Acessibilidade / Reportar erro

Spatial variation, more than ontogenetic, explains the diet of Bryconamericus exodon in two Pantanal rivers

Variação espacial, mais que a ontogenética, explica a dieta de Bryconamericus exodon em dois rios do Pantanal

Abstract

Aim

Studies of natural variations in fish diet allow, in turn, a better understanding of environmental changes along the hydrological cycle that can affect resources and, hence, biodiversity conservation. With this in mind, the present study aimed to understand how spatial and ontogenetic aspects (using Standard Length as proxy) define dietary composition, trophic position and trophic niche breadth for a small characid (Bryconamericus exodon) in streams located in two rivers of the Brazilian Pantanal. We also assessed whether spatial differences influence the structuring of trophic networks.

Methods

Fish were sampled monthly in the rainy season (October/2017 to March/2018) in four tributaries of the Negro and Apa Rivers, using different sampling methods. In the laboratory, fish were measured and weighed, followed by excision of stomach for posterior analysis.

Results

We analyzed 211 individuals, 126 from the Apa River (Standard lengthmin= 11.28mm; Standard lengthmax= 43.53mm) and 85 from the Negro River (Standard lengthmin= 13.26mm; Standard lengthmax= 40.05mm), that consumed mainly aquatic insects (Alimentary indexTotal= 87.97%), followed by terrestrial insects (Alimentary indexTotal= 9.02%). Dietary composition was mainly influenced by spatial variation (Pseudo-F1,194=12.21; p<0.001), followed by ontogenetic variation (Pseudo-F1,190=7.23; p<0.001), however, for trophic niche breadth, we did detect a higher importance of spatial variation (t=4.71; p<0.001) and an absence of ontogenetic variation (t=1.24; p=0.213). No spatial variation was detected for complementary specialization (p=0.998); only connectance showed a significant variation (p=0.047) with higher mean values in the Negro River (C= 0.27 ± 0.016) when compared to those of populations in the Apa River (C=0.22 ± 0.019). In addition, trophic position was not influenced by spatial (t= -1.77; p=0.077) or ontogenetic (t=0.69; p=0.494) variations.

Conclusions

B. exodon is considered an insectivorous species whose dietary composition can be explained more by spatial than ontogenetic variation.

Keywords:
trophic niche breadth; trophic ecology; trophic position; complex network

Resumo

Objetivo

O estudo das variações naturais na dieta dos peixes permite, por sua vez, uma melhor compreensão das alterações ambientais ao longo do ciclo hidrológico que podem afetar os recursos e, consequentemente, a conservação da biodiversidade. Com isso em mente, o presente estudo teve como objetivo compreender como os aspectos espaciais e ontogenéticos (usando o Comprimento padrão como proxy) definem a composição da dieta, posição trófica e amplitude de nicho trófico para um pequeno caracídeo (Bryconamericus exodon) em riachos localizados em dois rios do Pantanal brasileiro. Também avaliamos se as diferenças espaciais influenciam na estruturação das redes tróficas.

Métodos

Os peixes foram amostrados mensalmente na estação chuvosa (Outubro/2017 a Março/2018) em quatro tributários dos rios Negro e Apa, utilizando diferentes métodos de amostragem. Em laboratório, os peixes foram medidos e pesados, seguido de excisão do estômago para posterior análise.

Resultados

Foram analisados 211 indivíduos, sendo 126 do Apa (Comprimento padrãomin= 11,28mm; Comprimento padrãomax= 43,53mm) e 85 do Negro (Comprimento padrãomin= 13,26mm; Comprimento padrãomax= 40,05mm), que consumiram principalmente insetos aquáticos (Índice alimentarTotal= 87,97%), seguidos de insetos terrestres (Índice alimentarTotal=9,02%). A composição da dieta foi influenciada principalmente pela variação espacial (Pseudo-F1,194=12,21; p<0,001), seguida da variação ontogenética (Pseudo-F1,190=7,23; p<0,001), no entanto, para amplitude de nicho trófico, detectamos uma maior importância da variação espacial (t=4,71; p<0,001) e ausência de variação ontogenética (t=1,24; p=0,213). Não foi detectada variação espacial para especialização complementar (p=0,998); apenas a conectância obteve uma variação significativa (p=0,047), com valores médios maiores no rio Negro (C= 0,27 ± 0,016) quando comparados aos das populações do rio Apa (C=0,22 ± 0,019). Além disso, a posição trófica não foi influenciada por variações espaciais (t=-1,77; p=0,077) ou ontogenéticas (t=0,69; p=0,494).

Conclusões

B. exodon é considerada uma espécie insetívora, cuja composição da dieta pode ser explicada mais pela variação espacial do que pela variação ontogenética.

Palavras-chave:
amplitude de nicho trófico; ecologia trófica; posição trófica; redes complexas

1. Introduction

Variability in resource use is a typical characteristic in fish species with wide distribution (Neves et al., 2021Neves, M.P., Kratina, P., Delariva, R.L., Jones, J.I., & Fialho, C.B., 2021. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Rev. Fish Biol. Fish. 31(2), 417-432. http://doi.org/10.1007/s11160-021-09648-w.
http://doi.org/10.1007/s11160-021-09648-...
). Accordingly, environments with higher degree of environmental changes along the hydrological cycle can meet the dietary needs of species that also have wider trophic niche breath (Ríos‐Pulgarín et al., 2016Ríos‐Pulgarín, M.I., Barletta, M., & Mancera‐Rodríguez, N.J., 2016. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89(1), 102-130. PMid:26333196. http://doi.org/10.1111/jfb.12757.
http://doi.org/10.1111/jfb.12757...
). Such variability leads to Neotropical floodplain habitats with many generalist species and greater species diversity with little possibility of trophic niche overlap (Loureiro & Hahn, 1996Loureiro, V.E., & Hahn, N.S., 1996. Dieta e atividade alimentar da traíra, Hoplias malabaricus (Bloch, 1794) (Osteichthyes, Erythrinidae), nos primeiros anos de formação do reservatório de Segredo-PR. Acta Limnol. Bras. 8(1), 195-205.; Abelha et al., 2001Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.; Neves et al., 2021Neves, M.P., Kratina, P., Delariva, R.L., Jones, J.I., & Fialho, C.B., 2021. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Rev. Fish Biol. Fish. 31(2), 417-432. http://doi.org/10.1007/s11160-021-09648-w.
http://doi.org/10.1007/s11160-021-09648-...
).

In dynamic and productive environments, such as those found in tropical regions, hydrological variations driven by the seasonality of floods and the resultant connectivity of environments can change the availability and variety of food items (Lowe-McConnell, 1999Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.; Scanferla & Súarez, 2016Scanferla, A.F.L.S., & Súarez, Y.R., 2016. Flood pulse are the main determinant of feeding dynamics and composition of Odontostilbe pequira (Characiformes: Characidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 28(0), e19. http://doi.org/10.1590/s2179-975x3316.
http://doi.org/10.1590/s2179-975x3316...
; Gouveia et al., 2022Gouveia, É.J., Rondon, P.L., & Súarez, Y.R., 2022. Feeding ecology of Eigenmannia desantanai (Gymnotiformes: Sternopygidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 34, e2. http://doi.org/10.1590/s2179-975x9820.
http://doi.org/10.1590/s2179-975x9820...
). During floods, river flow increases, connecting aquatic and terrestrial habitats. This connectivity favors the entry of allochthonous material into the environment, creating micro-habitats for various species and serving as a source of energy and nutrients for a variety of aquatic organisms (Luiz et al., 2018Luiz, E.A., Agostinho, A.A., Gomes, L.C., & Hahn, N.S., 2018. Ecologia trófica de peixes em dois riachos da bacia do rio Paraná. Rev. Bras. Biol. 58(2), 273-285.).

