Acessibilidade / Reportar erro

Bovine embryo production in vitro: evolution of culture media and commercial perspectives

Abstract

In vitro produced embryos exhibit lower viability compared to their in vivo counterparts. Mammalian preimplantation embryos have the ability to reach the blastocyst stage in diverse culture media, showcasing considerable metabolic adaptability, which complicates the identification of optimal developmental conditions. Despite embryos successfully progressing to the blastocyst stage, adaptation to suboptimal culture environments may jeopardize blastocyst viability, cryotolerance, and implantation potential. Enhancing our capacity to support preimplantation embryonic development in vitro requires a deeper understanding of fundamental embryo physiology, including preferred metabolic substrates and pathways utilized by high-quality embryos. Armed with this knowledge, it becomes achievable to optimize culture conditions to support normal, in vivo-like embryo physiology, mitigate adaptive stress, and enhance viability. The objective of this review is to summarize the evolution of culture media for bovine embryos, highlighting significant milestones and remaining challenges.

Keywords:
embryo culture; in vitro embryo production; culture media; embryo metabolism

Introduction

While advancements have been made in bovine oocyte maturation and embryo culture over the past decades, in vitro embryo technologies capable of producing embryos with similar viability as those developing in vivo have remained elusive. There is still much to unravel regarding the in vitro requirements of oocytes and embryos to facilitate successful development and the production of healthy offspring. Exposure of embryos to suboptimal culture conditions, resulting in altered embryo metabolism, not only leads to decreased blastocyst formation and reduced embryo viability, but also negatively impacts the maintenance of pregnancy, fetal growth, and health of offspring (Farin et al., 2001Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151-70. http://doi.org/10.1016/S0093-691X(00)00452-0. PMid:11198080.
http://doi.org/10.1016/S0093-691X(00)004...
). The metabolic adaptability of embryos is remarkable, but it comes at considerable cost. Therefore, to mitigate the adaptive stress leading to poor embryo quality, diminished pregnancy potential, and adverse health outcomes in future offspring, it is imperative that embryo culture conditions support normal embryo physiology.

Oocyte maturation in vitro is a critical component of in vitro embryo production, but it will not be covered here. Development of maturation medium that better supports oocyte developmental competence is worthy of an independent review. The reader is directed to other manuscripts for treatment of this topic (Krisher, 2004Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82 E-Suppl:E14-23. PMid:15471793., 2013Krisher RL. In vivo and in vitro environmental effects on mammalian oocyte quality. Annu Rev Anim Biosci. 2013;1(1):393-417. http://doi.org/10.1146/annurev-animal-031412-103647. PMid:25387025.
http://doi.org/10.1146/annurev-animal-03...
; Labrecque and Sirard, 2014Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082. PMid:24233546.
http://doi.org/10.1093/molehr/gat082...
; Dumesic et al., 2015Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303-16. http://doi.org/10.1016/j.fertnstert.2014.11.015. PMid:25497448.
http://doi.org/10.1016/j.fertnstert.2014...
; Lonergan and Fair, 2016Lonergan P, Fair T. Maturation of Oocytes in vitro. Annu Rev Anim Biosci. 2016;4(1):255-68. http://doi.org/10.1146/annurev-animal-022114-110822. PMid:26566159.
http://doi.org/10.1146/annurev-animal-02...
; Aguila et al., 2020Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10(12):2196. http://doi.org/10.3390/ani10122196. PMid:33255250.
http://doi.org/10.3390/ani10122196...
; Marei and Leroy, 2022Marei WFA, Leroy JLMR. Cellular stress responses in oocytes: molecular changes and clinical implications. Adv Exp Med Biol. 2022;1387:171-89. http://doi.org/10.1007/5584_2021_690. PMid:34921349.
http://doi.org/10.1007/5584_2021_690...
; Fair and Lonergan, 2023Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev. 2023;36(2):133-48. http://doi.org/10.1071/RD23164. PMid:38064189.
http://doi.org/10.1071/RD23164...
).

Commercial application of bovine in vitro embryo production

Each year, the Data Retrieval Committee of the International Embryo Technology Society (IETS) gathers, organizes, and publishes statistics describing the embryo industry in farm animal species. The most recent data available for the calendar year 2022 show that the global bovine embryo industry continues to grow (Viana, 2023Viana JHM. 2022 statistics of embryo production and transfer in domestic farm animals: the main trends for the world embryo industry still stand. Embryo Technology Newsletter. 2023;41(4):20-38.). However, the actual growth rate between 2021 and 2022 (5.5%) was decreased compared to that observed between 2020 and 2021 (25.6%). For in vitro produced (IVP) embryos specifically, from 2020 to 2021 the number of embryos produced grew by 31.5%, whereas between 2021 and 2022, this growth rate dropped to 6.3%. Nonetheless, almost 1.5 million bovine embryos were transferred globally in 2022. Cryopreservation is also a growing trend in cattle embryo technologies, with almost half of all cattle embryo transfers utilizing frozen embryos. In vivo derived embryos are more commonly cryopreserved (65%) than IVP embryos (44%), due in part to reduced cryotolerance of IVP embryos particularly when slow freezing/direct transfer is used versus vitrification. This difference in cryotolerance has implications for how or even if IVP embryos are used for export. In general, embryo technologies are utilized in 28% of countries worldwide, with 95% of the reported embryos being specifically cattle embryos. Notably, more than 80% of all bovine embryos produced globally are in vitro derived, and in vitro derived embryos continue to drive growth in commercial embryo technologies. Based on the sales of embryo transfer materials, the data retrieval committee suggests that these numbers are in fact an underestimate and that the actual number of embryos produced in vitro in 2022 was likely more than 2 million globally. Indeed, for the last decade in vitro technologies have been supplanting superovulation and collection of in vivo embryos as the preferred method for cattle embryo production. In 2022, seven out of the top 10 embryo producing countries reported a higher number of IVP embryos compared to in vivo derived (IVD) embryos.

What accounts for the rapid increase in the adoption of in vitro embryo technologies? There is mounting pressure on animal agriculture to produce more protein, both milk and meat, for a growing world population. At the same time, producers must be mindful of sustainability goals and expectations from consumers. Embryo technologies can help to achieve both objectives. Genetically superior animals, identified by genotyping, are more efficient in their production of protein. The use of semen in conventional AI allows bulls of high genetic merit to contribute more to the next generation of production animals, but male genetics are only half the equation. Using embryos accounts for both male and female genetics, making genetic progress much faster (Sirard, 2018Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction. 2018;156(1):R1-7. http://doi.org/10.1530/REP-18-0008. PMid:29636405.
http://doi.org/10.1530/REP-18-0008...
). A valuable female can produce significantly more embryos over her lifetime when ovum pick up and in vitro fertilization are used to produce embryos, versus superovulation and embryo flushing. Oocytes can even be collected from prepubertal and pregnant females. Importantly, using ovum pick up in calves via laparoscopy and in pre-pubertal heifers can significantly shorten generation interval, resulting in even faster genetic gain. This approach enables the most genetically superior animals to make the greatest contribution to the succeeding generation, leading to swift improvements in production efficiency and ultimately enhancing the sustainability of animal agriculture overall. Currently, the higher cost of embryos relative to semen is the main roadblock to even greater implementation of embryo technologies, given that pregnancy rates are roughly equal between the two technologies. Efforts to automate embryo production to drive down costs while increasing efficiency, quality, and scale are currently being investigated. Relevant to both human and bovine embryo technology, semi-automated vitrification systems have been reported and used in clinical trials (Wang et al., 2024Wang S, Chen L, Fang J, Sun H. A compact, high-throughput semi-automated embryo vitrification system based on hydrogel. Reprod Biomed Online. 2024;48(5):103769. http://doi.org/10.1016/j.rbmo.2023.103769. PMid:38492415.
http://doi.org/10.1016/j.rbmo.2023.10376...
; Roy et al., 2014Roy TK, Brandi S, Tappe NM, Bradley CK, Vom E, Henderson C, Lewis C, Battista K, Hobbs B, Hobbs S, Syer J, Lanyon SR, Dopheide SM, Peura TT, McArthur SJ, Bowman MC, Stojanov T. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum Reprod. 2014;29(11):2431-8. http://doi.org/10.1093/humrep/deu214. PMid:25164022.
http://doi.org/10.1093/humrep/deu214...
; Hajek et al., 2021Hajek J, Baron R, Sandi-Monroy N, Schansker S, Schoepper B, Depenbusch M, Schultze-Mosgau A, Neumann K, Gagsteiger F, von Otte S, Griesinger G. A randomised, multi-center, open trial comparing a semi-automated closed vitrification system with a manual open system in women undergoing IVF. Hum Reprod. 2021;36(8):2101-10. http://doi.org/10.1093/humrep/deab140. PMid:34131726.
http://doi.org/10.1093/humrep/deab140...
; Barberet et al., 2022Barberet J, Ducreux B, Bruno C, Guilleman M, Simonot R, Lieury N, Guilloteau A, Bourc’his D, Fauque P. Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. J Ovarian Res. 2022;15(1):128. http://doi.org/10.1186/s13048-022-01064-3. PMid:36464714.
http://doi.org/10.1186/s13048-022-01064-...
).

