrieved in 2021, August 27, from https://www.semas.pa.gov.br/2009/03/27/9439
    » https://www.semas.pa.gov.br/2009/03/27/9439
  • Peck, D.V., Lazorchak, J.M., & Klemm, D.J., 2006. Environmental monitoring and assessment program: surface waters: western pilot study field operations manual for wadeable streams. Washington, D.C.: Environmental Protection Agency.
  • Peel, M.C., Finlayson, B.L., & McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11(5), 1633-1644. http://doi.org/10.5194/hess-11-1633-2007
    » http://doi.org/10.5194/hess-11-1633-2007
  • Petsch, D.K., 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. Int. Rev. Hydrobiol. 101(3-4), 113-122. http://doi.org/10.1002/iroh.201601850
    » http://doi.org/10.1002/iroh.201601850
  • Planquette, P., Keith, P., & Le Bail, P.-Y., 1996. Atlas des poissons d’eau douce de Guyane (tome 1). Paris: IEGB-MNHN, INRA, CSP, Min. Env., Collection du Patrimoine Naturel, no. 22.
  • Pompeu, P.S., Carvalho, D.R., Leal, C.G., Leitão, R.P., Alves, C.B.M., Braga, D.F., Castro, M.A., Junqueira, N.T., & Hughes, R.M., 2021. Sampling efforts for determining fish species richness in megadiverse tropical regions. Environ. Biol. Fishes 104(11), 1487-1499. http://doi.org/10.1007/s10641-021-01184-7
    » http://doi.org/10.1007/s10641-021-01184-7
  • Prudente, M., 2017. Censo da biodiversidade da Amazônia Brasileira: serpentes. Belém: Museu Paraense Emílio Goeldi. Retrieved in 2021, August 14, from http://www.museu-goeldi.br/censo/
    » http://www.museu-goeldi.br/censo/
  • Queiroz, L.J., Torrente-Vilara, G., Ohara, W.M., Pires, T.H.S., Zuanon, J., & Doria, C.R.C., 2014. Peixes do Rio Madeira. São Paulo: Dialeto.
  • Ribeiro, D.C., Chagas, J.M.A., Thereza, M.R., & Langeani, F., 2019. Checklist and key for the identification of fish fauna of the Uberaba River, Upper Paraná River system, Brazil. ZooKeys 875, 129-155. PMid:31579131. http://doi.org/10.3897/zookeys.875.31977
    » http://doi.org/10.3897/zookeys.875.31977
  • Ribeiro, J.C.J., & Silva, L.C.N., 2018. A Mineração no Estado do Pará e as Barragens de Rejeito: o Paradigma Entre a Exploração e os Impactos Negativos Decorrentes. In: Costa, B.S., ed. Anais do V Congresso Internacional de Direito Ambiental e Desenvolvimento Sustentável: Pan-Amazônia – Integrar e Proteger e do I Congresso da Rede Pan Amazônia. Belo Horizonte: Dom Helder Escola de Direito, 122-139.
  • Salvador, G.N., Leal, C.G., Brejão, G.L., Pessali, T.C., Alves, C.B.M., Rosa, G.R., Ligeiro, R., & Montag, L.F.A., 2020a. Mining activity in Brazil and negligence in action. Perspect. Ecol. Conserv. 18(2), 139-144. http://doi.org/10.1016/j.pecon.2020.05.003
    » http://doi.org/10.1016/j.pecon.2020.05.003
  • Salvador, G.N., Casarim, R., Rosa, G.R., Caldeira, Y.M., & Pompeu, P.S., 2020b. The ichthyofauna of the Rio Carinhanha basin, one of the main tributaries of the Rio São Francisco. Arq. Zool. 51(4), 31-44. http://doi.org/10.11606/2176-7793/2020.51.04
    » http://doi.org/10.11606/2176-7793/2020.51.04
  • Salvador, G.N., Hughes, R.M., Vieira, F., Ligeiro, R., & Montag, L.F.A., 2023. Mine tailings storage dams modify upstream headwater fish assemblages. Water Biol. Secur. 2(2), 100136. http://doi.org/10.1016/j.watbs.2023.100136
    » http://doi.org/10.1016/j.watbs.2023.100136
  • Santos, B.A., 2002. Recursos minerais da Amazônia. Estud. Av. 16(45), 123-152. http://doi.org/10.1590/S0103-40142002000200009
    » http://doi.org/10.1590/S0103-40142002000200009
  • Santos, L.A.B., Gomes, N.S., Hugo, K.S., Amaral, M.A.L., & Rossoni, H.A.V., 2021. Qualidade da água no Médio Paraopeba e seus impactos socioambientais após rompimento da Barragem da Mina do Córrego do Feijão, Brumadinho, Minas Gerais, Brasil. Rev. Bras. Gest. Ambient. Sustentabilidade 8(18), 291-300. http://doi.org/10.21438/rbgas(2021)081818
    » http://doi.org/10.21438/rbgas(2021)081818
  • Siqueira-Gay, J., Sonter, L.J., & Sánchez, L.E., 2020. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662. http://doi.org/10.1016/j.resourpol.2020.101662
    » http://doi.org/10.1016/j.resourpol.2020.101662
  • Sonter, L.J., Herrera, D., Barrett, D.J., Galford, G.L., Moran, C.J., & Soares-Filho, B.S., 2017. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8(1), 1013. PMid:29044104. http://doi.org/10.1038/s41467-017-00557-w
    » http://doi.org/10.1038/s41467-017-00557-w
  • Tedesco, P.A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J.F., Dias, M.S., Grenouillet, G., Hugueny, B., Jézéquel, C., Leprieur, F., Brosse, S., & Oberdorff, T., 2017. A global database on freshwater fish species occurrence in drainage basins. Sci. Data 4(1), 170141. PMid:28972575. http://doi.org/10.1038/sdata.2017.141
    » http://doi.org/10.1038/sdata.2017.141
  • Vari, R.P., Ferraris Junior, C.J., Radosavljevic, A., & Funk, V.A., 2009. Checklist of the freshwater fishes of the Guiana Shield. Bull. Biol. Soc. Wash. 17(1), 8-18. http://doi.org/10.2988/0097-0298-17.1.8
    » http://doi.org/10.2988/0097-0298-17.1.8
  • Vieira, L.O., Campos, D.S., Oliveira, R.F., South, J., Coelho, M.S.P., Paiva, M.J.S., Bragança, P.H.N., Guimarães, E.C., Katz, A.M., Brito, P.S., Santos, J.P., & Ottoni, F.P., 2023. Checklist of the fish fauna of the Munim River Basin, Maranhão, north-eastern Brazil. Biodivers. Data J. 11, e98632. PMid:38327355. http://doi.org/10.3897/BDJ.11.e98632
    » http://doi.org/10.3897/BDJ.11.e98632
  • Zeni, J.O., & Casatti, L., 2014. The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726(1), 259-270. http://doi.org/10.1007/s10750-013-1772-6
    » http://doi.org/10.1007/s10750-013-1772-6
  • Zuanon, J., Mendonça, F.P., Espírito-Santo, H.M.V., Dias, M.S., Galuch, A.V., & Akama, A., 2015. Guia de peixes da Reserva Ducke - Amazônia Central. Manaus: INPA, 1 ed.

Edited by

Associate Editor: Ronaldo Angelini.

Publication Dates

  • Publication in this collection
    26 Aug 2024
  • Date of issue
    2024

History

  • Received
    29 May 2023
  • Accepted
    24 June 2024
Associação Brasileira de Limnologia Av. 24 A, 1515, CEP: 13506-900 , Tel.:+55 (19) 3526-4225 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com