Fish feeding is mainly associated with morphological adaptations, behavioral issues, the availability of resources in the environment and the quality of the environment, or, more specifically, the composition of riparian vegetation (Ferreira et al., 2012aFerreira, A., De Paula, F.R., De Barros Ferraz, S.F., Gerhard, P., Kashiwaqui, E.A., Cyrino, J.E., & Martinelli, L.A., 2012a. Riparian coverage affects diets of characids in neotropical streams. Ecol. Freshwat. Fish 21(1), 12-22. http://doi.org/10.1111/j.1600-0633.2011.00518.x.
http://doi.org/10.1111/j.1600-0633.2011....
). From this perspective, the same species of fish, but sampled in different environments, can show variability in food composition. Thus, the abundance, diversity and spatial distribution of food resources can reflect directly on the trophic niche breadth of ichthyofauna since species with more specialized diets are more likely to be affected by seasonal fluctuations (Abelha et al., 2001Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.).

Apart from spatial variations, ontogenetic variations in dietary composition are common in many animals (Nakazawa, 2015Nakazawa, T., 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul. Ecol. 57(2), 347-354. http://doi.org/10.1007/s10144-014-0448-z.
http://doi.org/10.1007/s10144-014-0448-z...
; Sánchez-Hernández et al., 2019Sánchez-Hernández, J., Nunn, A.D., Adams, C.E., & Amundsen, P.A., 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol. Rev. Camb. Philos. Soc. 94(2), 539-554. PMid:30251433. http://doi.org/10.1111/brv.12468.
http://doi.org/10.1111/brv.12468...
), mainly in response to variations in individual characteristics, such as mouth size and energetic need, which are, in turn, important in defining growth rate, fitness and survival (Choi & Suk, 2012Choi, S.H., & Suk, H.Y., 2012. The mechanisms leading to ontogenetic diet shift in a microcanivore, Pterogobius elapoides (Gobiidae). Anim. Cells Syst. 16(4), 343-349. http://doi.org/10.1080/19768354.2012.667002.
http://doi.org/10.1080/19768354.2012.667...
). Thus, considering such characteristics, it is common for small fish to limit themselves to catching small prey, while larger fish catch larger prey (Nakazawa, 2017Nakazawa, T., 2017. Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol. Res. 32(1), 5-12. http://doi.org/10.1007/s11284-016-1408-1.
http://doi.org/10.1007/s11284-016-1408-1...
). However, while a more positive relationship is evident between trophic position and body size for aquatic predators (Potapov et al., 2019Potapov, A.M., Brose, U., Scheu, S., & Tiunov, A.V., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194(6), 823-839. PMid:31738104. http://doi.org/10.1086/705811.
http://doi.org/10.1086/705811...
), this is not a hard-and-fast rule (Layman et al., 2005Layman, C.A., Winemiller, K.O., Arrington, D.A., & Jepsen, D.B., 2005. Body size and trophic position in a diverse tropical food web. Ecology 86(9), 2530-2535. http://doi.org/10.1890/04-1098.
http://doi.org/10.1890/04-1098...
), as reported by Fernando & Súarez (2021)Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578.
http://doi.org/10.1111/eff.12578...
.

Many Neotropical fish species are predominantly planktivorous during juvenile phase (Gerking, 1994Gerking, S.D., 1994. Feeding ecology of fish. San Diego: Elsevier.; Silva & Bialetzki, 2019Silva, J.C., & Bialetzki, A., 2019. Early life history of fishes and zooplankton availability in a Neotropical floodplain: predator-prey functional relationships. J. Plankton Res. 41(1), 63-75. http://doi.org/10.1093/plankt/fby045.
http://doi.org/10.1093/plankt/fby045...
), changing diet composition along growth, allowing the consumption of larger prey with higher energetic return (Huss et al., 2013Huss, M., Persson, L., Borcherding, J., & Heermann, L., 2013. Timing of the diet shift from zooplankton to macroinvertebrates and size at maturity determine whether normally piscivorous fish can persist in otherwise fishless lakes. Freshw. Biol. 58(7), 1416-1424. http://doi.org/10.1111/fwb.12138.
http://doi.org/10.1111/fwb.12138...
). Such differences in food composition between juvenile and adult fish during ontogenetic development as result from morphological and physiological factors as well as response of different spatial distribution among each size classes.

The relative effects of ontogenetic and environmental variation on dietary composition are, however, less evaluated, except for the work of Wang et al. (2019)Wang, S., Tang, J.P., Su, L.H., Fan, J.J., Chang, H.Y., Wang, T.T., Wang, L., Lin, H.J., & Yang, Y., 2019. Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquat. Sci. 81(2), 31. http://doi.org/10.1007/s00027-019-0628-1.
http://doi.org/10.1007/s00027-019-0628-1...
. In general, only spatiotemporal effects have been evaluated with larger spatial biasing toward the Upper Paraná River Basin, as evidenced by more studies when compared to those reporting on other regions. Here, we are interested in characterizing the dietary composition of a widely distributed small fish species, anticipating that such study will provide more understanding about the role of distribution range, niche breadth and environmental variability along hydrological fluctuation.

The genus Bryconamericus is composed of smaller species widely distributed in South America (Mirande, 2019Mirande, J.M., 2019. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics 35(3), 282-300. PMid:34622981. http://doi.org/10.1111/cla.12345.
http://doi.org/10.1111/cla.12345...
). In particular, Bryconamericus exodon and B. iheringii are the only such species present in the Paraguay River Basin (Fricke et al., 2023Fricke, R., Eschmeyer, W.N., & Van der Laan, R., 2023. Eschmeyer's catalog of fishes: genera, species, references. San Francisco, CA: California Academy of Sciences. Retrieved in 2023, December 15, from https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
https://researcharchive.calacademy.org/r...
). Of the two, B. exodon is the only species registered in the Brazilian portion of the Paraguay Basin. The present study aimed to understand how spatial and ontogenetic aspects (using Standard Length as proxy) define dietary composition, trophic position and trophic niche breadth for the small characid (Bryconamericus exodon) in tributaries located in two rivers of the Brazilian Pantanal. We also assessed whether spatial differences influence the structuring of trophic networks.