Challenges of in vitro fertilization technology

In vitro embryo production, despite its widespread commercial application, remains an inefficient process. This inefficiency significantly contributes to the high cost per embryo, limiting adoption for many producers. The largest inefficiency in the system is the loss between oocytes recovered at ovum pick up and transferrable quality embryos produced following in vitro fertilization (IVF). Only about 25% of all oocytes collected become good quality embryos, and this number is even lower if sexed semen is used for fertilization. Another large loss occurs following embryo transfer, as less than 50% of good quality embryos result in pregnancy. Early embryonic losses before day 60, as well as additional losses to abortion or stillborn calves, contribute as well. Overall, fewer than 10 calves are born for every 100 viable oocytes collected. Improvement in the system would mean that oocytes could be collected from fewer, more genetically valuable donors, requiring less farm and laboratory labor to reduce cost and advance genetic gain (Figure 1). However, despite concentrated efforts to improve embryo culture media over the last 20 years, we have seen only minimal improvement in embryo production efficiencies and embryo quality.

Figure 1
A better understanding of embryo biology informs the development of more effective culture media. Improved media produce embryos that are more in vivo-like, which further advance our understanding of embryo biology, improve cryotolerance and the outcome of embryo transfer, and ultimately result in increased genetic gain, increased production value and producer profit, and a more sustainable industry.

Embryo metabolism and the evolution of culture media

The identification of a suitable combination of nutrients, including appropriate concentrations and timing of provision, was pivotal to the formulation of successful embryo culture media. The pioneering investigations into embryo culture utilized murine embryos, which largely rely on carbohydrate metabolism to support development (Brinster, 1965Brinster RL. Studies on the development of mouse embryos in vitro. IV. Interaction of energy sources. J Reprod Fertil. 1965;10(2):227-40. http://doi.org/10.1530/jrf.0.0100227. PMid:5836270.
http://doi.org/10.1530/jrf.0.0100227...
; Biggers et al., 1967Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560-7. http://doi.org/10.1073/pnas.58.2.560. PMid:5233459.
http://doi.org/10.1073/pnas.58.2.560...
). Embryos at the early cleavage stages primarily utilize pyruvate and lactate, whereas in later stages, there is a transition to reliance on glucose metabolism through glycolysis to support formation and expansion of the blastocyst (Gardner and Leese, 1987Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103-5. http://doi.org/10.1002/jez.1402420115. PMid:3598508.
http://doi.org/10.1002/jez.1402420115...
; Gardner et al., 2001Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175-80. http://doi.org/10.1016/S0015-0282(01)02888-6. PMid:11730746.
http://doi.org/10.1016/S0015-0282(01)028...
). Murine embryos could develop to the blastocyst stage in simple salt solutions with glucose, lactate, and pyruvate as the only energy sources, usually in the presence of albumin (Whitten and Biggers, 1968Whitten WK, Biggers JD. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil. 1968;17(2):399-401. http://doi.org/10.1530/jrf.0.0170399. PMid:5749384.
http://doi.org/10.1530/jrf.0.0170399...
). Although the general pattern of carbohydrate metabolism is similar for bovine embryos, with the early cleavage stages primarily reliant on pyruvate oxidation and glycolysis becoming the dominant pathway after the morula stage (Rieger et al., 1992aRieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev. 1992a;4(5):547-57. http://doi.org/10.1071/RD9920547. PMid:1299829.
http://doi.org/10.1071/RD9920547...
, 1992bRieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the metabolism of glucose and glutamine by cattle embryos produced and co-cultured in vitro. J Reprod Fertil. 1992b;95(2):585-95. http://doi.org/10.1530/jrf.0.0950585. PMid:1518013.
http://doi.org/10.1530/jrf.0.0950585...
; Kim et al., 1993Kim JH, Funahashi H, Niwa K, Okuda K. Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology. 1993;39(4):875-86. http://doi.org/10.1016/0093-691X(93)90425-5. PMid:16727260.
http://doi.org/10.1016/0093-691X(93)9042...
; Thompson et al., 1996Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106(2):299-306. http://doi.org/10.1530/jrf.0.1060299. PMid:8699414.
http://doi.org/10.1530/jrf.0.1060299...
; Krisher et al., 1999Krisher RL, Lane M, Bavister BD. Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol Reprod. 1999;60(6):1345-52. http://doi.org/10.1095/biolreprod60.6.1345. PMid:10330091.
http://doi.org/10.1095/biolreprod60.6.13...
), early culture media developed for the mouse were not effective for culturing bovine embryos. Therefore, the first embryo culture systems for bovine embryos utilized media designed for somatic cell culture and often relied heavily on support cells in a co-culture environment. Co-culture was able to overcome the 8-16 cell block in bovine embryos, as well as improve the quantity and quality of blastocysts produced (Ellington et al., 1990Ellington JE, Carney EW, Farrell PB, Simkin ME, Foote RH. Bovine 1-2-cell embryo development using a simple medium in three oviduct epithelial cell coculture systems. Biol Reprod. 1990;43(1):97-104. http://doi.org/10.1095/biolreprod43.1.97. PMid:2393695.
http://doi.org/10.1095/biolreprod43.1.97...
; Goto et al., 1992Goto K, Iwai N, Takuma Y, Nakanishi Y. Co-culture of in vitro fertilized bovine embryos with different cell monolayers. J Anim Sci. 1992;70(5):1449-53. http://doi.org/10.2527/1992.7051449x. PMid:1526913.
http://doi.org/10.2527/1992.7051449x...
; Voelkel and Hu, 1992Voelkel SA, Hu YX. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology. 1992;37(5):1117-31. http://doi.org/10.1016/0093-691X(92)90109-5. PMid:16727109.
http://doi.org/10.1016/0093-691X(92)9010...
; Thomas and Seidel, 1993Thomas WK, Seidel GE Jr. Effects of cumulus cells on culture of bovine embryos derived from oocytes matured and fertilized in vitro. J Anim Sci. 1993;71(9):2506-10. http://doi.org/10.2527/1993.7192506x. PMid:8407663.
http://doi.org/10.2527/1993.7192506x...
; Abe and Hoshi, 1997Abe H, Hoshi H. Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology. Cytotechnology. 1997;23(1-3):171-83. http://doi.org/10.1023/A:1007929826186. PMid:22358533.
http://doi.org/10.1023/A:1007929826186...
; Krisher et al., 1998Krisher RL, Gibbons JR, Gwazdauskas FC. Effectiveness of Menuzo’s B2 medium with buffalo rat liver cells for development of in vitro matured/in vitro fertilized bovine oocytes. J Assist Reprod Genet. 1998;15(1):50-3. http://doi.org/10.1023/A:1022582422932. PMid:9493067.
http://doi.org/10.1023/A:1022582422932...
). Similar positive effects were observed using cell culture conditioned medium (Eyestone et al., 1991Eyestone WH, Jones JM, First NL. Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos. J Reprod Fertil. 1991;92(1):59-64. http://doi.org/10.1530/jrf.0.0920059. PMid:2056496.
http://doi.org/10.1530/jrf.0.0920059...
; Hernandez-Ledezma et al., 1993Hernandez-Ledezma JJ, Villanueva C, Sikes JD, Roberts RM. Effects of CZB versus medium 199 and of conditioning culture media with either bovine oviductal epithelial cells or buffalo rat liver cells on the development of bovine zygotes derived by in vitro maturation-in vitro fertilization procedures. Theriogenology. 1993;39(6):1267-77. http://doi.org/10.1016/0093-691X(93)90229-X.
http://doi.org/10.1016/0093-691X(93)9022...
; Vansteenbrugge et al., 1994Vansteenbrugge A, Van Langendonckt A, Scutenaire C, Massip A, Dessy F. In vitro development of bovine embryos in Buffalo rat liver- or bovine oviduct-conditioned medium. Theriogenology. 1994;42(6):931-40. http://doi.org/10.1016/0093-691X(94)90116-Z. PMid:16727598.
http://doi.org/10.1016/0093-691X(94)9011...
). It was hypothesized that somatic cells removed inhibitory substances from the culture media, which at that time was sub-optimal. However, the complexity and undefined nature of co-culture and conditioned media systems made it virtually impossible to study the metabolic requirements of preimplantation bovine embryos in vitro.

