ambiagua
Revista Ambiente & Água
Rev. Ambient. Água
1980-993X
Instituto de Pesquisas Ambientais em Bacias Hidrográficas
Resumo
Reservatório de detenção são usualmente empregados para realizar o controle de escoamento pluviais. Um dos métodos de dimensionamento de dispositivos de reservação, muito utilizado no Brasil, é o método da curva envelope. Este método estima o volume necessário de armazenamento por meio do balanço dos volumes de entrada e saída, sendo a entrada com base no Método Racional e a saída por orifício de descarga de fundo. Neste método é adotada uma vazão constante de saída igual à máxima permitida, o que pode causar subdimensionamentos. Este artigo teve como objetivo avaliar o comportamento hidráulico de medidas de controle de detenção dimensionadas pelo Método da Curva Envelope, e propor uma alteração nesta metodologia, com a criação de um coeficiente de ajuste da vazão de saída (Cout), visando compensar a simplificação de utilizar a vazão efluente constante. Valores para esse coeficiente foram estimados para diversas capitais brasileiras, variando de 0.62 a 0.65. A hipótese de subdimensionamento devido à adoção de uma vazão constante foi confirmada, pois as simulações mostraram a necessicidade de um aumento entre 8.8% a 16.8% no tamanho do dispositivo de controle. Uma compensação para esse problema pode ser obtida aplicando o coeficiente de redução da vazão de saída (Cout).
1. INTRODUCTION
The urbanization process modifies the physical characteristics of the watershed, increasing impervious surfaces and changing the hydrologic cycle. These changes cause an increase in stormwater runoff volume and peak flow and decrease flow time (Chen et al., 2015; Guan et al., 2016; Zhou, 2014).
Their impacts on the hydrologic cycle result in an increase in the frequency of water-related disasters such as floods and, as a consequence, there are stormwater control measures (SCMs) that seek to compensate for the effects of urban occupation. Among the SCMs adopted, storage measures stand out, which restrict the inlet hydrograph, providing temporary storage of the runoff. Several municipalities in Brazil, such as Porto Alegre, Brasília, and São José do Rio Preto, have adopted these measures for new construction in order to control hydrological impacts, with the requirement that reservoir construction include an outflow restriction of flow to the public drainage system (Brasília, 2018; Porto Alegre, 2014; São José do Rio Preto, 2008).
There are several methods for design or preliminary design of detention facilities, among them the rain envelope method, which is often used in Brazil.
Butler et al. (2018) presents the envelope method as a preliminary sizing of reservoirs, and Azzout et al. (1994) presents it as a simplified sizing method. Baptista et al. (2011) and Miguez et al. (2015) call the methodology the rainfall method of envelope curves, and present it as a simplified form of structure design. Some examples of use from the rain envelope method can be seen in Lucas et al. (2013), in the design of a filter-swale-trench system; Angelini Sobrinhaet al.(2012), in the design of an infiltration well; and in Cadoreet al.(2016), for bioretention areas. In addition, Silveira and Goldenfum (2007) presented a generalized methodology for preliminary sizing of SCMs using the envelope curve method.
The envelope curve method is characterized as being simple and straightforward, with several simplifications, among which we highlight the adoption of the outflow rate as a constant equal to the rate of outflow when the storage facility is full and the outlet is under maximum head, which may cause under-dimensioning in the structures. These simplifications are the core of criticism of adopting the sizing results of this method needing further sizing checks. On the other hand, there is no approach to redress the undersizing effect on the results by envelope curve use.
This article evaluates the hydraulic behavior of stormwater control detention measures designed by the rain envelope method, proposes a change in this methodology with the creation of an outflow adjustment coefficient (Cout) in order to correct the underestimation caused by using the outflow rate as a constant value.
2. MATERIAL AND METHODS
2.1. Rain envelope method or rainfall method
The rain envelope method or rainfall method, presented by Urbonas and Stahre (1993), is a simple method for determination of detention volume based on mass balance in a detention facility. It uses curves of cumulative runoff volume and cumulative volume of outflow at different durations of rainfalls, where the largest difference between the two curves expresses the storage volume. The method does not consider the time of concentration of the basin and uses the rational method to estimate the flow contribution to the detention facility, being indicated to areas smaller than around 80 ha (ASCE, 2017).
The first step in this method is to calculate the cumulative runoff volume for a range of storm durations. This is done by incrementally increasing the storm duration and, for each duration, the volume is calculated from Equation 1, using the runoff coefficient (C), the ration between the runoff and the respective precipitation, and the average rainfall intensity determined by an intensity-duration-frequency (IDF) curve.
V
i
n
=
C
.
I
.
A
.
t
3600
∙
1000
(1)
Where 𝑉𝑖𝑛 = cumulative runoff volume (m³); 𝐶 = runoff coefficient (varies from 0 to 1); 𝐼 = average rainfall intensity (mm.h-1); 𝐴 = tributary area (m²); 𝑡 = duration (s).
The volume of the outflow curve varies according to design characteristics. For detention facilities with nozzles or orifices as outlets, the outflow can be determined, considering free discharge at atmospheric pressure, using Equation 2. The volume of outflow is commonly estimated by Equation 3, using the simplification that the structure empties at a constant rate equal to the maximum possible outlet outflow (considering the device full and outlet under maximum head). As already shown by Urbonas and Stahre (1993), with the exception of special flow regulators the outflow is not constant and varies with the depth of water as the structure fills and empties.
Q
o
u
t
=
C
d
.
A
o
.
2
.
g
.
h
(2)
V
o
u
t
=
Q
o
u
t
.
t
(3)
Where: 𝐶𝑑 = discharge coefficient ; 𝐴𝑜 = area of the opening (m²); 𝑔 = gravitational acceleration (m.s-2); ℎ = effective head seen by the orifice (m); 𝑉𝑜𝑢𝑡 = cumulative outflow volume (m³); 𝑄𝑜𝑢𝑡 = maximum outflow rate (m³.s-1); 𝑡 = duration (s).
To provide the controlled release of flows when the detention facility’s water exceeds its storage volume, commonly spillways are used. The discharge flow of the spillway can be determined by Equation 4.
Q
s
=
C
s
.
L
.
h
3
2
(4)
Where: 𝑄s = spillway flow (m³.s-1); 𝐶s = spillway discharge coefficient; 𝐿 = spillway width (m); ℎ = head over the spillway crest (m).
The storage volume obtained by the method is the largest difference between the two curves obtained by Equations 1 and 3, defined by Equation 5 and illustrated in Figure 1.
V
r
=
m
a
x
V
i
n
-
V
o
u
t
(5)
Where: Vr = storage volume (m³).
The simplification of using, during all rainfall periods, the outflow rate equal to the maximum possible outlet flow causes a cumulative outflow volume curve with values greater than what they are supposed to be, resulting in lower volumes of reservation, reducing the safety of the project.
Figure 1.
Storage volume using the rain envelope method.
2.2. Curve envelope method verification
In order to identify the impact of the simplification of the reservoirs designed by the envelope method, the hydraulic behavior of the structure storage volume obtained by the envelope curve method was simulated using one of the most traditional models to simulate reservoir routing; it was developed by Puls (Nascimento and Baptista, 2009).
The IDF curve used to obtain the rainfall used for the envelope curve and Puls method was the recommended IDF curve for the 8th District of Porto Alegre (Bemfica et al., 2000) with a return period of 10 years (Equation 6).
I
=
1297.9
T
R
0.171
(
r
d
+
11.6
)
0.85
(6)
Where I = average rainfall intensity (mm.h-1); T R = return period (years); rd= rain duration (min).
For the envelope curve method, the characteristics of the tributary site were: tributary area (A) of 1000 m² and runoff coefficient (C) of 0.9. The outlet was considered as an orifice with diameter of 25 mm, and the input for the outflow rate was considered a constant obtained by Equation 3, with a maximum depth of water of 1 m and a discharge coefficient of 0.94, according to experimental values found for this outlet diameter and water depth (Drummond, 2014). From this information, with Equation 5, the storage volume was obtained.
These characteristics were chosen for Q out to be smaller than the Porto Alegre outflow restriction flow to the public drainage system (20.8 l.s-1.ha-1 or 2.08 l.s-1 for this tributary area) (Porto Alegre, 2014).
For the Puls method, the same IDF curve was used, with a time distribution obtained by the alternating blocks hyetograph method (Chowet al., 1988), centralized peak and rain discretization of 1 minute in order to obtain a hyetograph.
The inflow hydrograph of the reservoir was determined from the hyetograph multiplied by the same values of runoff coefficient and tributary area for each time interval of the hyetograph, thus obtaining the inflow hydrograph. The outflow rate was defined by Equation 3, with the same characteristics of outlet for envelope curve, but considering the outflow rate variable in time, function of water depth. In case of exceeding storage volume during the simulation, a spillway was designed to remove excess water, with the discharge flow obtained by Equation 4, with C S of 1.77.
2.3. Reservoir hydraulic behavior with traditional envelope curve method storage volume
For the rain and tributary characteristics described in the method verification, the envelope curve is shown in Figure 2. The constant outflow rate of the method (Qlim) resulted in 2.04 l.s-1 and the storage volume was 40.2 m³, occurring with a rainfall duration of 102 minutes.
Figure 2.
Envelope curve method for Porto Alegre with: C = 0.9; Qlim = 2.04 l.s-1; A = 1.000 m².
Figure 3 presents the reservoir outflow hydrographs for the Puls method, with simulations for rainfall durations from 10 to 120 minutes for Porto Alegre by the alternating blocks method. The storage volume of the reservoirs used in all simulations were the ones found using the envelope method, 40.2 m³. The results show that the design volume was not adequate to withstand the runoff volumes of rainfall durations above 60 minutes; therefore, the 102 minutes of rainfall duration, duration from the envelope method, also had water depth above 1 m, causing the spillway to remove the excess water and the outflow rate to peak above 2.04 l.s-1.
Figure 3.
Verification reservoir outflow hydrographs by Puls simulation for the traditional envelope curve sizing method.
The difference between the outflow estimated by the verification method (Puls) and the constant outflow for the envelope method is shown in Figure 4.a, simulation of rainfall duration of 102 minutes for Porto Alegre, where the green area of the figure represents the outflow volume difference between the methods.
Figure 4.
Outflow comparisons of Envelope and Puls methods: a) volume difference between Puls and Envelope outflows; b) outflow volumes by Puls simulation; c) outflow volumes by Envelope.
2.4. Proposed methodology to compensate for the constant outflow simplification
An outflow adjustment coefficient (Cout) was created in order to compensate for the simplification of constant outflow, adopting the ratio between the accumulated volume obtained by the Puls methodology (an area under the red line in Figure 4.b up to reach the blue line for constant outflow) and the constant outflow (a rectangular area in Figure 4.c under blue line until to intercept the red line). The coefficient was obtained using the same rainfall duration as found for the storage volume in the envelope curve, called "critical duration time" (Tcrit), and gradually increasing the storage volume until the minimum detention volume that would not cause the water depths above the maximum, i.e., spillway unused (Equation 7).
C
o
u
t
=
V
P
u
l
s
V
o
u
t
(7)
Where 𝐶out = outflow adjustment coefficient; V Puls = cumulative outflow volume by Puls method (m³).
From the Cout, the incremental volume, denominated as V i , is determined by Equation 8. The incremental volume is then added to the storage volume determined by the envelope curve method, resulting in the adjusted storage volume (Equation 9).
V
i
=
1
-
C
o
u
t
Q
l
i
m
.
t
(8)
V
R
A
=
m
a
x
V
i
n
-
V
o
u
t
+
V
i
(9)
Where V i = incremental volume (m³); 𝑉RA = adjusted storage volume (m³).
2.5. Sensitivity of Cout to input parameters
The sensitivity of Cout was evaluated by simulating different runoff coefficients and sizes of orifices as outlets, modifying the inflow and outflow of the methods. The same methodology of the previous verification was used. The sensitivity of Cout as a function of the Runoff coefficient C and Qlim, constant outflow as a function of orifice diameter (D), for a return period of 10 years is shown in Table 1.
Table 1.
Cout sensitivity for period return of 10 years.
Qlim (D)
Runoff Coefficient (C)
0.2
0.6
1.0
1.31 l/s (20 mm)
0.66
0.64
0.63
8.18 l/s (50 mm)
0.82
0.69
0.68
The value of C coefficient varied from 0.2 to 1.0, and the maximum flow capacity from 1.31 l.s-1 to 8.18 l.s-1, respectively, for commercial diameters of orifices of 20 mm and 50 mm.
The results showed that the value of the Cout increases when the value of the C reduces, and that Cout is also higher when the diameter of the orifice is higher. Therefore, the combination of higher C and smaller diameter results in a smaller coefficient, which is the less favorable scenario, since the smaller the Cout the greater the incremental volume V i .
In order to observe the impact of a higher period return on the coefficient, the process was repeated for a period return of 50 years. The coefficients found are shown in Table 2 and were similar to those with a period return of 10 years.
Table 2.
Cout sensitivity for return period of 50 years.
Qlim(Diameter)
Runoff Coefficient (C)
0.2
0.6
1.0
1.31 l/s (20 mm)
0.66
0.63
0.62
8.18 l/s (50 mm)
0.77
0.68
0.66
3. RESULTS
3.1. Cout applied to Brazilian state capitals
According to the results of Tables 1 and 2, the least favorable condition for the coefficient Cout, the smallest value, occurs with a higher C and smaller orifice diameter. Cout values were determined for several Brazilian state capitals, using Equation 7 with the same methodology previously described. The adopted conditions were the same as used in the curve envelope method verification: coefficient C equal to 0.9; outlet considered as an orifice as 25 mm of diameter; discharge coefficient of 0.94; maximum water depth of 1 m; tributary area of 1000 m². The rain parameters for each state capital are presented in Table 3, following the format of Equation 10. Figure 5 shows the studied cities locations in Brazil.
I
=
a
.
T
R
b
(
r
d
+
c
)
d
(10)
Where: a, b, c e d are adjusted parameters for each city.
Table 4 presents the values of the Cout for period returns of 10 and 50 years, showing the dispersion between them for the different regions of Brazil. The Cout values presented in the table were the coefficients obtained for the rainfall duration equal to the critical time Tcrit.
Even though there is a great variability in the pluviometric characteristics of the Brazilian state capitals presented, there is only a small variation in the values of Cout. Table 5 presents the storage volume (Vr) needed for each city for a return period of 10 years using the envelope curve method and the adjusted storage volume (V RA ) when considering the coefficient Cout.
The results showed a Cout coefficient ranging from 0.62 to 0.65 and an increase in storage volume considering the proposed methodology from 8.4% to 16.8%.
Table 3.
IDF curves parameters for several Brazilians state capitals.
City
Parameters
a
b
c
d
Aracaju1
834.2
0.179
15
0.726
Belém1
1085.5
0.156
12
0.758
Belo Horizonte2
1447.9
0.100
20
0.840
Brasília3
1574.7
0.207
8
0.884
Cuiabá4
1016.5
0.133
7.5
0.739
Curitiba5
5726.6
0.159
41
1.041
Florianópolis1
1754.2
0.187
36
0.823
Fortaleza7
2345.3
0.173
28.3
0.904
Goiânia8
920.5
0.142
12
0.760
Manaus1
1136.5
0.158
10
0.764
Porto Alegre9
1297.9
0.171
11.6
0.850
Porto Velho1
1181.4
0.159
11
0.757
Rio Branco1
1419.3
0.162
18
0.795
Rio de Janeiro10
1239.0
0.150
20
0.740
São Luiz1
1519.4
0.161
28
0.777
São Paulo11
3462.6
0.172
22
1.025
Teresina1
1248.9
0.177
10
0.769
¹Fragoso Jr. (2004); ²Zahed Filho and Marcellini (1995); ³Distrito Federal (2009); 4Castro et al. (2011); 5Fendrich (2003); 7Silva et al. (2013); 8Oliveira et al. (2003); 9Bemfica et al. (2000); 10Bertoni and Tucci (1993); 11Wilken (1978).
Figure 5.
Spatial location of the cities used in the study.
The results are similar to those found by Guo (1999), 0.64 to 0.75 for an outflow reduction coefficient and he also concludes that not using the adjustment factor can result in approximately 20% underestimation of detention volume.
Table 4.
Values of the Cout for period returns of 10 and 50 years and several Brazilian Capitals.
City
TR- 10 years
TR- 50 years
Cout
Cout
Aracaju
0.65
0.65
Belém
0.64
0.64
Belo Horizonte
0.65
0.64
Brasília
0.62
0.62
Cuiabá
0.64
0.64
Curitiba
0.64
0.63
Florianópolis
0.65
0.64
Fortaleza
0.64
0.63
Goiânia
0.65
0.64
Manaus
0.64
0.64
Porto Alegre
0.64
0.63
Porto Velho
0.64
0.64
Rio Branco
0.64
0.64
Rio de Janeiro
0.65
0.65
São Luiz
0.65
0.64
São Paulo
0.64
0.63
Teresina
0.64
0.63
Table 5.
Storage Volume (Vr) and Adjusted storage volume ( 𝑉 𝑅𝐴 ).
City
Vr (m3)
VRA (m3)
%
Aracaju
52.0
60.8
16.8%
Belém
56.0
64.1
14.6%
Belo Horizonte
37.0
42.0
13.7%
Brasília
48.4
52.7
8.8%
Cuiabá
56.0
64.2
14.6%
Curitiba
60.3
66.1
9.5%
Florianópolis
65.8
75.3
14.4%
Fortaleza
54.1
60.4
11.7%
Goiânia
41.8
48.0
14.9%
Manaus
58.0
66.1
13.9%
Porto Alegre
40.2
44.7
11.2%
Porto Velho
64.4
73.5
14.1%
Rio Branco
61.1
69.4
13.6%
Rio de Janeiro
73.6
85.3
15.8%
São Luiz
73.5
84.5
15.0%
São Paulo
44.1
47.8
8.4%
Teresina
67.7
76.6
13.1%
4. DISCUSSION AND CONCLUSIONS
This paper evaluated the performance of storage facilities designed by the envelope curve method and showed undersizing in the storage volume when considering a simplification of the outflow rate as a constant value equal to the maximum discharge capacity of the outlet. The hydraulic verification results showed that the reservoirs were insufficient to store the inflow volumes. Thus, an outflow adjustment coefficient Cout was proposed in order to compensate for the considered simplification.
The application of the proposed methodology was applied to several Brazilian state capitals and indicated there is little variation in the value of Cout, ranging from 0.62 to 0.65, even though there is great variability in the pluviometric characteristics of these cities. The results also showed that, for the studied cities, the adjusted methodology caused an increase in the storage volume from 8.4% to 16.8%.
Finally, the parameters adopted (lot area; runoff coefficient; return period; orifice diameter; IDF of 17 Brazilian States Capital) for the simulations were the most frequent values for the urban lots, so this criteria can indeed be representative for several areas and even for the whole country after analysis of results for Cout, as it varies only within a narrow range.
5. REFERENCES
ANGELINI SOBRINHA, L. et al. Monitoramento e modelagem de um poço de infiltração de águas pluviais em escala real e com filtro na tampa. 2012. 149 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2012.
ANGELINI SOBRINHA
L.
Monitoramento e modelagem de um poço de infiltração de águas pluviais em escala real e com filtro na tampa
2012
149
Dissertação
Universidade Federal de São Carlos
São Carlos
ASCE. Standard guidelines for the design, installation, and operation and maintenance of urban stormwater systems. Reston, 2017.
ASCE
Standard guidelines for the design, installation, and operation and maintenance of urban stormwater systems
Reston
2017
AZZOUT, Y.; BARRAUD, S.; CRES, F. N.; ALFAKIH, E. Techniques alternatives en assainissement pluvial. Paris: Lavoisier, 1994. 372 p.
AZZOUT
Y.
BARRAUD
S.
CRES
F. N.
ALFAKIH
E.
Techniques alternatives en assainissement pluvial.
Paris
Lavoisier,
1994
372
BAPTISTA, M. B.; DE OLIVEIRA NASCIMENTO, N.; BARRAUD, S. Técnicas compensatórias em drenagem urbana. Porto Alegre: ABRH, 2011.
BAPTISTA
M. B.
OLIVEIRA NASCIMENTO
N.
DE
BARRAUD
S.
Técnicas compensatórias em drenagem urbana
Porto Alegre
ABRH,
2011
BEMFICA, D. C.; GOLDENFUM, J. A.; SILVEIRA, A. L. L. da. Análise da aplicabilidade de padrões de chuva de projeto a Porto Alegre. Revista Brasileira de Recursos Hídricos, v. 5, n. 4, 2000.
BEMFICA
D. C.
GOLDENFUM
J. A.
SILVEIRA
A. L. L. da.
Análise da aplicabilidade de padrões de chuva de projeto a Porto Alegre
Revista Brasileira de Recursos Hídricos,
5
4
2000
BERTONI, J. M.; TUCCI, C. E. M. Precipitação. In: TUCCI, C. E. M. Hidrologia Ciência e Aplicação. Porto Alegre: Editora da UFRGS, 1993. Cap. 5.
BERTONI
J. M.
TUCCI
C. E. M.
Precipitação
TUCCI
C. E. M.
Hidrologia Ciência e Aplicação.
Porto Alegre
Editora da UFRGS,
1993
5
BRASÍLIA. Manual de drenagem e manejo das águas pluviais urbanas do Distrito Federal. Brasília, DF: Adasa; Unesco, 2018.
BRASÍLIA
Manual de drenagem e manejo das águas pluviais urbanas do Distrito Federal
Brasília, DF
Adasa; Unesco,
2018
BUTLER, D.; DIGMAN, C.; MAKROPOULOS, C.; DAVIES, J.W. Urban drainage. Boca Raton: CRC Press, 2018.
BUTLER
D.
DIGMAN
C.
MAKROPOULOS
C.
DAVIES
J.W.
Urban drainage
Boca Raton
CRC Press,
2018
CADORE, R. C. et al. Critérios de dimensionamento de biorretenções. 2016. 116 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Santa Maria, Santa Maria, 2016.
CADORE
R. C.
Critérios de dimensionamento de biorretenções
2016
116
Dissertação
Universidade Federal de Santa Maria
Santa Maria
CASTRO, A. L. P.; SILVA, C. N. P.; SILVEIRA, A. Curvas Intensidade-Duração-Frequência das precipitações extremas para o município de Cuiabá (MT). Ambiência, v. 7, n. 2, p. 305 - 315, 2011.
CASTRO
A. L. P.
SILVA
C. N. P.
SILVEIRA
A.
Curvas Intensidade-Duração-Frequência das precipitações extremas para o município de Cuiabá (MT).
Ambiência,
7
2
305
315
2011
CHEN, Y. et al. Urban flood risk warning under rapid urbanization. Environmental Research, v. 139, p. 3-10, 2015. https://doi.org/10.1016/j.envres.2015.02.028
CHEN
Y.
Urban flood risk warning under rapid urbanization.
Environmental Research,
139
3
10
2015
https://doi.org/10.1016/j.envres.2015.02.028
CHOW, V. T.; MAIDMENT, D.R.; MAYS, L.W. Applied hydrology. Singapore: Mcgraw-Hill, 1988.
CHOW
V. T.
MAIDMENT
D.R.
MAYS
L.W.
Applied hydrology
Singapore
Mcgraw-Hill,
1988
DISTRITO FEDERAL. Secretaria de Estados de Obras. Plano Diretor de Drenagem Urbana do Distrito Federal: Relatório de Produto 4. Volume 8. Tomo 01/07. Brasília: Concremat Engenharia, 2009.
DISTRITO FEDERAL. Secretaria de Estados de Obras
Plano Diretor de Drenagem Urbana do Distrito Federal: Relatório de Produto 4
.
8
01/07
Brasília
Concremat Engenharia,
2009
FENDRICH, R. Chuvas intensas para obras de drenagem no estado do Paraná. 2. ed. Curitiba: Gráfica Vicentina, 2003. 101 p.
FENDRICH
R.
Chuvas intensas para obras de drenagem no estado do Paraná
2
Curitiba
Gráfica Vicentina,
2003
101
FRAGOSO JR., C. R. Regionalização de vazão máxima instantânea com base na precipitação de projeto. Revista eletrônica de Recursos Hídricos, v. 1, n. 1, 2004.
FRAGOSO
C. R.
JR.
Regionalização de vazão máxima instantânea com base na precipitação de projeto.
Revista eletrônica de Recursos Hídricos,
1
1
2004
GUAN, M.; SILLANPÄÄ, N.; KOIVUSALO, H. Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment. Hydrological Processes, v. 30, n. 4, p. 543-557, 2016. https://doi.org/10.1002/hyp.10624
GUAN
M.
SILLANPÄÄ
N.
KOIVUSALO
H.
Storm runoff response to rainfall pattern, magnitude and urbanization in a developing urban catchment
Hydrological Processes,
30
4
543
557
2016
https://doi.org/10.1002/hyp.10624
GUO, J. C.Y. Detention storage volume for small urban catchments. Journal of water resources planning and management, v. 125, n. 6, p. 380-382, 1999. https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(380)
GUO
J. C.Y.
Detention storage volume for small urban catchments
Journal of water resources planning and management,
125
6
380
382
1999
https://doi.org/10.1061/(ASCE)0733-9496(1999)125:6(380)
LUCAS, A. H.; BARBASSA, A. P.; MORUZZI, R. B. Modelagem de um sistema filtro-vala- trincheira de infiltração pelo método de Puls adaptado para calibração de parâmetros. Revista Brasileira de Recursos Hídricos, v. 18, p. 135-236, 2013. http://dx.doi.org/10.21168/rbrh.v18n2.p225-236
LUCAS
A. H.
BARBASSA
A. P.
MORUZZI
R. B.
Modelagem de um sistema filtro-vala- trincheira de infiltração pelo método de Puls adaptado para calibração de parâmetros
Revista Brasileira de Recursos Hídricos,
18
135
236
2013
http://dx.doi.org/10.21168/rbrh.v18n2.p225-236
MIGUEZ, M.; REZENDE, O.; VERÓL, A. Drenagem urbana: do projeto tradicional à sustentabilidade. São Paulo: Elsevier Brasil, 2015.
MIGUEZ
M.
REZENDE
O.
VERÓL
A.
Drenagem urbana: do projeto tradicional à sustentabilidade
São Paulo
Elsevier Brasil,
2015
NASCIMENTO, N. O.; BAPTISTA, M.B. Técnicas compensatórias em águas pluviais. In: RIGHETTO, A. M. (Coord.). Manejo de águas pluviais urbanas. Rio de Janeiro: ABES, 2009. Cap. 4, p. 148-197.
NASCIMENTO
N. O.
BAPTISTA
M.B.
Técnicas compensatórias em águas pluviais
RIGHETTO
A. M.
Manejo de águas pluviais urbanas
Rio de Janeiro
ABES,
2009
4
148
197
OLIVEIRA, L. F. C.; CORTÊS F. C.; WEHR, T. R.; BORGES, L. B.; SARMENTO, P. H. L.; GRIEBELER, N. P. Intensidade-duração-frequência de chuvas intensas para localidades no estado de Goiás e Distrito Federal. Engenharia na Agricultura, v. 11, n. 1-4, 2003.
OLIVEIRA
L. F. C.
CORTÊS
F. C.
WEHR
T. R.
BORGES
L. B.
SARMENTO
P. H. L.
GRIEBELER
N. P.
Intensidade-duração-frequência de chuvas intensas para localidades no estado de Goiás e Distrito Federal
Engenharia na Agricultura,
11
1-4
2003
PORTO ALEGRE. Decreto nº 18.611 de 9 de abril de 2014. Regulamenta o controle da drenagem urbana e revoga os itens 4.8.6, 4.8.7 e 4.8.9 do Decreto nº 14.786, de 30 de dezembro de 2004 - caderno de encargos do dep - e o decreto nº 15.371, de 17 de novembro de 2006. Porto Alegre, 2014.
PORTO ALEGRE
Decreto nº 18.611 de 9 de abril de 2014. Regulamenta o controle da drenagem urbana e revoga os itens 4.8.6, 4.8.7 e 4.8.9 do Decreto nº 14.786, de 30 de dezembro de 2004 - caderno de encargos do dep - e o decreto nº 15.371, de 17 de novembro de 2006.
Porto Alegre,
2014
SÃO JOSÉ DO RIO PRETO. Lei nº 10.290 de 24 de dezembro de 2008. Cria no município o programa permanente de gestão das águas superficiais (PGAS) da bacia hidrográfica do Rio Preto, e dá outras providências. São José do Rio Preto, 2008.
SÃO JOSÉ DO RIO PRETO
Lei nº 10.290 de 24 de dezembro de 2008. Cria no município o programa permanente de gestão das águas superficiais (PGAS) da bacia hidrográfica do Rio Preto, e dá outras providências
São José do Rio Preto,
2008
SILVA, F. O. E.; PALÁCIO JR., F. F.; CAPOS, J. N. B. Equação de chuvas para Fortaleza - CE com dados do pluviógrafo da UFC. Revista DAE, n. 192, p. 48-59, 2013.
SILVA
F. O. E.
PALÁCIO
F. F.
JR
CAPOS
J. N. B.
Equação de chuvas para Fortaleza - CE com dados do pluviógrafo da UFC.
Revista DAE,
192
48
59
2013
SILVEIRA, A. L. L da; GOLDENFUM, J. A. Metodologia generalizada para pré-dimensionamento de dispositivos de controle pluvial na fonte. Revista Brasileira de Recursos Hídricos, v. 12, n. 2, p. 157-168, 2007.
SILVEIRA
A. L. L da
GOLDENFUM
J. A.
Metodologia generalizada para pré-dimensionamento de dispositivos de controle pluvial na fonte.
Revista Brasileira de Recursos Hídricos,
12
2
157
168
2007
URBONAS, B.; STAHRE, P. Stormwater - Best management practices and detention for water quality, drainage, and CSO management. Prentice Hall, 1993.
URBONAS
B.
STAHRE
P.
Stormwater - Best management practices and detention for water quality, drainage, and CSO management
Prentice Hall,
1993
WILKEN, P. S. Engenharia de drenagem superficial. São Paulo: CETESB, 1978. 477 p.
WILKEN
P. S.
Engenharia de drenagem superficial
.
São Paulo
CETESB,
1978
477
ZAHED FILHO, K.; MARCELLINI, S. S. Precipitações máximas. In: TUCCI, C. E. M.; PORTO, R. L.; BARROS, M. T. L. Drenagem urbana. Porto Alegre: Editora da UFRGS; ABRH, 1995.
ZAHED
K.
FILHO
MARCELLINI
S. S.
Precipitações máximas
TUCCI
C. E. M.
PORTO
R. L.
BARROS
M. T. L.
Drenagem urbana.
Porto Alegre
Editora da UFRGS; ABRH,
1995
ZHOU, Q. A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water, v. 6, n. 4, p. 976-992, 2014. https://doi.org/10.3390/w6040976
ZHOU
Q.
A review of sustainable urban drainage systems considering the climate change and urbanization impacts
Water,
6
4
976
992
2014
https://doi.org/10.3390/w6040976
Autoria
Diego Marangoni Santos
Instituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.brUniversidade Federal do Rio Grande do SulBrazilPorto Alegre, RS, BrazilInstituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.br
Instituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.brUniversidade Federal do Rio Grande do SulBrazilPorto Alegre, RS, BrazilInstituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.br
Fernando Dornelles
*
*Corresponding author: Fernando Dornelles, e-mail: fernando.dornelles@ufrgs.br
Instituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.brUniversidade Federal do Rio Grande do SulBrazilPorto Alegre, RS, BrazilInstituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.br
Instituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.brUniversidade Federal do Rio Grande do SulBrazilPorto Alegre, RS, BrazilInstituto de Pesquisas Hidráulicas. Departamento de Hidromecânica e Hidrologia. Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, n° 9500, Caixa Postal 15029, CEP: 91501-970, Porto Alegre, RS, Brazil. E-mail: diegomarangoni@hotmail.com, joel@iph.ufrgs.br, fernando.dornelles@ufrgs.br
Figure 4.
Outflow comparisons of Envelope and Puls methods: a) volume difference between Puls and Envelope outflows; b) outflow volumes by Puls simulation; c) outflow volumes by Envelope.
imageFigure 1.
Storage volume using the rain envelope method.
open_in_new
imageFigure 2.
Envelope curve method for Porto Alegre with: C = 0.9; Qlim = 2.04 l.s-1; A = 1.000 m².
open_in_new
imageFigure 3.
Verification reservoir outflow hydrographs by Puls simulation for the traditional envelope curve sizing method.
open_in_new
imageFigure 4.
Outflow comparisons of Envelope and Puls methods: a) volume difference between Puls and Envelope outflows; b) outflow volumes by Puls simulation; c) outflow volumes by Envelope.
open_in_new
imageFigure 5.
Spatial location of the cities used in the study.
open_in_new
table_chartTable 1.
Cout sensitivity for period return of 10 years.
Qlim (D)
Runoff Coefficient (C)
0.2
0.6
1.0
1.31 l/s (20 mm)
0.66
0.64
0.63
8.18 l/s (50 mm)
0.82
0.69
0.68
table_chartTable 2.
Cout sensitivity for return period of 50 years.
Qlim(Diameter)
Runoff Coefficient (C)
0.2
0.6
1.0
1.31 l/s (20 mm)
0.66
0.63
0.62
8.18 l/s (50 mm)
0.77
0.68
0.66
table_chartTable 3.
IDF curves parameters for several Brazilians state capitals.
City
Parameters
a
b
c
d
Aracaju1
834.2
0.179
15
0.726
Belém1
1085.5
0.156
12
0.758
Belo Horizonte2
1447.9
0.100
20
0.840
Brasília3
1574.7
0.207
8
0.884
Cuiabá4
1016.5
0.133
7.5
0.739
Curitiba5
5726.6
0.159
41
1.041
Florianópolis1
1754.2
0.187
36
0.823
Fortaleza7
2345.3
0.173
28.3
0.904
Goiânia8
920.5
0.142
12
0.760
Manaus1
1136.5
0.158
10
0.764
Porto Alegre9
1297.9
0.171
11.6
0.850
Porto Velho1
1181.4
0.159
11
0.757
Rio Branco1
1419.3
0.162
18
0.795
Rio de Janeiro10
1239.0
0.150
20
0.740
São Luiz1
1519.4
0.161
28
0.777
São Paulo11
3462.6
0.172
22
1.025
Teresina1
1248.9
0.177
10
0.769
table_chartTable 4.
Values of the Cout for period returns of 10 and 50 years and several Brazilian Capitals.
Santos, Diego Marangoni, Goldenfum, Joel Avruch e Dornelles, Fernando. Coeficiente de ajuste para o dimensionamento de reservatórios pelo método da curva envelope aplicado a capitais estaduais brasileiras. Revista Ambiente & Água [online]. 2021, v. 16, n. 6 [Acessado 18 Abril 2025], e2707. Disponível em: <https://doi.org/10.4136/ambi-agua.2707>. Epub 10 Dez 2021. ISSN 1980-993X. https://doi.org/10.4136/ambi-agua.2707.
Instituto de Pesquisas Ambientais em Bacias HidrográficasInstituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Estrada Mun. Dr. José Luis Cembranelli, 5000, Taubaté, SP, Brasil, CEP 12081-010 -
Taubaté -
SP -
Brazil E-mail: ambi.agua@gmail.com
rss_feed
Acompanhe os números deste periódico no seu leitor de RSS
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.