2. Material and Methods

2.1. Study area

The Paraguay River Basin stretches over a flood plain of nearly 1.300.000 km2 in which the Brazilian portion represents near 140.000 km2 with many sub regions, each one with different hydrological and ecological characteristics. In our study, we focused on two subbasins, the Apa and Negro Rivers. The Negro River presents higher vegetative cover when compared to Apa (Riveros et al., 2021Riveros, A.F., Jut Solórzano, J.C., Monaco, I.A., Cardoso, C.A.L., Suarez, Y.R., & Viana, L.F., 2021. Toxicogenetic effects on fish species in two sub-basins of the upper Paraguay River, Southern Pantanal–Brazil. Chemosphere 264(1), 128383. PMid:33017705. http://doi.org/10.1016/j.chemosphere.2020.128383.
http://doi.org/10.1016/j.chemosphere.202...
), along with differences in mean water conductivity (MeanNegro=34.4 µS/cm-1; MeanApa=437.5 µS/cm-1). All sites sampled have sandy soil, little aquatic vegetation and high current velocity (MeanNegro=0.42 m/s; MeanApa=0.42 m/s).

2.2. Sampling

Samples were collected in two tributaries each from the Negro and Apa Rivers, Upper Paraguay River, monthly from October/2017 to March/2018 (Figure 1). We used rectangular sieves (0.8×1.2 m) and seine nets (1.5×5 m) with approximately 2 mm mesh. Sampled fish were anesthetized using clove oil and then fixed in formalin (10%) for at least four days. Scientific field sampling was approved by the Ethical Committee of Mato Grosso do Sul State University (#010/2014) and Instituto Chico Mendes de Conservação da Biodiversidade (#13458-1).

Figure 1
Sampled sites (yellow dots) of Bryconamericus exodon in Apa and Negro subbasins in the Upper Paraguay River Basin.

2.3. Laboratory analysis

After preservation in 70% alcohol, each individual was measured, and afterwards, the stomach was excised to analyze the contents. Stomach contents were assessed with the aid of an optical microscope and quantified by the volumetric method (Hellawell & Abel, 1971Hellawell, J.M., & Abel, R., 1971. A rapid volumetric method for the analysis of the food of fishes. J. Fish Biol. 3(1), 29-37. http://doi.org/10.1111/j.1095-8649.1971.tb05903.x.
http://doi.org/10.1111/j.1095-8649.1971....
). The volume of each food item was assigned a percentage of the total volume of all stomach contents (Hyslop, 1980Hyslop, E.J., 1980. Stomach contents analysis - a review of methods and their application. J. Fish Biol. 17(4), 411-429. http://doi.org/10.1111/j.1095-8649.1980.tb02775.x.
http://doi.org/10.1111/j.1095-8649.1980....
), using a glass counting plate. Food item volume was obtained in mm3 and then converted to ml. The volume and frequency of occurrence of each group of alimentary items were used to estimate the Alimentary Index (IAi), as proposed by Kawakami & Vazzoler (1980)Kawakami, E., & Vazzoler, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Bol. Inst. Oceanogr. 29(2), 205-207. http://doi.org/10.1590/S0373-55241980000200043.
http://doi.org/10.1590/S0373-55241980000...
, and calculated as Equation 1:

IAi=Fi*Vi/i=1nFi*Vi (1)

where Fi is food item occurrence frequency (%); and Vi is food item volume (%).

2.4. Statistical analysis

Aiming to understand different food items consumed by B. exodon in the spatial context, we used binary and quantitative data (relative abundance). For each matrix (binary and quantitative), data were organized in a manner that treated individuals as rows and feeding items as columns to estimate connectance and complementary specialization (H2’) for each network. Connectance is a measure of cohesion, evaluating the observed connections among fish and prey in comparison to possible interactions (Pimm, 1982Pimm, S.L., 1982. Food webs. Dordrecht: Springer, Population and Community Biology (PCB). http://doi.org/10.1007/978-94-009-5925-5.
http://doi.org/10.1007/978-94-009-5925-5...
). On the other hand, complementary specialization (Blüthgen et al., 2007Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N., 2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17(4), 341-346. PMid:17275300. http://doi.org/10.1016/j.cub.2006.12.039.
http://doi.org/10.1016/j.cub.2006.12.039...
) is a measure of the specialization level of a trophic network wherein higher levels of selectivity of feeding items are correlated with higher H2’. These estimations were made using the ‘bipartite’ package (Dormann et al., 2014Dormann, C.F., Fründ, J., Gruber, B., Beckett, S., Devoto, M., Felix, G., Iriondo, J., Opsahl, T., Pinheiro, R., & Strauss, R., 2014. Package ‘bipartite’. Visualising bipartite networks and calculating some (ecological) indices. R package, version 2.04. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/index.html
https://cran.r-project.org/web/packages/...
; Dormann, 2020Dormann, C.F., 2020. Using bipartite to describe and plot two-mode networks in R. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/vignettes/Intro2bipartite.pdf
https://cran.r-project.org/web/packages/...
), the ‘networklevel’ function, ‘connectance’ and ‘H2’, respectively.

Since connectance is a network metric, we established a procedure to use 40 random individuals of each population (Apa and Negro) and 1000 permutations. Then, estimates of connectance and H2’ were random or not. Null models were generated using the ‘mgen’ and ‘r2dtable’ functions to test these variables. The ‘mgen’ function is an algorithm based on a probability matrix and a desired number of interactions (Vázquez et al., 2009Vázquez, D.P., Chacoff, N.P., & Cagnolo, L., 2009. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90(8), 2039-2046. PMid:19739366. http://doi.org/10.1890/08-1837.1.
http://doi.org/10.1890/08-1837.1...
), while the ‘r2dtable’ is used to weight networks (Patefield, 1981Patefield, W.M., 1981. Algorithm AS 159: an efficient method of generating random R× C tables with given row and column totals. J. R. Stat. Soc. Appl. Stat. 30(1), 91-97. http://doi.org/10.2307/2346669.
http://doi.org/10.2307/2346669...
).

We also estimated the z-score for each network to determine any statistical differences between obtained values for each metric and expected by simple chance, calculated as observed – mean (nulls) / standard deviation (nulls). Z-score values above 1.96 indicate significant difference (Durán et al., 2019Durán, A.A., Saldaña-Vázquez, R.A., Graciolli, G., & Peinado, L.C., 2019. Specialization and modularity of a bat fly antagonistic ecological network in a dry tropical forest in northern Colombia. Acta Chiropt. 20(2), 503-510. http://doi.org/10.3161/15081109ACC2018.20.2.020.
http://doi.org/10.3161/15081109ACC2018.2...
).

To evaluate the role of fish size on trophic network structure for B. exodon, we generated size classes of 5mm for each subbasin and weighted the importance of feeding items. The last size class was larger than the others given a 10mm range to avoid a smaller number of individuals. We used a permutational multivariate analysis of variance based on distances (PERMANOVA) with 999 permutations to evaluate whether diet varies spatially (subbasin) and ontogenetically (using Standard Length classes as proxy) with diet converted into Bray-Curtis distance. For this procedure, we used the ‘adonis2’ function in the ‘vegan’ package (Oksanen et al., 2016Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H., 2016. Vegan: community ecology package. Version 2.4-1. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan...
).

For each individual, we estimated a trophic niche breadth based on ‘Levins’ niche breath index, using the ‘niche.breadth’ function in the ‘spaa’ package (Zhang et al., 2016Zhang, J., Ding, Q., & Huang, J., 2016. Spaa: SPecies Association Analysis. R package version 0. 2. 2, 2: 1-32. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/spaa/spaa.pdf
https://cran.r-project.org/web/packages/...
). We also estimated trophic niche position of each individual according to the equation proposed by Vander Zanden et al. (1997)Vander Zanden, M.J., Cabana, G., & Rasmussen, J.B., 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54(5), 1142-1158. http://doi.org/10.1139/f97-016.
http://doi.org/10.1139/f97-016...
and calculated as Equation 2:

T P = V i * T P i + 1 (2)

where TP = trophic position of each feeding item; and Vi = relative volume of each feeding item.

We further realized a permutational analysis of covariance using the ‘lmperm’ function from the ‘permuco’ package (Frossard & Renaud, 2019Frossard, J., & Renaud, O., 2019. Permuco: permutation tests for regression, (repeated measures) ANOVA/ANCOVA and comparison of signals. R package version 1.1.0. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://CRAN.R-project.org/package=permuco
https://CRAN.R-project.org/package=permu...
) to test the hypothesis that subbasins (factor) and standard length (covariable) explain variation in trophic niche breadth and trophic position for B. exodon with 999 permutations to provide a significance estimation. Standard length was previously converted to log2+0.1. All analyses were made in R environment (R Development Core Team, 2021R Development Core Team, 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://www.R-project.org/
http://www.R-project.org/...
).

3. Results

We analyzed a total of 211 B. exodon individuals, 126 from the Apa River (Lsmin= 11.28mm; Lsmax= 43.53mm) and 85 from the Negro River (Lsmin= 13.26mm; Lsmax= 40.05mm). A total of 16 individuals presented empty stomachs and set aside for posterior analysis.

The dietary items we found in both rivers consisted of 26 items classified into 8 food categories to estimate alimentary index and bipartite network. Aquatic insects were the main feeding category (IAiApa= 94.96% and IAiNegro= 70.45%), followed by terrestrial insects (IAiApa= 4.70% and IAiNegro= 18.55%). Other items, e.g., detritus, plant remains and others, presented more importance in the Negro River population. Filamentous algae, Arachnida and Annelida represented no more than 2% (Figure 2). From these results, it can be concluded that B. exodon has an insectivorous diet.

Figure 2
Alimentary index (%) for Bryconamericus exodon in the Apa and Negro subbasins, Upper Paraguay River, Brazil.

Negro and Apa populations have network connectance (CApa=0.20, z-scoreApa=19.73, p=0.001 and CNegro=0.24, z-scoreNegro=14.09, p=0.001) and complementary specialization (H2Apa=0.46, z-scoreApa =10.6, p=0.001 and H2Negro= 0.42, z-scoreNegro=12.13, p=0.001) that differ from random (Figure 3); however, only connectance showed significant spatial differences (p<0.05).

Figure 3
Mean and standard deviation for connectance (A) and complementary specialization (B) for trophic network of analyzed populations of B. exodon in the Upper Paraguay River Basin.

Interestingly, our PERMANOVA results show that dietary composition mainly changed according to subbasin (Pseudo-F1,194=12.21; p<0.001), followed by standard length (Pseudo-F1,190=7.23; p<0.001). The bipartite trophic network using relative volume of food categories showed differences in detritus and aquatic insect consumption by each size class in the Apa and Negro Rivers, as evidenced by the width of links (Figure 4). Detritus was consumed in a very proportional way by individuals in the Apa, which was not the case in the Negro, as detritus was not present in the diet of even the smallest individuals (10-15mm) and was consumed in smaller quantities by the 15.1-20mm size classes, compared to the other size classes. Aquatic insects were present in the diet of fish of all sizes; however, their consumption was higher for individuals between 15.1 and 25mm in both subbasins. Smaller size classes mainly consumed terrestrial and aquatic insects when compared to larger fishes that presented higher variability in trophic resource use. This means that larger fish interacted with practically all trophic categories, while smaller fish mainly consumed insects (Figure 4).

Figure 4
Trophic bipartite network for B. exodon in the Apa and Negro subbasins of the Upper Paraguay River Basin. Gray boxes represent size gradient, and other colored boxes represent alimentary items. Link width represents trophic interaction intensity.

Despite differences in dietary composition along the fish length gradient, we did not observe any significant effect of standard length on trophic niche breadth (t=1.24; p=0.213) or trophic position (t=0.69; p=0.494). Trophic niche breadth is different between subbasins (MeanApa= 2.50 ± 0.83 and MeanNegro= 3.18 ± 1.06) (t=4.71; p<0.001), but trophic position did not differ according to subbasin (MeanApa= 3.05 ± 0.16 and MeanNegro= 3.01 ± 0.17) (t= -1.77; p=0.077) (Figure 5).

Figure 5
Mean and standard deviation of trophic niche breadth (A) and trophic position (B) between populations of B. exodon sampled at two subbasins in the Upper Paraguay River Basin.

4. Discussion

Bryconamericus exodon is usually categorized as insectivorous (Russo et al., 2004Russo, M.R., Hahn, N.S., & Pavanelli, C.S., 2004. Resource partitioning between two species of Bryconamericus Eigenmann, 1907 from the Iguaçu river basin, Brazil. Acta Sci. Biol. Sci. 26(4), 431-436.; Novakowski et al., 2008Novakowski, G.C., Hahn, N.S., & Fugi, R., 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 6(4), 567-576. http://doi.org/10.1590/S1679-62252008000400004.
http://doi.org/10.1590/S1679-62252008000...
), and our data corroborate this classification. Other studies found this species to be predominantly diurnal, occurring mainly in the littoral portion and primarily feeding on autochthonous prey or drifting terrestrial insects (Severo-Neto et al., 2023Severo-Neto, F., Brejão, G.L., & Casatti, L., 2023. Fish functional trophic groups in headwater karst streams from the Upper Paraguay River basin. Neotrop. Ichthyol. 21(1), e220103. http://doi.org/10.1590/1982-0224-2022-0103.
http://doi.org/10.1590/1982-0224-2022-01...
).

Insects are predominant items in the diet; however, other items, such as filamentous algae and different groups of invertebrates, also occur in the diet of B. exodon, showing that this species presents higher feeding plasticity than other Neotropical fish species (Lowe-McConnell, 1999Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.; Abelha et al., 2001Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.), mainly in response to spatiotemporal changes in the availability of trophic items. Despite this higher plasticity, insects remain a staple prey type for B. exodon.

Despite the predominance of insects, we still observed spatial and ontogenetic variation in dietary composition which can be (for spatial variation) related to environmental differences between the sampled rivers (Pinto & Uieda, 2007Pinto, T.L.F., & Uieda, V.S., 2007. Aquatic insects selected as food for fishes of a tropical stream: are there spatial and seasonal differences in their selectivity. Acta Limnol. Bras. 19(1), 67-78.; Neves et al., 2018Neves, M.P., Silva, J.C., Baumgartner, D., Baumgartner, G., & Delariva, R.L., 2018. Is resource partitioning the key? The role of intra‐interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. J. Fish Biol. 93(2), 238-249. PMid:30241113. http://doi.org/10.1111/jfb.13662.
http://doi.org/10.1111/jfb.13662...
), as observed in other species that mainly consume insects in their diet (Ferreira et al., 2012bFerreira, A., Gerhard, P., & Cyrino, J.E., 2012b. Diet of Astyanax paranae (Characidae) in streams with different riparian land covers in the Passa-Cinco River basin, southeastern Brazil. Iheringia Ser. Zool. 102(1), 80-87. http://doi.org/10.1590/S0073-47212012000100011.
http://doi.org/10.1590/S0073-47212012000...
; Astudillo et al., 2016Astudillo, M.R., Novelo-Gutiérrez, R., Vázquez, G., García-Franco, J.G., & Ramírez, A., 2016. Relationships between land cover, riparian vegetation, stream characteristics, and aquatic insects in cloud forest streams, Mexico. Hydrobiologia 768(1), 167-181. http://doi.org/10.1007/s10750-015-2545-1.
http://doi.org/10.1007/s10750-015-2545-1...
; Virgilio et al., 2018Virgilio, L.R., Ramalho, W.P., Silva, J.C.B.S., Suçuarana, M.S., Brito, C.H., & Vieira, L.J.S., 2018. Does riparian vegetation affect fish assemblage? A longitudinal gradient analysis in three Amazonian streams. Acta Sci. Biol. Sci. 40(1), 42562. http://doi.org/10.4025/actascibiolsci.v40i1.42562.
http://doi.org/10.4025/actascibiolsci.v4...
; Fernando & Súarez, 2021Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578.
http://doi.org/10.1111/eff.12578...
) or exhibit variations in prey use corresponding to variation in mouth size or energetic need along fish growth (Abelha et al., 2001Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.; Ramos-Jiliberto et al., 2011Ramos-Jiliberto, R., Valdovinos, F.S., Arias, J., Alcaraz, C., & García-Berthou, E., 2011. A network-based approach to the analysis of ontogenetic diet shifts: an example with an endangered, small-sized fish. Ecol. Complex. 8(1), 123-129. http://doi.org/10.1016/j.ecocom.2010.11.005.
http://doi.org/10.1016/j.ecocom.2010.11....
).

More specifically, deforested areas, or areas with less vegetative cover, are more affected by habitat degradation (Brejão et al., 2018Brejão, G.L., Hoeinghaus, D.J., Pérez‐Mayorga, M.A., Ferraz, S.F., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061.
http://doi.org/10.1111/cobi.13061...
) in response to erosion, which, in turn, affects trophic network and ecosystem services (Nakano & Murakami, 2001Nakano, S., & Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 98(1), 166-170. PMid:11136253. http://doi.org/10.1073/pnas.98.1.166.
http://doi.org/10.1073/pnas.98.1.166...
; Zeni et al., 2017Zeni, J.O., Hoeinghaus, D.J., & Casatti, L., 2017. Effects of pasture conversion to sugarcane for biofuel production on stream fish assemblages in tropical agroecosystems. Freshw. Biol. 62(12), 2026-2038. http://doi.org/10.1111/fwb.13047.
http://doi.org/10.1111/fwb.13047...
). Thus, since the Negro River presents higher riparian cover compared to the Apa River (Riveros et al., 2021Riveros, A.F., Jut Solórzano, J.C., Monaco, I.A., Cardoso, C.A.L., Suarez, Y.R., & Viana, L.F., 2021. Toxicogenetic effects on fish species in two sub-basins of the upper Paraguay River, Southern Pantanal–Brazil. Chemosphere 264(1), 128383. PMid:33017705. http://doi.org/10.1016/j.chemosphere.2020.128383.
http://doi.org/10.1016/j.chemosphere.202...
), it can also offer a greater availability of allochthonous items to B. exodon, resulting in a more complex trophic network and less specialized trophic network when compared to the Apa population.

The effect of riparian cover on fish dietary composition is also seen in Astyanax lineatus, which inhabits the headwaters of the Miranda and Apa Rivers, showing that fish in streams with lower riparian cover more frequently consume filamentous algae compared to fish in pristine streams (Fernando & Súarez, 2021Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578.
http://doi.org/10.1111/eff.12578...
), suggesting that more light input alters trophic resource availability in these streams.

Changes in the trophic position of fish are usually driven by abiotic and biotic factors (Sánchez-Hernández & Amundsen, 2018Sánchez-Hernández, J., & Amundsen, P.A., 2018. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19(6), 1003-1015. http://doi.org/10.1111/faf.12308.
http://doi.org/10.1111/faf.12308...
) since habitat heterogeneity offers the availability of more diverse resources to fish, mainly for omnivorous species. In these conditions, predators are typically larger in size than their prey, and this positive relationship is more common for aquatic predators compared to terrestrial predators (Potapov et al., 2019Potapov, A.M., Brose, U., Scheu, S., & Tiunov, A.V., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194(6), 823-839. PMid:31738104. http://doi.org/10.1086/705811.
http://doi.org/10.1086/705811...
). In fact, changes in diet along fish growth affect the dynamics of aquatic communities, altering intra- or interspecific competition rate (Nakazawa, 2015Nakazawa, T., 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul. Ecol. 57(2), 347-354. http://doi.org/10.1007/s10144-014-0448-z.
http://doi.org/10.1007/s10144-014-0448-z...
) as a direct response to prey diversification (Bozza & Hahn, 2010Bozza, A.N., & Hahn, N.S., 2010. Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotrop. 10(3), 217-226. http://doi.org/10.1590/S1676-06032010000300025.
http://doi.org/10.1590/S1676-06032010000...
), mainly in Neotropical fishes (e.g., Abilhoa et al., 2009Abilhoa, V., Bornatowski, H., & Otto, G., 2009. Temporal and ontogenetic variations in feeding habits of Hollandichthys multifasciatus (Teleostei: Characidae) in coastal Atlantic rainforest streams, southern Brazil. Neotrop. Ichthyol. 7(3), 415-420. http://doi.org/10.1590/S1679-62252009005000001.
http://doi.org/10.1590/S1679-62252009005...
; Fernando & Súarez, 2021Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578.
http://doi.org/10.1111/eff.12578...
; Lampert et al., 2022Lampert, V.R., Dias, T.S., Tondato-Carvalho, K.K., & Fialho, C.B., 2022. The effects of season and ontogeny in the diet of Piabarchus stramineus (Eigenmann 1908) (Characidae: Stevardiinae) from southern Brazil. Acta Limnol. Bras. 34(1), e31. http://doi.org/10.1590/s2179-975x5621.
http://doi.org/10.1590/s2179-975x5621...
). However, this is not a hard-and-fast rule, as indicated by Layman et al. (2005)Layman, C.A., Winemiller, K.O., Arrington, D.A., & Jepsen, D.B., 2005. Body size and trophic position in a diverse tropical food web. Ecology 86(9), 2530-2535. http://doi.org/10.1890/04-1098.
http://doi.org/10.1890/04-1098...
.

Ontogenetic variations in fish diet are common (Dias et al., 2017Dias, T.S., Stein, R.J., & Fialho, C.B., 2017. Ontogenetic variations and feeding habits of a Neotropical annual fish from southern Brazil. Iheringia Ser. Zool. 107(1), e2017020. http://doi.org/10.1590/1678-4766e2017020.
http://doi.org/10.1590/1678-4766e2017020...
; Sánchez-Hernández et al., 2019Sánchez-Hernández, J., Nunn, A.D., Adams, C.E., & Amundsen, P.A., 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol. Rev. Camb. Philos. Soc. 94(2), 539-554. PMid:30251433. http://doi.org/10.1111/brv.12468.
http://doi.org/10.1111/brv.12468...
), and these were observed in our study. However, the observed changes in dietary composition were not sufficient enough to cause changes in trophic position. If prey occupy the same trophic position as that occupied by the same prey in the past, then trophic position is maintained. Since B. exodon changes prey types that occupy the same trophic position along its growth, our results suggest that changes in dietary composition of the species were not caused by changes in trophic position at the evaluated scale (spatial and ontogenetic). Nonetheless, temporal changes still can affect the feeding ecology of B. exodon. This result, when accompanied by the absence of changes in trophic niche breadth (Pearson r= 0.14), suggests that larger fish use different prey, but with similar niche position along fish growth. Thus, differences in prey characteristics can be more associated with energetic return or the ability to capture and manage different prey species. On the other hand, the absence of relationship between standard length and trophic niche breadth suggests that intraspecific competition is not important for B. exodon.

Trophic niche breadth can also be influenced by environmental differences among habitats since higher net productivity can be created by more specialized populations in response to higher prey availability (Sánchez-Hernández et al., 2021Sánchez-Hernández, J., Hayden, B., Harrod, C., & Kahilainen, K.K., 2021. Population niche breadth and individual trophic specialisation of fish along a climate-productivity gradient. Rev. Fish Biol. Fish. 31(4), 1025-1043. http://doi.org/10.1007/s11160-021-09687-3.
http://doi.org/10.1007/s11160-021-09687-...
). For our study area, we did not collect information about primary productivity; however, the Apa River does have higher water conductivity compared to the Negro River, suggesting more prey availability in the Apa River. This suggests that the Negro River with its larger riparian cover could offer a higher diversity of allochthonous prey, thus generating higher trophic niche breadth, whereas in the Apa River, higher water conductivity could lead to higher primary productivity, offering larger autochthonous prey to B. exodon.

In summary, our results show that B. exodon is mainly an insectivorous species with larger spatial differences in dietary composition. Neither ontogenetic nor spatial changes were observed in trophic position while niche breadth vary only in spatial. These results could be caused by changes in the consumption of prey species that occupy the same trophic position. Therefore, studying the ecological traits of widely distributed fish species should lead to a better understanding of how changes in local and regional environments can affect fish biology.

Acknowledgements

We thank the Universidade Estadual de Mato Grosso do Sul – Dourados/MS (UEMS), more specifically the Centro de Estudos em Recursos Naturais (CERNA), for laboratory support. We also thank the Agência Nacional das Águas e Saneamento Básico (ANA), Fundação Eliseu Alves (EMBRAPA), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia of the State of Mato Grosso do Sul (FUNDECT) for the financial support.

  • Cite as: Sena, K.A. and Súarez, Y.R. Spatial variation, more than ontogenetic, explains the diet of Bryconamericus exodon in two Pantanal rivers. Acta Limnologica Brasiliensia, 2024, vol. 36, e18. https://doi.org/10.1590/S2179-975X11123

References

  • Abelha, M.C.F., Agostinho, A.A., & Goulart, E., 2001. Plasticidade trófica em peixes de água doce. Acta Sci. Biol. Sci. 23(2), 425-434.
  • Abilhoa, V., Bornatowski, H., & Otto, G., 2009. Temporal and ontogenetic variations in feeding habits of Hollandichthys multifasciatus (Teleostei: Characidae) in coastal Atlantic rainforest streams, southern Brazil. Neotrop. Ichthyol. 7(3), 415-420. http://doi.org/10.1590/S1679-62252009005000001
    » http://doi.org/10.1590/S1679-62252009005000001
  • Astudillo, M.R., Novelo-Gutiérrez, R., Vázquez, G., García-Franco, J.G., & Ramírez, A., 2016. Relationships between land cover, riparian vegetation, stream characteristics, and aquatic insects in cloud forest streams, Mexico. Hydrobiologia 768(1), 167-181. http://doi.org/10.1007/s10750-015-2545-1
    » http://doi.org/10.1007/s10750-015-2545-1
  • Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N., 2007. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17(4), 341-346. PMid:17275300. http://doi.org/10.1016/j.cub.2006.12.039
    » http://doi.org/10.1016/j.cub.2006.12.039
  • Bozza, A.N., & Hahn, N.S., 2010. Uso de recursos alimentares por peixes imaturos e adultos de espécies piscívoras em uma planície de inundação neotropical. Biota Neotrop. 10(3), 217-226. http://doi.org/10.1590/S1676-06032010000300025
    » http://doi.org/10.1590/S1676-06032010000300025
  • Brejão, G.L., Hoeinghaus, D.J., Pérez‐Mayorga, M.A., Ferraz, S.F., & Casatti, L., 2018. Threshold responses of Amazonian stream fishes to timing and extent of deforestation. Conserv. Biol. 32(4), 860-871. PMid:29210104. http://doi.org/10.1111/cobi.13061
    » http://doi.org/10.1111/cobi.13061
  • Choi, S.H., & Suk, H.Y., 2012. The mechanisms leading to ontogenetic diet shift in a microcanivore, Pterogobius elapoides (Gobiidae). Anim. Cells Syst. 16(4), 343-349. http://doi.org/10.1080/19768354.2012.667002
    » http://doi.org/10.1080/19768354.2012.667002
  • Dias, T.S., Stein, R.J., & Fialho, C.B., 2017. Ontogenetic variations and feeding habits of a Neotropical annual fish from southern Brazil. Iheringia Ser. Zool. 107(1), e2017020. http://doi.org/10.1590/1678-4766e2017020
    » http://doi.org/10.1590/1678-4766e2017020
  • Dormann, C.F., 2020. Using bipartite to describe and plot two-mode networks in R. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/vignettes/Intro2bipartite.pdf
    » https://cran.r-project.org/web/packages/bipartite/vignettes/Intro2bipartite.pdf
  • Dormann, C.F., Fründ, J., Gruber, B., Beckett, S., Devoto, M., Felix, G., Iriondo, J., Opsahl, T., Pinheiro, R., & Strauss, R., 2014. Package ‘bipartite’. Visualising bipartite networks and calculating some (ecological) indices. R package, version 2.04. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/bipartite/index.html
    » https://cran.r-project.org/web/packages/bipartite/index.html
  • Durán, A.A., Saldaña-Vázquez, R.A., Graciolli, G., & Peinado, L.C., 2019. Specialization and modularity of a bat fly antagonistic ecological network in a dry tropical forest in northern Colombia. Acta Chiropt. 20(2), 503-510. http://doi.org/10.3161/15081109ACC2018.20.2.020
    » http://doi.org/10.3161/15081109ACC2018.20.2.020
  • Fernando, A.M.E., & Súarez, Y.R., 2021. Resource use by omnivorous fish: effects of biotic and abiotic factors on key ecological aspects of individuals. Ecol. Freshwat. Fish 30(2), 222-233. http://doi.org/10.1111/eff.12578
    » http://doi.org/10.1111/eff.12578
  • Ferreira, A., De Paula, F.R., De Barros Ferraz, S.F., Gerhard, P., Kashiwaqui, E.A., Cyrino, J.E., & Martinelli, L.A., 2012a. Riparian coverage affects diets of characids in neotropical streams. Ecol. Freshwat. Fish 21(1), 12-22. http://doi.org/10.1111/j.1600-0633.2011.00518.x
    » http://doi.org/10.1111/j.1600-0633.2011.00518.x
  • Ferreira, A., Gerhard, P., & Cyrino, J.E., 2012b. Diet of Astyanax paranae (Characidae) in streams with different riparian land covers in the Passa-Cinco River basin, southeastern Brazil. Iheringia Ser. Zool. 102(1), 80-87. http://doi.org/10.1590/S0073-47212012000100011
    » http://doi.org/10.1590/S0073-47212012000100011
  • Fricke, R., Eschmeyer, W.N., & Van der Laan, R., 2023. Eschmeyer's catalog of fishes: genera, species, references. San Francisco, CA: California Academy of Sciences. Retrieved in 2023, December 15, from https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
    » https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
  • Frossard, J., & Renaud, O., 2019. Permuco: permutation tests for regression, (repeated measures) ANOVA/ANCOVA and comparison of signals. R package version 1.1.0. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://CRAN.R-project.org/package=permuco
    » https://CRAN.R-project.org/package=permuco
  • Gerking, S.D., 1994. Feeding ecology of fish. San Diego: Elsevier.
  • Gouveia, É.J., Rondon, P.L., & Súarez, Y.R., 2022. Feeding ecology of Eigenmannia desantanai (Gymnotiformes: Sternopygidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 34, e2. http://doi.org/10.1590/s2179-975x9820
    » http://doi.org/10.1590/s2179-975x9820
  • Hellawell, J.M., & Abel, R., 1971. A rapid volumetric method for the analysis of the food of fishes. J. Fish Biol. 3(1), 29-37. http://doi.org/10.1111/j.1095-8649.1971.tb05903.x
    » http://doi.org/10.1111/j.1095-8649.1971.tb05903.x
  • Huss, M., Persson, L., Borcherding, J., & Heermann, L., 2013. Timing of the diet shift from zooplankton to macroinvertebrates and size at maturity determine whether normally piscivorous fish can persist in otherwise fishless lakes. Freshw. Biol. 58(7), 1416-1424. http://doi.org/10.1111/fwb.12138
    » http://doi.org/10.1111/fwb.12138
  • Hyslop, E.J., 1980. Stomach contents analysis - a review of methods and their application. J. Fish Biol. 17(4), 411-429. http://doi.org/10.1111/j.1095-8649.1980.tb02775.x
    » http://doi.org/10.1111/j.1095-8649.1980.tb02775.x
  • Kawakami, E., & Vazzoler, G., 1980. Método gráfico e estimativa de índice alimentar aplicado no estudo de alimentação de peixes. Bol. Inst. Oceanogr. 29(2), 205-207. http://doi.org/10.1590/S0373-55241980000200043
    » http://doi.org/10.1590/S0373-55241980000200043
  • Lampert, V.R., Dias, T.S., Tondato-Carvalho, K.K., & Fialho, C.B., 2022. The effects of season and ontogeny in the diet of Piabarchus stramineus (Eigenmann 1908) (Characidae: Stevardiinae) from southern Brazil. Acta Limnol. Bras. 34(1), e31. http://doi.org/10.1590/s2179-975x5621
    » http://doi.org/10.1590/s2179-975x5621
  • Layman, C.A., Winemiller, K.O., Arrington, D.A., & Jepsen, D.B., 2005. Body size and trophic position in a diverse tropical food web. Ecology 86(9), 2530-2535. http://doi.org/10.1890/04-1098
    » http://doi.org/10.1890/04-1098
  • Loureiro, V.E., & Hahn, N.S., 1996. Dieta e atividade alimentar da traíra, Hoplias malabaricus (Bloch, 1794) (Osteichthyes, Erythrinidae), nos primeiros anos de formação do reservatório de Segredo-PR. Acta Limnol. Bras. 8(1), 195-205.
  • Lowe-McConnell, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.
  • Luiz, E.A., Agostinho, A.A., Gomes, L.C., & Hahn, N.S., 2018. Ecologia trófica de peixes em dois riachos da bacia do rio Paraná. Rev. Bras. Biol. 58(2), 273-285.
  • Mirande, J.M., 2019. Morphology, molecules and the phylogeny of Characidae (Teleostei, Characiformes). Cladistics 35(3), 282-300. PMid:34622981. http://doi.org/10.1111/cla.12345
    » http://doi.org/10.1111/cla.12345
  • Nakano, S., & Murakami, M., 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 98(1), 166-170. PMid:11136253. http://doi.org/10.1073/pnas.98.1.166
    » http://doi.org/10.1073/pnas.98.1.166
  • Nakazawa, T., 2015. Ontogenetic niche shifts matter in community ecology: a review and future perspectives. Popul. Ecol. 57(2), 347-354. http://doi.org/10.1007/s10144-014-0448-z
    » http://doi.org/10.1007/s10144-014-0448-z
  • Nakazawa, T., 2017. Individual interaction data are required in community ecology: a conceptual review of the predator–prey mass ratio and more. Ecol. Res. 32(1), 5-12. http://doi.org/10.1007/s11284-016-1408-1
    » http://doi.org/10.1007/s11284-016-1408-1
  • Neves, M.P., Kratina, P., Delariva, R.L., Jones, J.I., & Fialho, C.B., 2021. Seasonal feeding plasticity can facilitate coexistence of dominant omnivores in Neotropical streams. Rev. Fish Biol. Fish. 31(2), 417-432. http://doi.org/10.1007/s11160-021-09648-w
    » http://doi.org/10.1007/s11160-021-09648-w
  • Neves, M.P., Silva, J.C., Baumgartner, D., Baumgartner, G., & Delariva, R.L., 2018. Is resource partitioning the key? The role of intra‐interspecific variation in coexistence among five small endemic fish species (Characidae) in subtropical rivers. J. Fish Biol. 93(2), 238-249. PMid:30241113. http://doi.org/10.1111/jfb.13662
    » http://doi.org/10.1111/jfb.13662
  • Novakowski, G.C., Hahn, N.S., & Fugi, R., 2008. Diet seasonality and food overlap of the fish assemblage in a pantanal pond. Neotrop. Ichthyol. 6(4), 567-576. http://doi.org/10.1590/S1679-62252008000400004
    » http://doi.org/10.1590/S1679-62252008000400004
  • Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H., 2016. Vegan: community ecology package. Version 2.4-1. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://CRAN.R-project.org/package=vegan
    » http://CRAN.R-project.org/package=vegan
  • Patefield, W.M., 1981. Algorithm AS 159: an efficient method of generating random R× C tables with given row and column totals. J. R. Stat. Soc. Appl. Stat. 30(1), 91-97. http://doi.org/10.2307/2346669
    » http://doi.org/10.2307/2346669
  • Pimm, S.L., 1982. Food webs. Dordrecht: Springer, Population and Community Biology (PCB). http://doi.org/10.1007/978-94-009-5925-5
    » http://doi.org/10.1007/978-94-009-5925-5
  • Pinto, T.L.F., & Uieda, V.S., 2007. Aquatic insects selected as food for fishes of a tropical stream: are there spatial and seasonal differences in their selectivity. Acta Limnol. Bras. 19(1), 67-78.
  • Potapov, A.M., Brose, U., Scheu, S., & Tiunov, A.V., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194(6), 823-839. PMid:31738104. http://doi.org/10.1086/705811
    » http://doi.org/10.1086/705811
  • R Development Core Team, 2021. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from http://www.R-project.org/
    » http://www.R-project.org/
  • Ramos-Jiliberto, R., Valdovinos, F.S., Arias, J., Alcaraz, C., & García-Berthou, E., 2011. A network-based approach to the analysis of ontogenetic diet shifts: an example with an endangered, small-sized fish. Ecol. Complex. 8(1), 123-129. http://doi.org/10.1016/j.ecocom.2010.11.005
    » http://doi.org/10.1016/j.ecocom.2010.11.005
  • Ríos‐Pulgarín, M.I., Barletta, M., & Mancera‐Rodríguez, N.J., 2016. The role of the hydrological cycle on the distribution patterns of fish assemblages in an Andean stream. J. Fish Biol. 89(1), 102-130. PMid:26333196. http://doi.org/10.1111/jfb.12757
    » http://doi.org/10.1111/jfb.12757
  • Riveros, A.F., Jut Solórzano, J.C., Monaco, I.A., Cardoso, C.A.L., Suarez, Y.R., & Viana, L.F., 2021. Toxicogenetic effects on fish species in two sub-basins of the upper Paraguay River, Southern Pantanal–Brazil. Chemosphere 264(1), 128383. PMid:33017705. http://doi.org/10.1016/j.chemosphere.2020.128383
    » http://doi.org/10.1016/j.chemosphere.2020.128383
  • Russo, M.R., Hahn, N.S., & Pavanelli, C.S., 2004. Resource partitioning between two species of Bryconamericus Eigenmann, 1907 from the Iguaçu river basin, Brazil. Acta Sci. Biol. Sci. 26(4), 431-436.
  • Sánchez-Hernández, J., & Amundsen, P.A., 2018. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19(6), 1003-1015. http://doi.org/10.1111/faf.12308
    » http://doi.org/10.1111/faf.12308
  • Sánchez-Hernández, J., Nunn, A.D., Adams, C.E., & Amundsen, P.A., 2019. Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol. Rev. Camb. Philos. Soc. 94(2), 539-554. PMid:30251433. http://doi.org/10.1111/brv.12468
    » http://doi.org/10.1111/brv.12468
  • Sánchez-Hernández, J., Hayden, B., Harrod, C., & Kahilainen, K.K., 2021. Population niche breadth and individual trophic specialisation of fish along a climate-productivity gradient. Rev. Fish Biol. Fish. 31(4), 1025-1043. http://doi.org/10.1007/s11160-021-09687-3
    » http://doi.org/10.1007/s11160-021-09687-3
  • Scanferla, A.F.L.S., & Súarez, Y.R., 2016. Flood pulse are the main determinant of feeding dynamics and composition of Odontostilbe pequira (Characiformes: Characidae) in southern Pantanal, Brazil. Acta Limnol. Bras. 28(0), e19. http://doi.org/10.1590/s2179-975x3316
    » http://doi.org/10.1590/s2179-975x3316
  • Severo-Neto, F., Brejão, G.L., & Casatti, L., 2023. Fish functional trophic groups in headwater karst streams from the Upper Paraguay River basin. Neotrop. Ichthyol. 21(1), e220103. http://doi.org/10.1590/1982-0224-2022-0103
    » http://doi.org/10.1590/1982-0224-2022-0103
  • Silva, J.C., & Bialetzki, A., 2019. Early life history of fishes and zooplankton availability in a Neotropical floodplain: predator-prey functional relationships. J. Plankton Res. 41(1), 63-75. http://doi.org/10.1093/plankt/fby045
    » http://doi.org/10.1093/plankt/fby045
  • Vander Zanden, M.J., Cabana, G., & Rasmussen, J.B., 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can. J. Fish. Aquat. Sci. 54(5), 1142-1158. http://doi.org/10.1139/f97-016
    » http://doi.org/10.1139/f97-016
  • Vázquez, D.P., Chacoff, N.P., & Cagnolo, L., 2009. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90(8), 2039-2046. PMid:19739366. http://doi.org/10.1890/08-1837.1
    » http://doi.org/10.1890/08-1837.1
  • Virgilio, L.R., Ramalho, W.P., Silva, J.C.B.S., Suçuarana, M.S., Brito, C.H., & Vieira, L.J.S., 2018. Does riparian vegetation affect fish assemblage? A longitudinal gradient analysis in three Amazonian streams. Acta Sci. Biol. Sci. 40(1), 42562. http://doi.org/10.4025/actascibiolsci.v40i1.42562
    » http://doi.org/10.4025/actascibiolsci.v40i1.42562
  • Wang, S., Tang, J.P., Su, L.H., Fan, J.J., Chang, H.Y., Wang, T.T., Wang, L., Lin, H.J., & Yang, Y., 2019. Fish feeding groups, food selectivity, and diet shifts associated with environmental factors and prey availability along a large subtropical river, China. Aquat. Sci. 81(2), 31. http://doi.org/10.1007/s00027-019-0628-1
    » http://doi.org/10.1007/s00027-019-0628-1
  • Zeni, J.O., Hoeinghaus, D.J., & Casatti, L., 2017. Effects of pasture conversion to sugarcane for biofuel production on stream fish assemblages in tropical agroecosystems. Freshw. Biol. 62(12), 2026-2038. http://doi.org/10.1111/fwb.13047
    » http://doi.org/10.1111/fwb.13047
  • Zhang, J., Ding, Q., & Huang, J., 2016. Spaa: SPecies Association Analysis. R package version 0. 2. 2, 2: 1-32. Vienna: R Foundation for Statistical Computing. Retrieved in 2023, December 15, from https://cran.r-project.org/web/packages/spaa/spaa.pdf
    » https://cran.r-project.org/web/packages/spaa/spaa.pdf

Edited by

Associate Editor: Ronaldo Angelini

Publication Dates

  • Publication in this collection
    31 May 2024
  • Date of issue
    2024

History

  • Received
    15 Dec 2023
  • Accepted
    19 Apr 2024
Associação Brasileira de Limnologia Av. 24 A, 1515, 13506-900 Rio Claro-SP/Brasil, Tel.:(55 19)3526 4227 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com