Although many media have been independently developed, three media are the backbone formulations of most bovine culture media used today: synthetic oviductal fluid (SOF), Charles Rosenkrans medium with amino acids (CR1AA), and potassium simplex optimized medium (KSOM), each developed using slightly different approaches. Synthetic oviductal fluid has been a frequently utilized medium for culturing bovine embryos in vitro for more than 20 years. Initially, SOF was developed through the biochemical analysis of ovine oviductal fluid (Tervit et al., 1972Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493-7. http://doi.org/10.1530/jrf.0.0300493. PMid:4672493.
http://doi.org/10.1530/jrf.0.0300493...
). The strategy of mimicking the in vivo environment has been described as the ‘back to nature’ approach (Leese, 1998Leese HJ. Human embryo culture: back to nature. J Assist Reprod Genet. 1998;15(8):466-8. http://doi.org/10.1023/A:1022526219202. PMid:9785193.
http://doi.org/10.1023/A:1022526219202...
). Another extension of mimicking the in vivo environment was the concept of sequential media specifically devised to cater to the evolving needs of the embryo during its developmental journey, with one medium for early cleavage stage embryos and another for compaction and blastocyst formation (Gardner and Lane, 1997Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367-82. http://doi.org/10.1093/humupd/3.4.367. PMid:9459282.
http://doi.org/10.1093/humupd/3.4.367...
). A variety of single-step and sequential versions of SOF have been developed, which include the supplementation of amino acids (Gardner et al., 1994Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50(2):390-400. http://doi.org/10.1095/biolreprod50.2.390. PMid:8142556.
http://doi.org/10.1095/biolreprod50.2.39...
; Steeves and Gardner, 1999Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61(3):731-40. http://doi.org/10.1095/biolreprod61.3.731. PMid:10456851.
http://doi.org/10.1095/biolreprod61.3.73...
), incorporation of citrate (Keskintepe et al., 1995Keskintepe L, Burnley CA, Brackett BG. Production of viable bovine blastocysts in defined in vitro conditions. Biol Reprod. 1995;52(6):1410-7. http://doi.org/10.1095/biolreprod52.6.1410. PMid:7632849.
http://doi.org/10.1095/biolreprod52.6.14...
), the exclusion of glucose (Takahashi and First, 1992Takahashi Y, First NL. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963-78. http://doi.org/10.1016/0093-691X(92)90096-A. PMid:16727096.
http://doi.org/10.1016/0093-691X(92)9009...
), and the inclusion of EDTA for the first 72 hours of the culture period (Gardner et al., 2000Gardner DK, Lane MW, Lane M. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Mol Reprod Dev. 2000;57(3):256-61. http://doi.org/10.1002/1098-2795(200011)57:3<256::AID-MRD7>3.0.CO;2-P. PMid:11013433.
http://doi.org/10.1002/1098-2795(200011)...
). One of the other primary strategies for culture medium design is to provide the embryo with all the nutrients it may need in a single medium, that may or may not be refreshed during the culture period. The rationale behind this strategy is to let the embryo select which nutrients it utilizes for development from those provided and is often described as ‘let the embryo choose’ (Biggers, 1998Biggers JD. Reflections on the culture of the preimplantation embryo. Int J Dev Biol. 1998;42(7):879-84. PMid:9853817.; Biggers and Racowsky, 2002Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5(2):133-40. http://doi.org/10.1016/S1472-6483(10)61615-X. PMid:12419037.
http://doi.org/10.1016/S1472-6483(10)616...
). Empirical evaluations of the effects of specific carbohydrates, amino acids, and vitamins led to the formulation of CR1AA (Rosenkrans et al., 1993Rosenkrans CF Jr, Zeng GQ, MCNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod. 1993;49(3):459-62. http://doi.org/10.1095/biolreprod49.3.459. PMid:8399836.
http://doi.org/10.1095/biolreprod49.3.45...
; Rosenkrans and First, 1994Rosenkrans CF Jr, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7. http://doi.org/10.2527/1994.722434x. PMid:8157527.
http://doi.org/10.2527/1994.722434x...
). A systematic approach known as simplex optimization was used to develop KSOM (potassium simplex optimized medium), originally designed to overcome the 2-cell block in mouse embryos and allow development to the blastocyst stage (Lawitts and Biggers, 1991Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91(2):543-56. http://doi.org/10.1530/jrf.0.0910543. PMid:2013878.
http://doi.org/10.1530/jrf.0.0910543...
, 1992Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31(3):189-94. http://doi.org/10.1002/mrd.1080310305. PMid:1554503.
http://doi.org/10.1002/mrd.1080310305...
; Erbach et al., 1994Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod. 1994;50(5):1027-33. http://doi.org/10.1095/biolreprod50.5.1027. PMid:8025158.
http://doi.org/10.1095/biolreprod50.5.10...
). This medium was quickly adapted for bovine embryo culture (Liu and Foote, 1995Liu Z, Foote RH. Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum Reprod. 1995;10(11):2985-91. http://doi.org/10.1093/oxfordjournals.humrep.a135834. PMid:8747059.
http://doi.org/10.1093/oxfordjournals.hu...
, 1996Liu Z, Foote RH. Sodium chloride, osmolyte, and osmolarity effects on blastocyst formation in bovine embryos produced by in vitro fertilization (IVF) and cultured in simple serum-free media. J Assist Reprod Genet. 1996;13(7):562-8. http://doi.org/10.1007/BF02066609. PMid:8844313.
http://doi.org/10.1007/BF02066609...
, 1997Liu Z, Foote RH. Effects of amino acids and alpha-amanitin on bovine embryo development in a simple protein-free medium. Mol Reprod Dev. 1997;46(3):278-85. http://doi.org/10.1002/(SICI)1098-2795(199703)46:3<278::AID-MRD6>3.0.CO;2-M. PMid:9041130.
http://doi.org/10.1002/(SICI)1098-2795(1...
; Moreira et al., 2002Moreira F, Paula-Lopes FF, Hansen PJ, Badinga L, Thatcher WW. Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos. Theriogenology. 2002;57(2):895-907. http://doi.org/10.1016/S0093-691X(01)00694-X. PMid:11991392.
http://doi.org/10.1016/S0093-691X(01)006...
). There are advantages and disadvantages to each type of system, and one system has not proven to be superior to the other (Macklon et al., 2002Macklon NS, Pieters MH, Hassan MA, Jeucken PH, Eijkemans MJ, Fauser BC. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17(10):2700-5. http://doi.org/10.1093/humrep/17.10.2700. PMid:12351551.
http://doi.org/10.1093/humrep/17.10.2700...
; Biggers and Summers, 2008Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90(3):473-83. http://doi.org/10.1016/j.fertnstert.2008.08.010. PMid:18847602.
http://doi.org/10.1016/j.fertnstert.2008...
; Machtinger and Racowsky, 2012Machtinger R, Racowsky C. Culture systems: single step. Methods Mol Biol. 2012;912:199-209. http://doi.org/10.1007/978-1-61779-971-6_12. PMid:22829376.
http://doi.org/10.1007/978-1-61779-971-6...
; Quinn, 2012Quinn P. Culture systems: sequential. Methods Mol Biol. 2012;912:211-30. http://doi.org/10.1007/978-1-61779-971-6_13. PMid:22829377.
http://doi.org/10.1007/978-1-61779-971-6...
; Swain et al., 2016Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571-87. http://doi.org/10.1016/j.fertnstert.2016.01.035. PMid:26851765.
http://doi.org/10.1016/j.fertnstert.2016...
; Swain, 2019Swain JE. Controversies in ART: considerations and risks for uninterrupted embryo culture. Reprod Biomed Online. 2019;39(1):19-26. http://doi.org/10.1016/j.rbmo.2019.02.009. PMid:31109893.
http://doi.org/10.1016/j.rbmo.2019.02.00...
). Typically, SOF is used as a sequential medium (Matsuyama et al., 1993Matsuyama K, Miyakoshi H, Fukui Y. Effect of glucose levels during the in vitro culture in synthetic oviduct fluid medium on in vitro development of bovine oocytes matured and fertilized in vitro. Theriogenology. 1993;40(3):595-605. http://doi.org/10.1016/0093-691X(93)90412-X. PMid:16727342.
http://doi.org/10.1016/0093-691X(93)9041...
; Gardner et al., 2000Gardner DK, Lane MW, Lane M. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Mol Reprod Dev. 2000;57(3):256-61. http://doi.org/10.1002/1098-2795(200011)57:3<256::AID-MRD7>3.0.CO;2-P. PMid:11013433.
http://doi.org/10.1002/1098-2795(200011)...
; Gandhi et al., 2000Gandhi AP, Lane M, Gardner DK, Krisher RL. A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum Reprod. 2000;15(2):395-401. http://doi.org/10.1093/humrep/15.2.395. PMid:10655312.
http://doi.org/10.1093/humrep/15.2.395...
), whereas CR1AA and KSOM are often used as a single step medium. Use of these two different systems has been debated for more than ten years, and choice is often dictated by what is currently in fashion, or what is most convenient for laboratory workflow.

Once media were available that would effectively support the development of bovine blastocysts in vitro, an increased emphasis was placed on not just producing blastocysts, but on the quality/viability of those blastocysts and their potential to produce healthy offspring. The conditions under which embryos are cultured impacts their ability to metabolize glucose (Du and Wales, 1993aDu ZF, Wales RG. Effect of culture from the zygote stage on the metabolism of glucose and glutamine by 2-cell embryos and blastocysts recovered from outbred or F1 hybrid female mice. Reprod Fertil Dev. 1993a;5(5):555-65. http://doi.org/10.1071/RD9930555. PMid:8190908.
http://doi.org/10.1071/RD9930555...
, bDu ZF, Wales RG. Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod Fertil Dev. 1993b;5(4):383-93. http://doi.org/10.1071/RD9930383. PMid:8153388.
http://doi.org/10.1071/RD9930383...
; Rieger et al., 1995Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ, Dessy F. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil. 1995;105(1):91-8. http://doi.org/10.1530/jrf.0.1050091. PMid:7490721.
http://doi.org/10.1530/jrf.0.1050091...
). Because the uptake and utilization of glucose are intricately linked to the developmental competency of embryos and likely mirror the energy needs of the embryo (Renard et al., 1980Renard JP, Philippon A, Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil. 1980;58(1):161-4. http://doi.org/10.1530/jrf.0.0580161. PMid:7359473.
http://doi.org/10.1530/jrf.0.0580161...
; Gardner and Leese, 1987Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103-5. http://doi.org/10.1002/jez.1402420115. PMid:3598508.
http://doi.org/10.1002/jez.1402420115...
), culture media choice and optimal laboratory practices are critical to produce high quality, viable blastocysts. Embryos cultured in oviductal cell-conditioned medium exhibited heightened glucose metabolism rates, but lower cell counts and delayed development, indicating that elevated glucose metabolism rates might correlate with diminished embryo viability (Rieger et al., 1995Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ, Dessy F. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil. 1995;105(1):91-8. http://doi.org/10.1530/jrf.0.1050091. PMid:7490721.
http://doi.org/10.1530/jrf.0.1050091...
). An increased rate of glucose metabolism at the blastocyst stage has also been associated with reduced embryo viability in mice (Lane and Gardner, 1996Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11(9):1975-8. http://doi.org/10.1093/oxfordjournals.humrep.a019527. PMid:8921074.
http://doi.org/10.1093/oxfordjournals.hu...
).

Once metabolic changes were linked to viability the next step in the evolution of culture media was to provide a specific set of substrates to modulate the metabolism of in vitro-produced embryos to closely emulate their more viable counterparts produced in vivo. One such strategy is based on the “Quiet Embryo Hypothesis”, which states that viable embryos, exhibit reduced oxidative phosphorylation activity and consequently consume less oxygen because they require less energy to repair stress-induced damage (Leese, 2002Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://doi.org/10.1002/bies.10137. PMid:12210521.
http://doi.org/10.1002/bies.10137...
; Baumann et al., 2007Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev. 2007;74(10):1345-53. http://doi.org/10.1002/mrd.20604. PMid:17342740.
http://doi.org/10.1002/mrd.20604...
; Leese et al., 2007Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047-50. http://doi.org/10.1093/humrep/dem253. PMid:17956925.
http://doi.org/10.1093/humrep/dem253...
, 2008Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667-72. http://doi.org/10.1093/molehr/gan065. PMid:19019836.
http://doi.org/10.1093/molehr/gan065...
). Another hypothesis suggests that embryo metabolism might resemble that observed in rapidly proliferating cancer cells, a metabolic phenomenon referred to as the Warburg effect (Krisher and Prather, 2012Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311-20. http://doi.org/10.1002/mrd.22037. PMid:22431437.
http://doi.org/10.1002/mrd.22037...
; Smith and Sturmey, 2013Smith DG, Sturmey RG. Parallels between embryo and cancer cell metabolism. Biochem Soc Trans. 2013;41(2):664-9. http://doi.org/10.1042/BST20120352. PMid:23514173.
http://doi.org/10.1042/BST20120352...
). In this model, the most viable embryo is not necessarily the one exhibiting the lowest activity within a particular pathway, but rather the embryo metabolizing specific substrates through the most suitable pathway(s). As the focus has shifted to an evaluation of overall embryo metabolic activity thru multiple pathways, the importance of fatty acids and amino acids as substrates has become apparent.

Somewhat unexpectedly, sheep, pig, and cow embryos can thrive successfully with or without glucose in the culture medium (Tervit et al., 1972Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493-7. http://doi.org/10.1530/jrf.0.0300493. PMid:4672493.
http://doi.org/10.1530/jrf.0.0300493...
; Petters et al., 1990Petters RM, Johnson BH, Reed ML, Archibong AE. Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J Reprod Fertil. 1990;89(1):269-75. http://doi.org/10.1530/jrf.0.0890269. PMid:2374120.
http://doi.org/10.1530/jrf.0.0890269...
; Takahashi and First, 1992Takahashi Y, First NL. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963-78. http://doi.org/10.1016/0093-691X(92)90096-A. PMid:16727096.
http://doi.org/10.1016/0093-691X(92)9009...
; Thompson et al., 1992Thompson JG, Simpson AC, Pugh PA, Tervit HR. Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol Reprod Dev. 1992;31(4):253-7. http://doi.org/10.1002/mrd.1080310405. PMid:1571159.
http://doi.org/10.1002/mrd.1080310405...
; Rosenkrans and First, 1994Rosenkrans CF Jr, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7. http://doi.org/10.2527/1994.722434x. PMid:8157527.
http://doi.org/10.2527/1994.722434x...
; Steeves and Gardner, 1999Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61(3):731-40. http://doi.org/10.1095/biolreprod61.3.731. PMid:10456851.
http://doi.org/10.1095/biolreprod61.3.73...
; Gandhi et al., 2000Gandhi AP, Lane M, Gardner DK, Krisher RL. A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum Reprod. 2000;15(2):395-401. http://doi.org/10.1093/humrep/15.2.395. PMid:10655312.
http://doi.org/10.1093/humrep/15.2.395...
). It is evident that embryos in these species are capable of utilizing endogenous fatty acids and/or amino acids for energy production even in the absence of carbohydrates. Mammalian embryos utilize fatty acids as an energy source (Ferguson and Leese, 2006Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://doi.org/10.1002/mrd.20494. PMid:16804881.
http://doi.org/10.1002/mrd.20494...
; Sturmey et al., 2006Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction. 2006;132(6):829-37. http://doi.org/10.1530/REP-06-0073. PMid:17127743.
http://doi.org/10.1530/REP-06-0073...
, 2009bSturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009b;44(Suppl 3):50-8. http://doi.org/10.1111/j.1439-0531.2009.01402.x. PMid:19660080.
http://doi.org/10.1111/j.1439-0531.2009....
), with Kane (1979)Kane MT. Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol Reprod. 1979;20(2):323-32. http://doi.org/10.1095/biolreprod20.2.323. PMid:572233.
http://doi.org/10.1095/biolreprod20.2.32...
being the first to identify the significance of fatty acids in this context. Interestingly, it appears that fatty acid oxidation in the oocyte and early embryo is closely intertwined with glucose metabolism, likely operating in an interdependent and compensatory manner (Sutton-McDowall et al., 2012Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology. 2012;77(8):1632-41. http://doi.org/10.1016/j.theriogenology.2011.12.008. PMid:22365693.
http://doi.org/10.1016/j.theriogenology....
; Paczkowski et al., 2014Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction. 2014;148(4):429-39. http://doi.org/10.1530/REP-14-0015. PMid:25062802.
http://doi.org/10.1530/REP-14-0015...
; Herrick et al., 2020Herrick JR, Rajput S, Pasquariello R, Ermisch A, Santiquet N, Schoolcraft WB, Krisher RL. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reprod Fertil. 2020;1(1):51-65. http://doi.org/10.1530/RAF-20-0033. PMid:35128423.
http://doi.org/10.1530/RAF-20-0033...
). Amino acids also contribute to preimplantation embryo metabolism. The uptake and synthesis of amino acids have been observed in embryos across various species and have been linked to outcomes such as DNA damage, ploidy, embryo sex, and quality (Sturmey et al., 2009aSturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009a;24(1):81-91. http://doi.org/10.1093/humrep/den346. PMid:18835872.
http://doi.org/10.1093/humrep/den346...
; Picton et al., 2010Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, Leese HJ, Harris SE. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16(8):557-69. http://doi.org/10.1093/molehr/gaq040. PMid:20571076.
http://doi.org/10.1093/molehr/gaq040...
). Supplementation with a combination of essential and non-essential amino acids in the absence of coculture was found to be advantageous for embryo development (Rosenkrans and First, 1994Rosenkrans CF Jr, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7. http://doi.org/10.2527/1994.722434x. PMid:8157527.
http://doi.org/10.2527/1994.722434x...
; Gardner et al., 1994Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50(2):390-400. http://doi.org/10.1095/biolreprod50.2.390. PMid:8142556.
http://doi.org/10.1095/biolreprod50.2.39...
; Steeves and Gardner, 1999Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61(3):731-40. http://doi.org/10.1095/biolreprod61.3.731. PMid:10456851.
http://doi.org/10.1095/biolreprod61.3.73...
), leading to an increase in the cell number of blastocysts cultured in vitro.

The effects of metabolic activity on the reduction-oxidation (REDOX) potential of the cell are now known to be as important, if not more so, than simple ATP production. Throughout the preimplantation phase, preserving a normal redox state is crucial for embryo development (Harvey et al., 2002Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123(4):479-86. http://doi.org/10.1530/rep.0.1230479. PMid:11914110.
http://doi.org/10.1530/rep.0.1230479...
). The cellular redox state is chiefly influenced by the ratios of key redox couples: NAD+:NADH (largely influenced by lactate dehydrogenase activity) and NADP+:NADPH (partially regulated by the pentose phosphate pathway (PPP)), along with the intracellular balance of reduced glutathione (GSH) to oxidized glutathione (GSSG). These nicotinamide molecules serve as vital cofactors for numerous metabolic reactions or act as their end-products. Thus, fostering optimal embryo metabolism in culture is imperative for preserving redox equilibrium and ensuring developmental competency.

Oxygen

Although the culture medium plays a significant role in the quantity and quality of embryos produced, there are many other factors of the larger culture environment, such as air quality, plastics, oil, etc., that influence outcomes (Wale and Gardner, 2016Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2-22. http://doi.org/10.1093/humupd/dmv034. PMid:26207016.
http://doi.org/10.1093/humupd/dmv034...
). One of the most critical of these factors seems to be oxygen in the atmosphere within the incubator. In vivo, oxygen tension in the oviduct and uterus ranges from 1.5% to 8.7%, and is 5.3% at the time of blastocyst formation in hamsters and rabbits (Fischer and Bavister, 1993Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673-9. http://doi.org/10.1530/jrf.0.0990673. PMid:8107053.
http://doi.org/10.1530/jrf.0.0990673...
). Reduced concentrations of oxygen (<10%) relative to normal, atmospheric levels (20%) improve embryo development and viability in all species where it has been evaluated, including cattle (Thompson et al., 1990Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573-8. http://doi.org/10.1530/jrf.0.0890573. PMid:2401984.
http://doi.org/10.1530/jrf.0.0890573...
, 2000Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118(1):47-55. http://doi.org/10.1530/reprod/118.1.47. PMid:10793625.
http://doi.org/10.1530/reprod/118.1.47...
). As oxygen is necessary for mitochondrial ATP production, the benefits of reduced oxygen are associated with changes in metabolism, particularly an increase in glucose consumption and production of ATP via glycolysis (Thompson et al., 1996Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106(2):299-306. http://doi.org/10.1530/jrf.0.1060299. PMid:8699414.
http://doi.org/10.1530/jrf.0.1060299...
, 2000Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118(1):47-55. http://doi.org/10.1530/reprod/118.1.47. PMid:10793625.
http://doi.org/10.1530/reprod/118.1.47...
). However, oxygen can also influence the expression of genes not directly associated with metabolic activity, including anaphase promoting complex and myotrophin, suggesting beneficial effects of oxygen on other aspects of embryo physiology (Harvey et al., 2007Harvey AJ, Santos AN, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev. 2007;74(3):290-9. http://doi.org/10.1002/mrd.20617. PMid:16998843.
http://doi.org/10.1002/mrd.20617...
).

Growth factors

The fluids of the reproductive tract are known to contain a variety of growth factors, cytokines, and other cell signaling molecules, collectively known as embryokines, that influence embryo development and differentiation (Hansen and Tribulo, 2019Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod. 2019;101(3):526-37. http://doi.org/10.1093/biolre/ioz030. PMid:31220231.
http://doi.org/10.1093/biolre/ioz030...
). However, most culture media do not contain these embryokines. One reason for this discrepancy is the difficulty in studying the effects of growth factors. There are a large number of candidates whose effects can be inconsistent and dependent on the concentration used, the time of culture when they are included, and the composition of the medium (Herrick et al., 2018Herrick JR, Greene-Ermisch AF, Schoolcraft WB, Krisher RL. Exogenous growth factors do not affect the development of individually cultured murine embryos. J Assist Reprod Genet. 2018;35(3):523-31. http://doi.org/10.1007/s10815-017-1103-3. PMid:29270871.
http://doi.org/10.1007/s10815-017-1103-3...
; Hansen and Tribulo, 2019Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod. 2019;101(3):526-37. http://doi.org/10.1093/biolre/ioz030. PMid:31220231.
http://doi.org/10.1093/biolre/ioz030...
; Amaral et al., 2022Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022;12(1):7503. http://doi.org/10.1038/s41598-022-11447-7. PMid:35525843.
http://doi.org/10.1038/s41598-022-11447-...
). In addition, the effects of these embryokines are often very subtle, difficult to interpret, and/or only apparent post-transfer (Hansen and Tribulo, 2019Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod. 2019;101(3):526-37. http://doi.org/10.1093/biolre/ioz030. PMid:31220231.
http://doi.org/10.1093/biolre/ioz030...
; Sang et al., 2020Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci. 2020;103(12):11930-44. http://doi.org/10.3168/jds.2020-19068. PMid:33041033.
http://doi.org/10.3168/jds.2020-19068...
). For example, the inclusion of interleukin-8 (IL-8) in the culture medium increases the proportion of embryos that hatch but decreases the number of cells allocated to the inner cell mass (Sang et al., 2020Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci. 2020;103(12):11930-44. http://doi.org/10.3168/jds.2020-19068. PMid:33041033.
http://doi.org/10.3168/jds.2020-19068...
). The effects of colony stimulating factor (CSF) 2 are dependent on the sex of the embryo, further complicating the formulation of media for typical (non-sorted sperm) IVF-produced embryos (Siqueira and Hansen, 2016Siqueira LG, Hansen PJ. Sex differences in response of the bovine embryo to colony-stimulating factor 2. Reproduction. 2016;152(6):645-54. http://doi.org/10.1530/REP-16-0336. PMid:27601717.
http://doi.org/10.1530/REP-16-0336...
). Although the addition of embryokines to culture media is not well understood, embryos do secrete them into the culture medium and these secreted embryokines are often credited with enhancing development of embryos cultured in groups versus individually.

Fetal bovine serum

Fetal bovine serum remains a common supplement used to compensate for suboptimal embryo culture environments. Serum can buffer stressors and insults in the embryo culture system that may inhibit embryo development. Although the inclusion of serum in the culture medium can enhance development to the blastocyst stage, it may also diminish the ability of resulting embryos to be cryopreserved, and to establish and maintain pregnancy (Rizos et al., 2003Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68(1):236-43. http://doi.org/10.1095/biolreprod.102.007799. PMid:12493719.
http://doi.org/10.1095/biolreprod.102.00...
; Amaral et al., 2022Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022;12(1):7503. http://doi.org/10.1038/s41598-022-11447-7. PMid:35525843.
http://doi.org/10.1038/s41598-022-11447-...
). Inclusion of serum in culture medium has also been implicated in large, or abnormal, offspring syndrome, although a direct causal link has not been confirmed (Lazzari et al., 2002Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67(3):767-75. http://doi.org/10.1095/biolreprod.102.004481. PMid:12193383.
http://doi.org/10.1095/biolreprod.102.00...
; Hansen, 2020Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020;98(11):skaa288. http://doi.org/10.1093/jas/skaa288. PMid:33141879.
http://doi.org/10.1093/jas/skaa288...
) nor is the timing of exposure or the threshold concentration of FBS leading to these effects understood. This congenital overgrowth syndrome is observed in ruminants born through assisted reproduction and characterized by significant dysregulation of the epigenome and transcriptome, excessive somatic growth, and various developmental anomalies such as enlarged tongues, umbilical hernias, muscle and skeletal deformities, abnormal organ growth, and aberrant placental development (Li et al., 2019Li Y, Donnelly CG, Rivera RM. Overgrowth syndrome. Vet Clin North Am Food Anim Pract. 2019;35(2):265-76. http://doi.org/10.1016/j.cvfa.2019.02.007. PMid:31103180.
http://doi.org/10.1016/j.cvfa.2019.02.00...
, 2022Li Y, Sena Lopes J, Coy-Fuster P, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. 2022;17(11):1477-96. http://doi.org/10.1080/15592294.2022.2067938. PMid:35466858.
http://doi.org/10.1080/15592294.2022.206...
; Rivera, 2019Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev. 2019;32(2):65-81. http://doi.org/10.1071/RD19276. PMid:32188559.
http://doi.org/10.1071/RD19276...
). The frequency of this syndrome may vary depending on the embryo culture system utilized. Although there are no good data on frequency of occurrence in the ET industry, rough estimates are in the 3-5% range. For producers using embryo transfer of in vitro produced bovine embryos on a large scale, this is a significant drawback and has been detrimental to the acceptance of this technology.

Development of next generation embryo culture media

Investigations in our laboratory employed a gas chromatography-mass spectrometry platform to examine the nutrient composition of media following culture of individual embryos to better understand the metabolic profile of embryos in vitro. These metabolomic analyses suggested that embryos utilize only a fraction of the nutrients provided to them in the culture environment (Krisher et al., 2015Krisher RL, Heuberger AL, Paczkowski M, Stevens J, Pospisil C, Prather RS, Sturmey RG, Herrick JR, Schoolcraft WB. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod Fertil Dev. 2015;27(4):602-20. http://doi.org/10.1071/RD14359. PMid:25763765.
http://doi.org/10.1071/RD14359...
; Herrick et al., 2016Herrick JR, Lyons SM, Greene AF, Broeckling CD, Schoolcraft WB, Krisher RL. Direct and osmolarity-dependent effects of glycine on preimplantation bovine embryos. PLoS One. 2016;11(7):e0159581. http://doi.org/10.1371/journal.pone.0159581. PMid:27459477.
http://doi.org/10.1371/journal.pone.0159...
). The minimal amount of nutrients that are consumed compared to the abundance of nutrients available in the culture system prompted us to hypothesize that nutrient concentrations in the culture medium could be substantially decreased while still sustaining embryo development. In the mouse, nutrient concentrations (carbohydrates, amino acids, and vitamins) during the culture of murine embryos could be reduced by half with minimal impact on embryo development. However, decreasing nutrients, especially pyruvate and lactate, by more than 50% significantly impaired embryo development and viability (Ermisch et al., 2020Ermisch AF, Herrick JR, Pasquariello R, Dyer MC, Lyons SM, Broeckling CD, Rajput SK, Schoolcraft WB, Krisher RL. A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Sci Rep. 2020;10(1):9263. http://doi.org/10.1038/s41598-020-66019-4. PMid:32518371.
http://doi.org/10.1038/s41598-020-66019-...
). In the bovine embryo, development was largely unaffected when nutrient concentrations were reduced by as much as 75%, and some embryos were able to develop in medium containing only 6.25% of the original nutrient concentrations (Herrick et al., 2020Herrick JR, Rajput S, Pasquariello R, Ermisch A, Santiquet N, Schoolcraft WB, Krisher RL. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reprod Fertil. 2020;1(1):51-65. http://doi.org/10.1530/RAF-20-0033. PMid:35128423.
http://doi.org/10.1530/RAF-20-0033...
). Other studies have replicated this work, demonstrating improved blastocyst development and quality when nutrients were reduced by half (Santos et al., 2021Santos ECD, Fonseca AMD Jr, Lima CB, Ispada J, Silva JVAD, Milazzotto MP. Less is more: reduced nutrient concentration during in vitro culture improves embryo production rates and morphophysiology of bovine embryos. Theriogenology. 2021;173:37-47. http://doi.org/10.1016/j.theriogenology.2021.07.010. PMid:34329894.
http://doi.org/10.1016/j.theriogenology....
). The exceptional resilience of the bovine embryo to significant reductions in nutrient availability is linked to its capacity to utilize endogenous lipids. To further refine our reduced nutrient concentration media for bovine embryos, we supplemented this media with exogenous lipids and L-carnitine to promote lipid metabolism. Under these conditions, blastocyst development was significantly improved, and the expression of embryo quality related genes was increased, although blastocyst cell number was lower (Pasquariello et al., 2023Pasquariello R, Zhang M, Herrick JR, Ermisch A, Becker J, Schoolcraft WB, Barfield JP, Yuan Y, Krisher RL. Lipid enriched reduced nutrient culture medium improves bovine blastocyst formation. Reprod Fertil. 2023;4(4):e230057. http://doi.org/10.1530/RAF-23-0057. PMid:37971749.
http://doi.org/10.1530/RAF-23-0057...
).

Transcriptomic analysis of in vivo produced embryos compared to in vitro embryos cultured in either standard or reduced nutrient conditions demonstrated that in vitro embryos produced in standard conditions were more active metabolically compared to in vivo produced embryos, while metabolic processes were in fact downregulated in embryos developed under reduced nutrient conditions (Ming et al., 2023Ming H, Zhang M, Rajput S, Logsdon D, Zhu L, Schoolcraft WB, Krisher R, Jiang Z, Yuan Y. In vitro culture alters cell lineage composition and cellular metabolism of bovine blastocyst. bioRxiv. 2023. http://doi.org/10.1101/2023.06.09.544379. PMid:37333292.
http://doi.org/10.1101/2023.06.09.544379...
). Embryos developed under reduced nutrient conditions upregulated genes associated with protein hydrolysis and cell survival, a strategy to maintain cellular homeostasis that is reminiscent of the high protein turnover that limits oxidative damage and extends lifespan in caloric restriction. Embryos developed in reduced nutrient conditions also had increased transmembrane transport, likely necessary for nutrient uptake in a restricted environment, again similar to caloric restriction response. Overall, the developmental potential of embryos cultured in reduced nutrient conditions was closer to in vivo embryos than that of embryos cultured in vitro under standard conditions (Ming et al., 2023Ming H, Zhang M, Rajput S, Logsdon D, Zhu L, Schoolcraft WB, Krisher R, Jiang Z, Yuan Y. In vitro culture alters cell lineage composition and cellular metabolism of bovine blastocyst. bioRxiv. 2023. http://doi.org/10.1101/2023.06.09.544379. PMid:37333292.
http://doi.org/10.1101/2023.06.09.544379...
). These studies open a new frontier in bovine embryo culture media development and may result in a more developmentally competent in vitro embryo. However, additional studies including post-transfer embryo viability and calf health are needed to fully appreciate the capability of this reduced nutrient culture system.

What does the future hold for bovine embryos?

We might take a cue from the world of human IVF. Embryo diagnostics, such as embryo sex, genotype, identification of chromosomal abnormalities, presence of desirable production traits, and or prediction of viability would add significant value to a bovine embryo (Figure 1). Today, we can successfully genotype and sex embryos by taking a biopsy of the trophectoderm at the blastocyst stage without significantly compromising subsequent development (Fujii et al., 2019Fujii T, Naito A, Hirayama H, Kashima M, Yoshino H, Hanamure T, Domon Y, Hayakawa H, Watanabe T, Moriyasu S, Kageyama S. Potential of preimplantation genomic selection for carcass traits in Japanese Black cattle. J Reprod Dev. 2019;65(3):251-8. http://doi.org/10.1262/jrd.2019-009. PMid:30905888.
http://doi.org/10.1262/jrd.2019-009...
; Oliveira et al., 2023Oliveira CS, Camargo LSA, da Silva MVGB, Saraiva NZ, Quintão CC, Machado MA. Embryo biopsies for genomic selection in tropical dairy cattle. Anim Reprod. 2023;20(2):e20230064. http://doi.org/10.1590/1984-3143-ar2023-0064. PMid:37547565.
http://doi.org/10.1590/1984-3143-ar2023-...
). In fact, biopsy is a recognized emerging technology as the number of embryos being sexed or genotyped is now being tracked by the IETS Data Retrieval Committee and was greater than 23,000 embryos in 2022. Bovine embryos can also be screened for chromosomal abnormalities via trophectoderm biopsy (Turner et al., 2019Turner KJ, Silvestri G, Black DH, Dobson G, Smith C, Handyside AH, Sinclair KD, Griffin DK. Karyomapping for simultaneous genomic evaluation and aneuploidy screening of preimplantation bovine embryos: the first live-born calves. Theriogenology. 2019;125:249-58. http://doi.org/10.1016/j.theriogenology.2018.11.014. PMid:30476758.
http://doi.org/10.1016/j.theriogenology....
; Silvestri et al., 2021Silvestri G, Canedo-Ribeiro C, Serrano-Albal M, Labrecque R, Blondin P, Larmer SG, Marras G, Tutt DAR, Handyside AH, Farré M, Sinclair KD, Griffin DK. Preimplantation genetic testing for aneuploidy improves live birth rates with in vitro produced bovine embryos: a blind retrospective study. Cells. 2021;10(9):2284. http://doi.org/10.3390/cells10092284. PMid:34571932.
http://doi.org/10.3390/cells10092284...
). Biopsy procedures necessitate advanced technical expertise and expensive equipment, potentially influencing both the precision of genetic testing and implantation potential. Reliable genotype information can be obtained from embryo biopsies, but only a limited number of laboratories are currently using this technology due to these limitations. Prediction of pregnancy success in human embryos using artificial intelligence and machine learning with either photos or time lapse video is in use today (Vermilyea et al., 2020VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. http://doi.org/10.1093/humrep/deaa013. PMid:32240301.
http://doi.org/10.1093/humrep/deaa013...
; Enatsu et al., 2022Enatsu N, Miyatsuka I, An LM, Inubushi M, Enatsu K, Otsuki J, Iwasaki T, Kokeguchi S, Shiotani M. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reprod Med Biol. 2022;21(1):e12443. http://doi.org/10.1002/rmb2.12443. PMid:35386375.
http://doi.org/10.1002/rmb2.12443...
; Diakiw et al., 2022Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, Bankowski B, Stones R, Storr A, Miller A, Adaniya G, van Tol R, Hanson R, Aizpurua J, Giardini L, Johnston A, Van Nguyen T, Dakka MA, Perugini D, Perugini M. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105-17. http://doi.org/10.1016/j.rbmo.2022.07.018. PMid:36117079.
http://doi.org/10.1016/j.rbmo.2022.07.01...
; Salih et al., 2023Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, Rezatofighi H, Reddy S, Smith V, Vollenhoven B, Horta F. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023(3):hoad031. http://doi.org/10.1093/hropen/hoad031. PMid:37588797.
http://doi.org/10.1093/hropen/hoad031...
). These algorithms haven't yet been developed specifically for cattle embryos, partly because of the high cost of time lapse incubators. However, affordable models targeted at the veterinary sector are emerging, suggesting this could soon become a possibility for bovine IVF, and preliminary research supports this assumption (Sugimura et al., 2017Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63(4):353-7. http://doi.org/10.1262/jrd.2017-041. PMid:28552887.
http://doi.org/10.1262/jrd.2017-041...
). Alternatively, information could be gained about embryo genetics and viability non-invasively from cell free DNA or extracellular vesicles in the culture medium after blastocyst development, or from blastocoel fluid. Noninvasive preimplantation genetic testing (niPGT) of human embryos demonstrates that cell free DNA suitable for genetic analysis can routinely be obtained from these samples, offering an alternative to embryo biopsy that requires less skill, poses less risk to the embryo, and is less expensive (Huang et al., 2019Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105-12. http://doi.org/10.1073/pnas.1907472116. PMid:31235575.
http://doi.org/10.1073/pnas.1907472116...
; Rubio et al., 2019Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510-9. http://doi.org/10.1016/j.fertnstert.2019.04.038. PMid:31200971.
http://doi.org/10.1016/j.fertnstert.2019...
; Leaver and Wells, 2020Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16-42. http://doi.org/10.1093/humupd/dmz033. PMid:31774124.
http://doi.org/10.1093/humupd/dmz033...
; Rubio et al., 2020Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1-13. http://doi.org/10.1016/j.ajog.2020.04.035. PMid:32470458.
http://doi.org/10.1016/j.ajog.2020.04.03...
; del Collado et al., 2023Del Collado M, Andrade GM, Gonçalves NJN, Fortini S, Perecin F, Carriero MM. The embryo non-invasive pre-implantation diagnosis era: how far are we? Anim Reprod. 2023;20(2):e20230069. http://doi.org/10.1590/1984-3143-ar2023-0069. PMid:37720726.
http://doi.org/10.1590/1984-3143-ar2023-...
). However, reported concordance rates between cell free DNA and biopsy results are variable between studies, and the diagnostic value of noninvasive preimplantation genetic testing remains controversial in human IVF (Huang et al., 2023Huang B, Luo X, Wu R, Qiu L, Lin S, Huang X, Wu J. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis. J Assist Reprod Genet. 2023;40(6):1243-53. http://doi.org/10.1007/s10815-023-02760-9. PMid:36952146.
http://doi.org/10.1007/s10815-023-02760-...
; Lledo et al., 2023Lledo B, Morales R, Antonio Ortiz J, Bernabeu A, Bernabeu R. Noninvasive preimplantation genetic testing using the embryo spent culture medium: an update. Curr Opin Obstet Gynecol. 2023;35(4):294-9. http://doi.org/10.1097/GCO.0000000000000881. PMid:37144571.
http://doi.org/10.1097/GCO.0000000000000...
).

Bovine embryos can also be a source of information to discover regulatory pathways important for development. Extracellular vesicles and their microRNA and protein cargo have emerged as pivotal bi-directional messengers between the embryo and its environment at various stages of pre- and post-implantation development (Lange-Consiglio et al., 2020Lange-Consiglio A, Lazzari B, Pizzi F, Idda A, Cremonesi F, Capra E. Amniotic microvesicles impact hatching and pregnancy percentages of in vitro bovine embryos and blastocyst microRNA expression versus in vivo controls. Sci Rep. 2020;10(1):501. http://doi.org/10.1038/s41598-019-57060-z. PMid:31949175.
http://doi.org/10.1038/s41598-019-57060-...
; Salilew-Wondim et al., 2020Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of microRNAs in mammalian fertility: from gametogenesis to embryo implantation. Int J Mol Sci. 2020;21(2):585. http://doi.org/10.3390/ijms21020585. PMid:31963271.
http://doi.org/10.3390/ijms21020585...
; Tesfaye et al., 2020Tesfaye D, Hailay T, Salilew-Wondim D, Hoelker M, Bitseha S, Gebremedhn S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology. 2020;150:70-74. http://doi.org/10.1016/j.theriogenology.2020.01.075. PMID: 32088041.
http://doi.org/10.1016/j.theriogenology....
; Guzewska et al., 2023Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal. 2023;21(1):210. http://doi.org/10.1186/s12964-023-01221-1. PMid:37596609.
http://doi.org/10.1186/s12964-023-01221-...
). Extracellular vesicles can influence blastocyst development and modulate embryo stress in vitro, potentially by modulating embryo gene expression (Alminana et al., 2017Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction. 2017;154(3):153-68. http://doi.org/10.1530/REP-17-0054. PMid:28630101.
http://doi.org/10.1530/REP-17-0054...
; Lopera-Vasquez et al., 2017Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramírez MÁ, Yáñez-Mó M, Rizos D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction. 2017;153(4):461-70. http://doi.org/10.1530/REP-16-0384. PMid:28104825.
http://doi.org/10.1530/REP-16-0384...
; Menjivar et al., 2023Menjivar NG, Gad A, Gebremedhn S, Ghosh S, Tesfaye D. Granulosa cell-derived extracellular vesicles mitigate the detrimental impact of thermal stress on bovine oocytes and embryos. Front Cell Dev Biol. 2023;11:1142629. http://doi.org/10.3389/fcell.2023.1142629. PMid:37091982.
http://doi.org/10.3389/fcell.2023.114262...
). In addition, an embryos’ extracellular vesicles and microRNAs may provide clues about the quality and viability of that embryo, possibly leading to non-invasive diagnostic assays (Marin and Scott, 2018Marin D, Scott RT Jr. Extracellular vesicles: a promising tool for assessment of embryonic competence. Curr Opin Obstet Gynecol. 2018;30(3):171-8. http://doi.org/10.1097/GCO.0000000000000458. PMid:29664793.
http://doi.org/10.1097/GCO.0000000000000...
; Cimadomo et al., 2019Cimadomo D, Rienzi L, Giancani A, Alviggi E, Dusi L, Canipari R, Noli L, Ilic D, Khalaf Y, Ubaldi FM, Capalbo A. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum Reprod. 2019;34(9):1746-61. http://doi.org/10.1093/humrep/dez119. PMid:31419301.
http://doi.org/10.1093/humrep/dez119...
; Hawke et al., 2021Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online. 2021;42(1):39-54. http://doi.org/10.1016/j.rbmo.2020.11.011. PMid:33303367.
http://doi.org/10.1016/j.rbmo.2020.11.01...
). Finally, extended embryo culture (Shahbazi et al., 2016Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18(6):700-8. http://doi.org/10.1038/ncb3347. PMid:27144686.
http://doi.org/10.1038/ncb3347...
; Isaac et al., 2024Isaac E, Berg DK, Pfeffer PL. Using extended growth of cattle embryos in culture to gain insights into bovine developmental events on embryonic days 8 to 10. Theriogenology. 2024;214:10-20. http://doi.org/10.1016/j.theriogenology.2023.10.004. PMid:37837723.
http://doi.org/10.1016/j.theriogenology....
) and synthetic embryo models (Kagawa et al., 2022Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Scholte Op Reimer Y, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5. http://doi.org/10.1038/s41586-021-04267-8. PMid:34856602.
http://doi.org/10.1038/s41586-021-04267-...
; Kim et al., 2023Kim Y, Kim I, Shin K. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Exp Mol Med. 2023;55(10):2127-37. http://doi.org/10.1038/s12276-023-01097-8. PMid:37779144.
http://doi.org/10.1038/s12276-023-01097-...
; Pinzon-Arteaga et al., 2023Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Ming H, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell. 2023;30(5):611-616.e7. http://doi.org/10.1016/j.stem.2023.04.003. PMid:37146582.
http://doi.org/10.1016/j.stem.2023.04.00...
; Yu et al., 2023Yu L, Logsdon D, Pinzon-Arteaga CA, Duan J, Ezashi T, Wei Y, Ribeiro Orsi AE, Oura S, Liu L, Wang L, Liu K, Ding X, Zhan L, Zhang J, Nahar A, Stobbe C, Katz-Jaffe M, Schoolcraft WB, Tan T, Hon GC, Yuan Y, Wu J. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell. 2023;30(9):1246-1261.e9. http://doi.org/10.1016/j.stem.2023.08.002. PMid:37683605.
http://doi.org/10.1016/j.stem.2023.08.00...
) enable us to discover physiological processes occurring in the embryo after the blastocyst stage, a period difficult to study in vivo. In the long run, delivering embryos at a reduced cost (closer to that of a straw of sexed semen, perhaps) while maintaining high value and enhancing outcomes will necessitate concurrent advancements in multiple areas. These include the development of improved culture media supporting normal embryo physiology, enhancements in the culture environment, and the integration of various diagnostic technologies. The forthcoming decade promises to be an exciting era of exploration in bovine in vitro embryo production and diagnostics. As these breakthroughs are applied to the commercial bovine embryo transfer industry, they will further bolster the utilization of in vitro produced embryos and propel the industry towards a more sustainable approach to feeding the world. However, it's imperative that these advancements are accessible at a price point that ensures a reasonable return on investment for producers, for this technology to be truly transformative.

Conclusion

Rapid adoption of in vitro embryo production in the bovine industry highlights the importance of embryo technology for genetic improvement. A growing human population, food insecurity, and climate change put enormous pressure on producers to make protein production more efficient and sustainable. However, large inefficiencies in the system significantly increase cost and may limit full realization of the potential of the technology. The low conversion percentage of oocytes to blastocysts, and the quality of those blastocysts produced, significantly contribute to these inefficiencies. Improvements in embryo culture media resulting in a more viable, more freezable embryo capable of a high level of pregnancy establishment and maintenance, and normal healthy calf production, is essential.

  • Financial support:

    RLK received support from Genus plc; JRH received support from Omaha’s Henry Doorly Zoo and Aquarium.
  • How to cite:

    Krisher RL, Herrick JR. Bovine embryo production in vitro: evolution of culture media and commercial perspectives. Anim Reprod. 2024;21(3):e20240051. https://doi.org/10.1590/1984-3143-AR2024-0051

References

  • Abe H, Hoshi H. Bovine oviductal epithelial cells: their cell culture and applications in studies for reproductive biology. Cytotechnology. 1997;23(1-3):171-83. http://doi.org/10.1023/A:1007929826186 PMid:22358533.
    » http://doi.org/10.1023/A:1007929826186
  • Aguila L, Treulen F, Therrien J, Felmer R, Valdivia M, Smith LC. Oocyte selection for in vitro embryo production in bovine species: noninvasive approaches for new challenges of oocyte competence. Animals. 2020;10(12):2196. http://doi.org/10.3390/ani10122196 PMid:33255250.
    » http://doi.org/10.3390/ani10122196
  • Almiñana C, Corbin E, Tsikis G, Alcântara-Neto AS, Labas V, Reynaud K, Galio L, Uzbekov R, Garanina AS, Druart X, Mermillod P. Oviduct extracellular vesicles protein content and their role during oviduct-embryo cross-talk. Reproduction. 2017;154(3):153-68. http://doi.org/10.1530/REP-17-0054 PMid:28630101.
    » http://doi.org/10.1530/REP-17-0054
  • Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022;12(1):7503. http://doi.org/10.1038/s41598-022-11447-7 PMid:35525843.
    » http://doi.org/10.1038/s41598-022-11447-7
  • Barberet J, Ducreux B, Bruno C, Guilleman M, Simonot R, Lieury N, Guilloteau A, Bourc’his D, Fauque P. Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. J Ovarian Res. 2022;15(1):128. http://doi.org/10.1186/s13048-022-01064-3 PMid:36464714.
    » http://doi.org/10.1186/s13048-022-01064-3
  • Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev. 2007;74(10):1345-53. http://doi.org/10.1002/mrd.20604 PMid:17342740.
    » http://doi.org/10.1002/mrd.20604
  • Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5(2):133-40. http://doi.org/10.1016/S1472-6483(10)61615-X PMid:12419037.
    » http://doi.org/10.1016/S1472-6483(10)61615-X
  • Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90(3):473-83. http://doi.org/10.1016/j.fertnstert.2008.08.010 PMid:18847602.
    » http://doi.org/10.1016/j.fertnstert.2008.08.010
  • Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci USA. 1967;58(2):560-7. http://doi.org/10.1073/pnas.58.2.560 PMid:5233459.
    » http://doi.org/10.1073/pnas.58.2.560
  • Biggers JD. Reflections on the culture of the preimplantation embryo. Int J Dev Biol. 1998;42(7):879-84. PMid:9853817.
  • Brinster RL. Studies on the development of mouse embryos in vitro IV. Interaction of energy sources. J Reprod Fertil. 1965;10(2):227-40. http://doi.org/10.1530/jrf.0.0100227 PMid:5836270.
    » http://doi.org/10.1530/jrf.0.0100227
  • Cimadomo D, Rienzi L, Giancani A, Alviggi E, Dusi L, Canipari R, Noli L, Ilic D, Khalaf Y, Ubaldi FM, Capalbo A. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum Reprod. 2019;34(9):1746-61. http://doi.org/10.1093/humrep/dez119 PMid:31419301.
    » http://doi.org/10.1093/humrep/dez119
  • Del Collado M, Andrade GM, Gonçalves NJN, Fortini S, Perecin F, Carriero MM. The embryo non-invasive pre-implantation diagnosis era: how far are we? Anim Reprod. 2023;20(2):e20230069. http://doi.org/10.1590/1984-3143-ar2023-0069 PMid:37720726.
    » http://doi.org/10.1590/1984-3143-ar2023-0069
  • Diakiw SM, Hall JMM, VerMilyea M, Lim AYX, Quangkananurug W, Chanchamroen S, Bankowski B, Stones R, Storr A, Miller A, Adaniya G, van Tol R, Hanson R, Aizpurua J, Giardini L, Johnston A, Van Nguyen T, Dakka MA, Perugini D, Perugini M. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022;45(6):1105-17. http://doi.org/10.1016/j.rbmo.2022.07.018 PMid:36117079.
    » http://doi.org/10.1016/j.rbmo.2022.07.018
  • Du ZF, Wales RG. Effect of culture from the zygote stage on the metabolism of glucose and glutamine by 2-cell embryos and blastocysts recovered from outbred or F1 hybrid female mice. Reprod Fertil Dev. 1993a;5(5):555-65. http://doi.org/10.1071/RD9930555 PMid:8190908.
    » http://doi.org/10.1071/RD9930555
  • Du ZF, Wales RG. Glycolysis and glucose oxidation by the sheep conceptus at different oxygen concentrations. Reprod Fertil Dev. 1993b;5(4):383-93. http://doi.org/10.1071/RD9930383 PMid:8153388.
    » http://doi.org/10.1071/RD9930383
  • Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303-16. http://doi.org/10.1016/j.fertnstert.2014.11.015 PMid:25497448.
    » http://doi.org/10.1016/j.fertnstert.2014.11.015
  • Ellington JE, Carney EW, Farrell PB, Simkin ME, Foote RH. Bovine 1-2-cell embryo development using a simple medium in three oviduct epithelial cell coculture systems. Biol Reprod. 1990;43(1):97-104. http://doi.org/10.1095/biolreprod43.1.97 PMid:2393695.
    » http://doi.org/10.1095/biolreprod43.1.97
  • Enatsu N, Miyatsuka I, An LM, Inubushi M, Enatsu K, Otsuki J, Iwasaki T, Kokeguchi S, Shiotani M. A novel system based on artificial intelligence for predicting blastocyst viability and visualizing the explanation. Reprod Med Biol. 2022;21(1):e12443. http://doi.org/10.1002/rmb2.12443 PMid:35386375.
    » http://doi.org/10.1002/rmb2.12443
  • Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod. 1994;50(5):1027-33. http://doi.org/10.1095/biolreprod50.5.1027 PMid:8025158.
    » http://doi.org/10.1095/biolreprod50.5.1027
  • Ermisch AF, Herrick JR, Pasquariello R, Dyer MC, Lyons SM, Broeckling CD, Rajput SK, Schoolcraft WB, Krisher RL. A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Sci Rep. 2020;10(1):9263. http://doi.org/10.1038/s41598-020-66019-4 PMid:32518371.
    » http://doi.org/10.1038/s41598-020-66019-4
  • Eyestone WH, Jones JM, First NL. Some factors affecting the efficacy of oviduct tissue-conditioned medium for the culture of early bovine embryos. J Reprod Fertil. 1991;92(1):59-64. http://doi.org/10.1530/jrf.0.0920059 PMid:2056496.
    » http://doi.org/10.1530/jrf.0.0920059
  • Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev. 2023;36(2):133-48. http://doi.org/10.1071/RD23164 PMid:38064189.
    » http://doi.org/10.1071/RD23164
  • Farin PW, Crosier AE, Farin CE. Influence of in vitro systems on embryo survival and fetal development in cattle. Theriogenology. 2001;55(1):151-70. http://doi.org/10.1016/S0093-691X(00)00452-0 PMid:11198080.
    » http://doi.org/10.1016/S0093-691X(00)00452-0
  • