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Abstract 
Sperm quality is essential to guarantee the success of assisted reproduction. However, selecting high-quality 
sperm and maintaining it during (cryo)preservation for high efficiency remains challenging in livestock 
reproduction. A comprehensive understanding of sperm biology allows for better assessment of sperm quality, 
which could replace conventional sperm analyses used today to predict fertility with low accuracy. Omics 
approaches have revealed numerous biomarkers associated with various sperm phenotypic traits such as quality, 
survival during storage, freezability, and fertility. At the same time, nanotechnology is emerging as a new 
biotechnology with high potential for use in preparing sperm intended to improve reproduction in livestock. The 
unique physicochemical properties of nanoparticles make them exciting tools for targeting (e.g., sperm damage 
and sexing) and non-targeting bioapplications. Recent advances in sperm biology have led to the discovery of 
numerous biomarkers, making it possible to target specific subpopulations of spermatozoa within the ejaculate. 
In this review, we explore potential biomarkers associated with sperm phenotypes and highlight the benefits of 
combining these biomarkers with nanoparticles to further improve sperm preparation and technology. 
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Introduction 

Routine semen analysis, such as sperm motility and morphology, has been used as the main 
criteria for monitoring sperm quality and subsequent fertility. However, ejaculates approved by 
these criteria do not necessarily have high fertility (Avendaño et al., 2009; Ferrigno et al., 2021), and 
there is a need for robust biomarkers to effectively predict fertility and reduce/prevent losses 
associated with infertility. Functional genomics, a technique capable of describing the functions and 
interactions between genes, proteins, and metabolites, has allowed the identification of several 
biomarkers associated with sperm phenotype, such as motility level, fresh, chilled, frozen, or fertility 
status. Numerous high-throughput technologies have been used to identify biomarkers related to 
sperm phenotypes, such as fertility and freezability (Peddinti et al., 2008; Soggiu et al., 2013; 
Menezes et al., 2019; Mateo-Otero et al., 2023; Song et al., 2023; Sun et al., 2023). These potential 
biomarkers offer novel perspectives for sperm preparations using nanoparticles. 

Nanoparticles are nanoscale compounds produced naturally by cells as extracellular vesicles 
or manufactured through bottom-up (synthesis from atoms and molecules) and top-down 
(synthesis from bulk materials) approaches, possessing various physicochemical properties (e.g., 
electrical, optical, and magnetism). A typical structure of a nanoparticle with specific properties 
(e.g., magnetism and fluorescence), mainly acquired from its core composition is shown in 
Figure 1. The US National Nanotechnology Initiative describes nanotechnology as the 
understanding and controlling matter at the nanoscale, at dimensions between approximately 1 
and 100 nanometers, where unique phenomena enable novel applications (NNI, 2024). 
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Nanotechnology has sparked as one of the emerging research fields during the last decades, with 
bioapplications in human healthcare as diagnostic and therapeutic agents (Abedin et al., 2021; 
Anjum et al., 2021). This technology holds great potential in veterinary medicine and livestock 
farming in enhancing animal health, (re)production, and husbandry, acting as antimicrobials, 
animal growth and well-being promoters (nano-additives in feed), vaccines, and nanomaterials 
for drug delivery (Hill and Li, 2017; Selokar et al., 2020; ul Haq et al., 2023; Barwant et al., 2024). 
Especially in reproduction, nanotechnology has enormous potential in semen technology, as 
nanoparticles could be used for targeted sperm selection or nanoselection/nanopurification 
(Odhiambo et al., 2014; Feugang et al., 2015a), imaging, (Feugang et al., 2015b; Jain et al., 2018), 
sexing (Domínguez et al., 2018), and reduction of damages occurring during (cryo) preservation 
(Falchi et al., 2018a; Khodaei-Motlagh et al., 2022; Khalique et al., 2023). 

 
Figure 1. Structure of a typical nanoparticle. Metal nanoparticles (MNPs) have a metal core and a shell. The 
core can be made of an inorganic metal (zinc, iron, silver, gold, etc.) or metal oxide (Aluminum, copper, 
magnesium, titanium, zinc, silica, iron oxides, etc.). The shell can be made of an organic (e.g., polymers) or 
inorganic material (e.g., gold), or metal oxide (e.g., silane). Nanoparticles made of metallic cores 
surrounded by oxide shells, also known as metal oxide core-shell nanoparticles, have become popular due 
to their unique properties and high stability. Diverse metal-oxide interactions in metal oxide core-shell 
nanoparticles enable tuning their electronic structure (shape and size), spectroscopic properties, and 
surface reactivity for bioapplications (e.g., sensing, drug/gene delivery, and targeted imaging and selection). 

From this background, semen has unique attributes that could improve the effectiveness 
of sperm biotechnologies. This review explores sperm biology and identifies key molecular 
markers linked to sperm phenotypes, such as motility, storage, freezing, sex, and fertility. It 
also highlights the benefits of combining these biomarkers with nanotechnology tools to 
improve sperm fertility and technological outcomes. 

Sperm biology 

Spermatogenesis 

The spermatozoon consists of the head, which contains the genetic material (DNA); the middle 
piece, containing the mitochondria; and the tail, responsible for motility. Spermatozoa are highly 
specialized, compact, and motile cells originated after spermatogenesis to move to the ampulla 
region, where it interacts with the oocyte and initiate fertilization process. Spermatogenesis is a 
species-specific cell differentiation process that occurs in the seminiferous epithelial and is 
regulated by the hypothalamic–pituitary–testicular axis (Amann, 2008). 
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Spermatogenesis involves three distinct phases, namely proliferation (spermatocytogenesis), 
meiosis, and differentiation (spermiogenesis) (Staub and Johnson, 2018). 

Proliferation phase or mitotic divisions – cell divisions occur in a sequence where chromosomes 
duplicate, resulting in two daughter cells or primary spermatocytes (or spermatocytes I), maintaining 
intercellular bridge connections with spermatogonia (types A and B). Spermatocytes I possess equal 
division of chromosomes (e.g. 2n=46 and 4n centromeres) and cytoplasm (Sharma and Agarwal, 
2011). 

Meiotic phase – individual spermatocytes I move into the adluminal compartment, duplicate DNA, 
and divide into two haploid secondary spermatocytes (spermatocyte II, with n=23 chromosomes and 
2n centromeres) (Alpatov et al., 2014). This second stage (meiosis II) immediately follows the first stage 
of the meiotic phase (meiosis I), involving chromosomal exchange with divided centromeres and 
giving rise to four haploid daughter cells (n = 23 chromosomes and 1 centromere) (Sharma and 
Agarwal, 2011). 

Spermiogenesis – sperm cells undergo complete differentiation or morphogenesis to become 
highly specialized spermatozoa with compacted chromatin (Durairajanayagam et al., 2015). 
Numerous nuclear and cytoplasmic changes occur in spermatozoa during that phase. For example, 
nuclear histone is replaced with protamine to form well-developed disulfide bonds (Holstein et al., 
2003), various organelles of the cytoplasm such as the Golgi apparatus, acrosomal cap, proximal 
centriole, and flagellum structures, go through profound remodeling and reorganization (Cooper, 
2005). The midpiece surrounded by a sheath, axial core, and coarse fibrils (Neto et al., 2016) has a 
high concentration of mitochondria, which are responsible for aerobic functioning and supply energy 
for sperm motility (Gadella and Luna, 2014). After successive stages of differentiation, the resulting 
spermatozoa emerge as immature and immotile cells, unable to fertilize the oocyte (Jones, 2002). 
Produced spermatozoa often carry residual bodies or excess cytoplasm (cytoplasmic droplets) that 
are phagocyted by surrounding Sertoli cells. This excess of cytoplasm ensured synchronization of the 
syncytium of spermatids (Gadella and Luna, 2014), maintaining cross communications/bridges 
among sister spermatids. 

Sperm maturation 

The maturation process of spermatozoa is a fascinating journey, intricately influenced by 
the testosterone. The study of sperm maturation has sparked a growing interest among 
researchers, leading to a continuous generation of knowledge in this field (Aitken and Baker, 
2008; Holt and Morrell, 2013). This process consists of number of changes: 

Morphological changes – The excess of cytoplasm in produced spermatozoa is eliminated 
during the journey within the epididymis. Disruptions in epididymal and/or testicular function 
can lead to sperm abnormalities, such as cytoplasmic droplets and/or abnormally condensed 
chromatin. A negative correlation between such abnormalities and fertility has been reported 
(Sutovsky and Lovercamp, 2010). 

Biochemical changes – During epididymal transit, sperm gain motility and fertilizing potential 
(Sullivan et al., 2005). Biochemical changes alter the sperm plasma membrane’s biophysical 
properties, which is fundamental for the occurrence of subsequent steps providing fertilization 
capacity to the sperm (Holt and Morrell, 2013). Numerous studies have reported the critical effects of 
post-gonadal sperm maturation on the sperm cell acquiring complete functionality characteristics 
(Dacheux and Dacheux, 2014). Epididymal epithelial cells secrete nano- to micro-size vesicles, known 
as epididymosomes, that contain lipids, proteins, and RNAs (Sullivan et al., 2005; Sharma et al., 2016). 

Functional changes – Within the epididymis, the epididymosome vesicles fuse with sperm 
membranes to induce surface changes and intracellular delivery of their contents, contributing 
to sperm functionality acquisition (e.g., motility and fertilization ability). Furthermore, during 
ejaculation, mature epididymal sperm interacts with several molecules contained in secretions 
from seminal vesicle glands, prostate (prostasomes), bulbourethral glands, and Cowper glands 
(Rodríguez-Martínez et al., 2011) to further stabilize the sperm membrane by coating their 
surface (Lu et al., 2011) and protect them during transit through the female genital tract (vagina, 
cervix, and utero/oviduct) (Gibbons et al., 2005; Troedsson et al., 2005). More specifically, the 
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prostate gland secretions include the prostasome vesicles, whose lipids, proteins, RNA, and DNA 
contents also affect sperm function by stimulating motility, regulating capacitation, and 
protecting against the immune response in the female tract (Aalberts et al., 2014). 

Sperm transit within the female reproductive tract 

After deposition within the female reproductive tract, spermatozoa that reach the oviduct 
exhibit good progressive motility, adequate morphology, normal sperm head and size, sensitivity 
to signaling molecules, and a normal DNA status (Holt and Fazeli, 2015). In the oviduct, epithelial 
cells and local fluid play a crucial role in modulating sperm function (e.g., capacitation, acrosome 
reaction, and fertilization) and local gene expression (López-Úbeda et al., 2015). 

Sperm capacitation 

Capacitation is a process that involves biochemical and physiological modifications on the sperm 
plasma membrane during the passage of sperm within the female reproductive tract (Gadella and 
Luna, 2014). This process includes the efflux of cholesterol from the sperm plasma membrane, 
leading to increased permeability to bicarbonate and calcium ions, and changes in protein 
phosphorylation. Bicarbonate (HCO3-) and calcium ions (Ca2+) play crucial roles in destabilizing the 
plasma membrane through the cAMP-dependent protein phosphorylation-signaling pathway 
(Tardif et al., 2001). The activation of soluble adenyl cyclase generates cyclic adenosine 
monophosphate (cAMP), in which the calcium ion acts as a secondary messenger, initiating a cascade 
of protein phosphorylation that triggers sperm motility (Chen et al., 2000; Finkelstein et al., 2020). 
These controlled alterations activate hyperactive motility and the ability of sperm to undergo an 
acrosomal reaction when they reach the oocyte (Travis and Kopf, 2002). Overall, the capacitation 
process could be summarized as successive steps of 1.) acrosome membrane destabilization, 2.) 
chemical changes in the sperm tail, 3.) increased permeability to Ca2+, and 4.) sperm hyperactivation. 

In vivo Capacitation – Sperm capacitation occurs in the oviduct, where sperm cells shed 
adhering decapacitation factors and interact with ciliated cells of the oviduct epithelium, but 
mainly with substances present in the oviduct fluids (e.g., glycosaminoglycans). These sperm 
cells progress towards the ampullary-isthmic junction, where the ovulated oocyte arrests for 
fertilization (Sostaric et al., 2008; Talevi and Gualtieri, 2010). 

In vitro Capacitation – Is induced in a medium containing calcium, bicarbonate ions, and serum 
albumin, mimicking the ionic and metabolic composition of oviductal fluid (Touré, 2019). Other 
substances such as cAMP, caffeine, procaine, heparin, progesterone, and methyl β-cyclodextrin are 
often used for in vitro capacitation, a process involving sperm collection from a male donor, their 
washing in a buffered solution, then incubation in a capacitation medium to initiate capacitation 
through the synergistic effects of bicarbonate and calcium for boar sperm (Tardif et al., 2001) or 
negatively charged glycoconjugates for other livestock animals, such as ruminants (Ka̧tska-
Ksia̧zkiewicz et al., 2004). Sperm preparation for in vitro fertilization (IVF) consist of their selection 
(Percoll or swim-up) followed by incubation with matured oocytes in IVF media containing 
substances that trigger the capacitation process (Henkel and Schill, 2003; Lacalle et al., 2022). 

Acrosome reaction and fertilization 

The interaction between proteins from the sperm surface and the zona pellucida receptors 
facilitates the acrosomal reaction. Then, the acrosome-reacted sperm enters the zona pellucida, 
reaches the perivitelline space, and fuses with the oocyte membrane to transmit the sperm head 
contents (e.g., DNA, RNA, and protein) into the ooplasm (Coy et al., 2008). Acrosome reaction is 
controlled by SNARE complexes, leading to the exocytosis of acrosomal contents upon fusion of the 
plasma membrane with the outer acrosomal membrane. Many studies have used various advanced 
technologies (e.g., gene silencing, omics) to study critical molecules (e.g., IZUMO1, TMEM95, SOF1, and 
SPAC6) playing critical roles in sperm-oocyte membrane interaction and fusion (Siu et al., 2021). The 
functional genome of the spermatozoon, assessed via high-throughput screening methods (omics) 
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has identified numerous sperm molecules that modulate oxidative phosphorylation, cAMP signaling, 
and sperm-egg interaction (Johnston et al., 2005; Baker et al., 2007; Hitit and Memili, 2022). As such, 
biomarkers comprising proteins, mRNAs, lipids, and metabolites hold substantial promise in 
predicting sperm quality and fertility. These biomarkers have the potential to provide a deep 
understanding of male reproductive health and sperm phenotype. 

Enhancing sperm manipulation through nanotechnology 

Screening technologies have revealed specific molecules that are integral to the molecular 
pathways of sperm biology, influencing various sperm phenotypes (e.g., quality, fertilizing 
potential, preservation, sex) and male fertility outcomes (Table 1) (Suchocki and Szyda, 2015; 
Zeng et al., 2021; Dlamini et al., 2023). The unique properties of nanoparticles, such as their 
small size and high surface area, hold immense potential for their diverse applications in 
livestock, impacting sperm quality and fertility outcomes (Feugang, 2017; Feugang et al., 
2019) (Figure 1). 

Table 1. Candidate biomarkers of sperm phenotypes for nanotechnology applications. 

Phenotype Sources Biomarker candidates Animals References 

Motility 

Sperm 

Proteins: 
Rams Zhu et al. (2020) Phosphatidylethanolamine binding protein 4, Spermatogenesis associated 

18, Carboxypeptidase, Acrosin 
Proteins: 

Horses 
Gaitskell-

Phillips et al. 
(2021a) 

Mannosidase alpha class 2C member 1, Ubiquinone 1 alpha sucomplex 
subunit 9-like protein, isoleucyl-tRNA synthetase2, mitochondrial acethyl-

CoA acetyl transferase 1, Latherin, Ubiquitin-specific peptidase 43 
Proteins: 

Horses 
Gaitskell-

Phillips et al. 
(2021b) 

Hexokinase 1, Aconitase hydratase mitochondrial, Phosphoinositide 
phospholipase C, Elongation factor Tu, F actin capping protein subunit alpha 

Metabolites: 

Bucks 
Yuan et al. 

(2023a) 
Butyric acid, 1-(2-Methoxy-13-methyl-pentadecanyl)-sn-glycero-3-

phosphoetanolamine, 2-O-benzoyl-D-glucose, Trehalulose, 
Glutamylphenylalanine, Vulgaxanthin-I 

Transcripts: 
Bulls 

Ganguly et al. 
(2013) PRM1 mRNAs 

Liquid preservation 
ability/Freezability 

Proteins: NUDFB8, SDHC, PDIA4, HSPB1 Bucks Sun et al. (2023) 
Proteins: 

Boars Song et al. (2024) 
GPX5, GLRX, ENO4, QPCT, BBS7, OXR1, DHRS4, AP2S1 

Metabolites: 
Boars 

Zhang et al. 
(2023) Oleic acid, Oleamide, N8-acetylspermidine 

Metabolites: 
Boars 

Torres et al. 
(2022) Inosine, Hypoxanthine, Creatine, ADP, Niacinamide, Spermine, 2-

methylbutyrylcarnitine 
Metabolites: 

Boars Sui et al. (2023) 
L-citruline 

Transcripts: 
Boars 

Fraser et al. 
(2020) FOS, NFATC3, EAF2, BAMBI, PTPRU, PTPN2, ND6, ACADM, 

Fertility 

Proteins: Calmodulin, 
Bulls 

Soggiu et al. 
(2013) ATP synthase mitochondrial subunits alpha and delta, Malate 

dehydrogenase and Sperm equatorial segment protein 1 
Proteins: 

Boars 
Kwon et al. 

(2015) Ras-related protein Rab-2A, Cytochrome b-c1 complex subunit 1, 
Cytochrome b-c1 complex subunit 2 

Proteins: Acyl-CoA thioesterase 9, Albumin, Casein kinase 2, K voltage-gated 
channel shaker-related 

Bulls 
Peddinti et al. 

(2008) 
Proteins: 

Bulls 
Zhang et al. 

(2021) L amino acid oxidase 1 
Metabolites: 

Bulls 
Menezes et al. 

(2019) Gamma-aminobutyric acid, Carbamate, Benzoic acid, Lactic acid, Palmitic 
acid 
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Phenotype Sources Biomarker candidates Animals References 
Metabolites: 

Bulls 
DasGupta et al. 

(2021) Taurine, Hypotaurine 
Transcripts: 

Bulls 
Lalancette et al. 

(2008) rRNA genes (18S, 12S, and Large chain R) 

Mitochondrial 
activity 

Proteins: 
Stallions Gaitskell-

Phillips et al. 
(2021b) 

Phosphoglycerate mutase, peroxiredoxin 6-like proteins, actin-1 analogue, 
transmembrane protein analogue 

Viability Chaperonin TCP1 subunit 8, Testis expressed 101 Stallions 

Motility 

Seminal 
plasma 

Proteins: 

Bucks 
Jia et al. (2021) 

Zonadhesin, Superoxide dismutase, Sperm equatorial segment protein 1, 
Mitochondrial thioredoxin reductase, Zona pellucida binding protein, 

Aquaporin 7 
Metabolites: 

 
Thioetheramide-PC, Adenosine, N,N-Dimethylguanosine, Isocitric acid 

Transcripts: 

Boars Zhao et al. (2024) 
miRNAs (ssc-miR- 

122–5p, ssc-miR-486, ssc-miR-451, ssc-miR-345–3p, ssc-miR-362, and ssc-
miR-500–5p) 

Liquid preservation 
ability/Freezability 

Metabolites: 
Bulls 

Pessoa et al. 
(2023) Propanoic acid, D-ribose, glycine 

Metabolites: 
Boars Song et al. (2023) D-proline, Arginine, L-citruline, Phenylalanine, Leucine, DL-proline, DL-serine, 

Indole 
Metabolites: 

Boars Sui et al. (2023) 
Tryptophan 

Fertility 
Proteins: 

Boars Zeng et al. (2021) Ceruloplasmin, Carboxypeptidase E, Serine protease inhibitor family A 
member 12 

Nanoparticles 

Nanoparticles can be naturally or artificially produced in various shapes (such as cubic or 
spherical) and can consist of inorganic (like metals or salts) as well as organic materials (e.g., 
lipids, proteins or polymers) (Figures 1 and 2) (Sun et al., 2014). Metal nanoparticles are made 
in different sizes (ranging from 1 to 100 nm) and shapes (like irregular, rod, spherical, 
cylindrical, tetragonal, and hexagonal) using inorganic core materials such as cadmium, zinc, 
gold, silver, platinum, plomb, aluminum, nickel, iron, and copper. The composition of these 
core materials determines their fundamental properties, like electronical, optical, and 
physical characteristics, which have garnered much attention in medicine. However, these 
core materials are often associated with immunogenicity and cytotoxicity of nanoparticles 
because they can release metallic ions like cadmium (Han et al., 2016; Jain et al., 2018; 
Kuo et al., 2017; Wang et al., 2020). Nonetheless, coating the core material with multiple 
layers has helped mitigate its toxicity. For instance, the stabilization of the core material with 
an inorganic protective shell (e.g., zinc sulfide and silica) and surface modification of the core-
shell with various polymers (such as polyvinylpyrrolidone - PVP, polyvinyl alcohol - PVA, 
polyethylene glycol - PEG, among others), ceramics (like Silicates), and adsorption of anions 
or charged groups (such as citrate3-, chloride ions-Cl-, dextran sulfate, polyethyleneimine, 
etc.) reduces nanoparticle toxicity and enhances biocompatibility (particle dispersion in 
biofluids), which is essential for bioapplications (Suk et al., 2016; Jain et al., 2018). 

Organic nanoparticles (e.g., micelle, dendrimer, liposome, nanogel, and polymeric) contrast 
their inorganic counterparts. They are formed from aggregated molecules (e.g., 
polysaccharides and lipids) or polymers of various structures, each exhibiting unique size-
dependent physical and chemical properties (e.g., optical and electrochemical). The non-toxic 
and biodegradable micelles and liposomes, with their hollow spheres, are widely used for 
pharmaceutical transportation (e.g., drugs and nucleic acids). These organic nanoparticles are 
designed for bioapplications, and their surface modification with polymers (e.g., PEG) often 
provides an extended lifespan (Suk et al., 2016; Virlan et al., 2016; Feugang et al., 2022). 

Table 1. Continued… 
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Inorganic and organic nanoparticles are biofunctionalized with attached bioactive ligands 
such as antibodies, oligonucleotides, peptides, and drugs to their external coating layer, 
providing specificity in cell targeting (Table 2 and Figure 3) (Feugang et al., 2015b; Jain et al., 2018). 
The high surface area-to-volume ratio and size-dependent physicochemical properties of both 
inorganic and organic nanoparticles make them versatile and exciting for a wide range of sperm 
manipulation (Table 2), such as high visibility/contrast in multiple bioimaging, biocompatibility 
and dispersibility, specific and molecular targeting, and ability to load and deliver diverse cargos 
for controlled release to target cells (Feugang, 2017; Sutovsky et al., 2024). 

 
Figure 2. Overview of commonly used inorganic and organic nanoparticles. The presented inorganic 
nanoparticles can be coated with single or multiple layers of organic or inorganic materials before 
biofunctionalization for bioapplications. Among the organic nanoparticles, liposomes are the most widely 
used for bioapplications, such as targeted bioimaging, drug delivery (hydrophobic and hydrophilic), and 
drug and nucleic acid intracellular delivery. The possibility of coating the external surface of nanoparticles 
with polyethylene glycol (PEG), or PEGylation, increases nanoparticle’s stability and decreases 
immunogenicity during in vivo delivery. 

Table 2. Examples of nanoparticles for sperm manipulation. 

Nanoparticles Biological 
applications 

References 
Classes Types Shape Size (nm) 

Organic Liposomes Sphere 50-500 

Active tumor targeting, 
drug gene delivery, 

intracellular delivery, 
sperm cryopreservation. 

Röpke et al. (2011); 
Deshpande et al. (2013); 

Mo et al. (2014); Ansari et al. 
(2016); Feugang et al. (2022) 

 Exosomes Sphere 40 to 120 
Sperm function, immune 
response, cancer therapy, 

drug delivery 

Montecalvo et al. (2012); 
Du et al. (2016); Fitts et al. 

(2019) 

 
Carbon-based: Single-walled 

(SWCNT)/Multi-walled (MWNT) 
Nanotubes 1-200 

Gene delivery, sensing, 
pathogenicity, oxidative 

stress, inflammation 

Donaldson et al. (2006); 
Donaldson and Tran (2002) 

 

Polymeric: 
Nanocapsules/nanospheres 

(polylactides, polylactide-co-glycolide, 
chitosan, albumin, gelatin) 

Sphere 1-1000 
Drug delivery, 

theragnostics, bioimaging 
Szczęch and Szczepanowicz 
(2020); Zielińska et al. (2020) 

Inorganic Metal nanoparticles: e.g. Gold (Au) Sphere 2-250 
Biomedical imaging, 

photothermal therapy 
Paciotti et al. (2006); Yang et al. 

(2019) 

 
Metal oxide nanoparticles: e.g. Fe2O3, 

CeO2 
Sphere 15-60 

Sperm nanopurification, 
drug delivery vehicles, 

thermal-based therapy, 
sperm bio-imaging 

Feugang et al. (2015ª); 
Falchi et al. (2018a) ; Arias et al. 

(2018) 

 
Non-metal oxide nanoparticles: e.g. 

Silica (Si) 
Sphere 40-100 

Purification, gene and 
drug delivery, biomedical 

imaging 

Wang et al. (2008); Xu et al. 
(2019) 

 Quantum dots Sphere 1-10 

Drug delivery, 
photodynamic therapy, 

biomedical imaging, 
biosensing 

Kim et al. (2004); Weng and 
Ren (2006); Bera et al. (2010); 

Feugang et al. (2012) 
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Figure 3. Schematic representation of a biofunctionalized nanoparticle. Ready-to-use nanoparticles for 
bioapplications include a (nano)core surrounded by single or multiple coating layers providing stability 
and decreasing immunogenicity and an outer surface layer functionalized based on planned unimodal 
(e.g., imaging) or multimodal (e.g., imaging and drug administration) applications. 

Sperm phenotype and nanotechnology applications 

Sperm motility, morphology, and fertility 

Sperm motility and morphology are the golden standard for semen evaluation, serving as 
selection criteria for further processing of ejaculates post-collection. Motility assessment is 
conducted objectively with automated systems such as computer-assisted sperm analyzer, 
which allows evaluation of motility and a wide range of kinematic parameters. This assessment, 
encompassing a diverse range of livestock species, has contributed to establishing a positive 
correlation between motility parameters and fertility. The research conducted using both fresh 
or cryopreserved semen (Ansari et al., 2016; Elmi et al., 2018; Lucca et al., 2021; Khan et al., 
2024), has consistently shown that high-fertile males tend to exhibit superior total and 
progressive sperm motility and velocity parameters than their low-fertile counterparts 
(Vicente-Fiel et al., 2014). These findings suggest that the differential fertility outcomes may be 
influenced by the morphology and other defects of spermatozoa. 

The percentage of morphologically normal spermatozoa is positively correlated with 
pregnancy rates in all species (Cecere, 2014). On the other hand, sperm defects, such as the 
aplastic midpiece in bull ejaculates, disrupt sperm functions, especially motility (Díaz-
Miranda et al., 2020). Several studies have used proteomics and metabolomics in various 
livestock species to identify important molecules in sperm associated with morphological 
defects in the head, midpiece, and tail, which can affect sperm motility and fertility 
(Peddinti et al., 2008; Menezes et al., 2019; Zhu et al., 2020; DasGupta et al., 2021; Gaitskell-
Phillips et al., 2021a; Hitit et al., 2021; Jia et al., 2021; Zeng et al., 2021; Sun et al., 2023). These 
identified molecules, which may interact with sperm membranes to influence sperm function, 
can potentially serve as biomarkers for monitoring sperm quality, including motility and 
morphology. When combining with traditional sperm attributes, these biomarkers may help in 
selecting the best spermatozoa/ejaculates and predicting fertility more accurately 
(Sellem et al., 2015; Inanç et al., 2018). 

The knowledge of the abovementioned sperm defects with associated biomarkers, such as 
the lectin and annexin V, targeting damaged acrosome and DNA, respectively, has led to the 
adoption of different methods of sperm purification using biofunctionalized (or conjugated) 
nanoparticles to obtain high-quality sperm through targeted elimination of low-quality or 
immotile sperm in an ejaculate (Feugang, 2017; Meles et al., 2022). Among these techniques, the 
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density gradient and single-layer centrifugation protocols use nanosized compounds such as the 
polyvinylpyrrolidone-, silane-, and glycidoxypropyltrimethoxsilane-coated silica colloid solutions, 
commercialized as Percoll™, Puresperm™, and Androcoll™, respectively. These nanoparticle-based 
solutions separate pure, high-quality, and viable spermatozoa that have shown numerous 
applications in reproductive technologies (in vitro fertilization, intracytoplasmic sperm injection 
or ICSI, and artificial insemination) of various livestock species. 

Sperm viability 

Defects related to membrane (plasma, acrosome, and mitochondrial) losses, capacitation 
issues, and DNA fragmentation were collectively classified as sperm viability abnormalities 
(Sutovsky et al., 2024). Sperm membrane integrity is a core attribute of spermatozoa, whose 
defects are associated with a decrease in the overall functionality of spermatozoa (motility, 
survival, acrosome reaction, ova binding), leading to early embryonic loss or genetic diseases 
(Avendaño et al., 2009; Ferrigno et al., 2021). Plasma membrane defects could be mechanically 
and/or chemically induced during normal or abnormal physiological processes, leading to 
damage such as membrane lipid peroxidation and externalization of phosphatidyl serine 
residues, an indicator of early apoptosis, with subsequent decrease in fertilizing potential 
(Sutovsky et al., 2024). Acrosome reaction and capacitation are determinant factors of 
fertilization success that occur during normal physiological conditions, where sperm capacitation 
is associated with specific markers and molecular pathways related to fertility outcomes 
(Kwon et al., 2015; Bae et al., 2022). Nevertheless, both acrosome reaction and capacitation 
processes are affected during semen manipulation (Yoon et al., 2015; Yeste, 2016; Lee et al., 
2023). Acrosome-reacted sperm cells exhibit membrane markers that could be targeted for 
viability evaluation of semen quality. Mitochondrial membrane integrity portrays mitochondria 
status and energy reserves used by the cell to achieve different physiological functions as a 
regulator and indicator of sperm motility that could be related to male fertility (Agnihotri et al., 
2016; Gallo et al., 2021). Apoptosis and DNA integrity are essential for successfully transmitting 
the paternal genome, fertilization, and normal embryo development (Kumaresan et al., 2020). 
Apoptotic spermatozoa are routinely evaluated through Annexin V, which interacts with 
externalized phosphatidyl serine residues on their plasma membrane. Furthermore, the highly 
basic protamine 1 protein, participating in DNA packaging, is positively correlated with bull sperm 
motility (Ganguly et al., 2013) and fertility (Dogan et al., 2015; Llavanera et al., 2021; Souza et al., 
2018), with further confirmation in boar spermatozoa (Alvarez-Rodriguez et al., 2021). 
Interestingly, a recent study demonstrated a positive correlation between DNA fragmentation 
and protamine deficiency (Kherzi et al., 2019), making protamine a potential target for selecting 
spermatozoa with high motility and fertility potentials. 

The current evaluation methods of semen quality often lead to a binary outcome, 
categorizing semen as either “Passed” or “Failed” for breeding. Supplementing extenders with 
organic nanoparticles like loaded or unloaded liposome vesicles and exosomes may reduce 
the proportion of non-viable sperm cells in semen. Both organic nanoparticles hold promise, 
demonstrating their potential in repairing damaged spermatozoa through their ability to bind 
sperm plasma membranes of numerous livestock species (He et al., 2001; Röpke et al., 2011; 
Pillet et al., 2012; Kumar et al., 2015; Luna-Orozco et al., 2019; Medina-León et al., 2019; 
Mafolo et al., 2020; Mortazavi et al., 2020). Loaded liposomes and tissular or body-fluids 
isolated exosomes can be used as nanocarriers for intraspermatic cargo delivery of specific 
molecules. Unlike the manufactured liposomes that can encapsulate any desired molecules 
(Feugang et al., 2022) for delivery, exosomes are rich in various molecules (e.g., proteins, 
miRNA, lipids, metabolites, and mRNA) isolated from various biofluids, including seminal 
plasma (Piehl et al., 2013; Yang et al., 2017; Dilsiz, 2022; Dlamini et al., 2023). Following binding 
with spermatozoa, these exosome contents entering spermatozoa may participate in energy 
pathways, protein metabolism, and maintenance of recipient cells, influencing sperm 
maturation, capacitation, acrosome reaction, and fertility (Piehl et al., 2013; Du et al., 2016; 
Qamar et al., 2019). The presence of extracellular vesicles or exosomes in cryopreservation 
extenders improves post-thaw sperm motility, viability, mitochondrial activity, and membrane 
integrity (Qamar et al., 2019). 
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On the other hand, magnetic metal oxide nanoparticles were designed to target damaged 
cells for removal under a magnetic field to increase the chance of the ejaculated to be 
approved. In early studies with bovine (Odhiambo et al., 2014) and porcine (Feugang et al., 
2015a; Durfey et al., 2019) species, iron oxide nanoparticles were conjugated with lectin, 
ubiquitin, and annexin V to selectively target and remove acrosome reacted, damaged, and 
early apoptotic spermatozoa from semen doses without impairing sperm fertility potential. 

Sperm freezability 

Sperm cryopreservation is a process that allows the long-term storage of semen in liquid 
nitrogen and is an essential technology for preserving animal fertility (Hungerford et al., 2022). 
Several sperm functions, including DNA fragmentation, early capacitation, and acrosome and 
membrane integrity, are impaired during cryopreservation (Yoon et al., 2015; Yeste, 2016), 
reducing the capacity of spermatozoa to achieve successful fertilization. During this process, 
spermatozoa experience extreme stress at different proteins, DNA, lipid metabolism levels, 
and long-chain polyunsaturated fatty acids in the plasma membrane, affecting sperm 
freezability (Ugur et al., 2019). 

Studies of metabolite dynamics in sperm have shown signature differences between fresh, 
chilled, and frozen-thawed buck (Yuan et al., 2023b) and boar (Torres et al., 2022; Zhang et al., 
2023) spermatozoa. Abundance in specific metabolites (e.g., propanoic acid, D-ribose and 
glycine) in seminal plasma is associated with higher liquid storage ability/freezability of 
spermatozoa (Pessoa et al., 2023; Song et al., 2023; Zeng et al., 2021). Overall, studies indicate 
that sperm metabolome changes (e.g., lipids, lipid-like molecules, organic acids and their 
derivatives) during cryopreservation and influence various biological pathways, such as the 
linoleic acid metabolism pathway (Yuan et al., 2023b). Further, sperm-borne L-citrulline and 
seminal plasma-derived tryptophan have been proposed as potential sperm freezability 
markers in boars (Sui et al., 2023). Similarly, numerous studies have reported the beneficial 
effects of free amino acids (e.g., alanine, glutamine, histidine, and proline), acting as inhibitors 
of lipid peroxidation or osmotic regulators. Their presence in extenders or detection in semen 
has been associated with sperm freezability, thereby enhancing post-thaw viability and quality 
(Atessahin et al., 2008; Saravia et al., 2009; Trimeche et al., 1999; Ugur et al., 2020). 

Similarly, numerous proteomic analyses of sperm ejaculates (sperm and seminal plasma) 
have unraveled biomarkers (Table 1) and molecular pathways associated with high-quality 
spermatozoa of many livestock species (Zhu et al., 2020; Gaitskell-Phillips et al., 2021a; Hitit 
and Memili, 2022). For instance, a study revealed hundreds of differentially expressed proteins 
between low- and high-freezability buck spermatozoa, with several of these proteins 
associated with various biological pathways influencing freezability (Sun et al., 2023). Other 
studies have revealed protein markers (e.g., heat shock protein 90 or HSP90, heat shock 
protein A8 or HSPA8, or lipocalin-type prostaglandin D synthase or L-PDGS) associated with the 
sperm freezability status (Ugur et al., 2019). These proteins and metabolites can serve as 
biomarkers to target high-freezability spermatozoa or could be supplemented associated with 
nanoparticles in extenders (Table 2). The potential of various nanoparticles, including 
liposomes and exosomes for successful semen cryopreservation have been evocated in 
previous works, summarized by (Saadeldin et al., 2020). 

Liposome vesicle nanoparticles loaded or not with the identified biomarkers can fuse with 
the sperm plasma membrane and deliver their contents within the sperm cytoplasm to 
mitigate sperm damage caused by the freezing-thawing process (He et al., 2001; Purdy and 
Graham, 2015). The addition of liposomes in egg-free commercial extender (e.g., OptiXcell®) 
attenuates the damages of bull, buffalo (Ansari et al., 2016), and dromedary camel (Al-
Bulushi et al., 2019; Swelum et al., 2019) sperm. Similarly, exosomes with specific contents may 
play a crucial role in repairing damaged sperm during freezing-thawing (Saadeldin et al., 2020). 
Furthermore, incubation of spermatozoa with exosomes before cooling or post-thawing 
increases the antioxidant activity of stored spermatozoa, improving motility, viability, 
mitochondrial activity, and membrane integrity of post-thaw canine (Qamar et al., 2019) and 
rat (Mokarizadeh et al., 2013) semen, while decreases the levels of ROS and malondialdehyde 
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content. Furthermore, classes of nanoparticles can be used to discriminate high versus low 
freezability spermatozoa for enhanced fertility. The design of magnetic nanoparticle 
conjugates to target a population of spermatozoa has shown beneficial, with no toxicity effects, 
in enriching bovine (Odhiambo et al., 2014), equine (Domínguez et al., 2018), and porcine 
(Durfey et al., 2019) semen with desired sub-populations. 

Sperm preservation 

Liquid sperm preservation in an appropriate extender is critical for prolonged chilled (15-
18oC) or cold (4-10oC) storage, especially in species with poor freezability spermatozoa such as 
pigs. Harvested semen are generally mixed with extenders containing various protective and 
nutritive compounds for spermatozoa survival (Kameni et al., 2021; Wiebke et al., 2022), and 
maintaining extended semen at low temperatures during storage is crucial to reducing sperm 
metabolism and ATP production, and detrimental byproducts (e.g., reactive oxygen species or 
ROS) are routine in breeding studs for sperm performance preservation. However, despite 
these precautions, spermatozoa still experience harmful effects of metabolic decoupling, ion 
imbalance, activated proteases, cellular acidosis, energy deprivation, and ROS that gradually 
accumulate in the medium and weaken spermatozoa through multiple damages (Falchi et al., 
2018b; Ugur et al., 2019; Kameni et al., 2021). 

ROS are among the many toxins the spermatozoa release in the extender, affecting sperm 
quality during prolonged preservation. The use of antioxidative nanoparticles, such as cerium 
oxide and vitamin E nanoemulsions, has shown beneficial effects on ram spermatozoa during 
chilled preservation (Falchi et al., 2018a; Jurado-Campos et al., 2023) Nonetheless, the different 
abilities of boar semen in sustaining chilling have permitted the identification of differentially 
expressed proteins (187) of which several were involved in the defense mechanisms against 
oxidative stress, assembly and maintenance of sperm motility, and sperm metabolism and 
capacitation. These subsets of proteins could be considered putative biomarkers of sperm 
quality or preservation (Song et al., 2024). The identified biomarkers are gold mines for the 
application of appropriate nanoparticles to discriminate high versus low sperm preservability. 
There is potential in designing magnetic nanoparticle conjugates to selectively target a 
population of spermatozoa, thus enriching semen doses with high freezability spermatozoa. 
Furthermore, the application of magnetic nanoparticle conjugates to target the identified 
protein marker candidates has potential to contribute to enhanced fertility outcomes of 
preserved semen (Odhiambo et al., 2014; Feugang et al., 2015a). 

Semen redox status 

Oxidative stress results from the excess of ROS produced during the oxygen metabolism of 
spermatozoa. To maintain optimal sperm function, a balance between oxidation and reduction 
is necessary, involving the neutralization of ROS through antioxidants. The antioxidative status 
has been linked to sperm fertility potential, having beneficial roles at normal levels during 
acrosome reaction and fusion with the oocyte. Rupture of the redox equilibrium leads to 
oxidative stress, lipid peroxidation, and subsequent alterations in sperm characteristics and 
fertility (Gundogan et al., 2010; Sapanidou et al., 2023). Redox disequilibrium is aggravated 
during post-collection semen manipulation (centrifugation, freezing, thawing, and incubation) 
causing damage to sperm membranes rich in polyunsaturated fatty acids. Lipid peroxidation 
has shown a negative correlation with sperm characteristics of bulls (Castiglioni et al., 2021), 
while high-fertility bulls spermatozoa showed less susceptibility to lipid peroxidation and 
overexpressed transcripts associated with the reduction process compared to their low-fertile 
counterparts (Alvarez-Rodriguez et al., 2021; Saraf et al., 2021; Leite et al., 2022). Meanwhile, 
the oxidative stress index of chilled-stored boar semen showed a negative correlation with 
sperm motility and in vivo fertility (Barranco et al., 2021). The mitigation of the adverse effects 
of oxidative stress during preservation includes supplementation of semen extenders with 
various antioxidants (Amidi et al., 2016; Hosseinmardi et al., 2022; Kameni et al., 2022), 
providing extended protection to spermatozoa during storage. Innovative approaches for 
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sustainable protection of spermatozoa involve utilizing nanoparticles, which show potential as 
antioxidants owing to their inherent redox activity. These nanoparticles aid in neutralizing and 
alleviating oxidative stress within extenders during (cryo)preservation (Asadi et al., 2023). 
Hence, the intrinsic antioxidative effects of several metal oxides (e.g., cerium, cupric, and zinc 
oxides), vitamin E nanoemulsions, and noble metals (e.g., gold and platinum) have been shown 
to offer beneficial effects, such as improved post-storage sperm motility and membrane 
integrity (Falchi, et al., 2018c; Valgimigli et al., 2018; Hashem and Gonzales-Bulnes, 2020; 
Hosseinmardi et al., 2022; Jurado-Campos et al., 2023; Khalique et al., 2024) These antioxidant 
nanoparticles in (cryo) preservation media improve the spermatozoa’s redox status and sperm 
attributes, which may positively impact pregnancy rates. 

Furthermore, unilamellar liposome vesicles, prepared exosomes, and mesoporous 
nanoparticles can be loaded with different antioxidants for controlled release during storage. 
Liposomes loaded with antioxidants (e.g. quercetin, lycopene) and other lipid types (e.g., 
soybean lecithin) provide greater cryoprotection of spermatozoa of livestock species such as 
bovine (Röpke et al., 2011; Kumar et al., 2015), porcine (He et al., 2001), ovine (Luna-
Orozco et al., 2019; Mafolo et al., 2020; Mortazavi et al., 2020), and equine (Pillet et al., 2012; 
Medina-León et al., 2019). 

Sperm sexing 

Sperm sexing is a powerful tool that selectively separates X and Y chromosome-bearing 
sperm cells to produce animals of predetermined sex (Yata, 2021). Flow cytometry is the modern 
conventional method for sperm sexing that uses lasers to differentiate between sperm genders 
based on their DNA content (Ugur et al., 2019). Sperm sexing offers advantages, and the 
commercial demand for sexed semen is increasing in cattle. However, the resulting low yield of 
sexed sperm numbers becomes a significant challenge, with species like pigs and horses 
requiring more sperm per insemination dose (Quelhas et al., 2023). A recent proteomics study 
has identified specific proteins of the bull sperm membrane, of which 12 and 3 were upregulated 
in X- and Y-bearing spermatozoa, respectively (Quelhas et al., 2021). These proteins could be 
potential candidates for immunoselection using nanotechnology tools like magnetic 
nanoparticles. A large-scale production of magnetic nanoparticles is needed, and their surface 
modification to target differential negative charges between X and Y sperm has successfully 
targeted Y sperm, leaving semen enriched with X spermatozoa (Domínguez et al., 2018). 

Conclusions and perspectives 

Advanced technologies have enabled a deeper understanding of sperm biology and the 
processes involved in sperm phenotype and physiological status. Identifying biomarkers linked 
to sperm phenotype and their combination with specific nanoparticles offer new opportunities 
for precision breeding in livestock. This technological approach can be extended to sperm 
manipulation to enhance the success of various sperm biotechnologies, such as 
(cryo)preservation, sexing, and sperm-mediated gene transfer. Further research using 
nanotechnology tools is essential to improve the success rate of assisted reproduction in 
livestock, especially during critical seasons and instances of animal diseases. 

List of abbreviations 
ACADM: Acyl-Coenzyme A dehydrogenase medium chain 
ADAM2: Disintegrin and metalloproteinase domain-containing protein 2 
AI: Artificial insemination 
AP2S1: Adaptor related protein complex 2 subunit sigma 1 
ATP: Adenosine triphosphate 
BAMBI: BMP and activin membrane bound inhibitor 
BBS7: Bardet-Biedl syndrome 7 
cAMP: Cyclic adenosine monophosphate 
DHRS4: Dehydrogenase/reductase 4 
DNA: Deoxyribonucleic acid 
EAF2: ELL associated factor 2 
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ENO4: Enolase 4 
FOS: Fos proto-oncogene 
GLRX: Glutaredoxin 
GPX5: Glutathione peroxidase 5 
HSP90: Heat shock protein 90 
HSPA8: Heat shock protein A8 
HSPB1: Heat shock protein family B (small) member 1 
IZUMO1: Izumo sperm-egg fusion protein 1 
L-PDGS: Lipocalin-type prostaglandin D synthase 
miRNA: Micro ribonucleic acid 
mRNA: Messenger ribonucleic acid 
MWNT: Multi-walled carbon nanotube 
ND6: Nicotinamide adenine dinucleotide + hydrogen dehydrogenase subunit 6 
NFATC3: Nuclear factor of activated T cells 3 
NUDFB8: Nicotinamide adenine dinucleotide + hydrogen: Ubiquinone Oxidoreductase Subunit B8 
OXR1: Oxidation resistance 1 
PDIA4: Protein disulfide isomerase family A member 4 
PE: Polyethylene 
PEG: Polyethylene glycol 
PTPN2: Protein tyrosine phosphatase non-receptor type 2 
PTPRU: Protein tyrosine phosphatase receptor type U 
QPCT: Glutaminyl-peptide cyclotransferase 
RNA: Ribonucleic acid 
ROS: Reactive oxygen species 
rRNA: Ribosomal ribonucleic acid 
SDHC: Succinate dehydrogenase complex subunit C 
SNARE: Soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
SOF1: Sperm-oocyte fusion required 1 
SPAC6: Sperm acrosome associated 6 
SWCNT: Single-walled carbon nanotube 
TMEM95: Transmembrane protein 95 
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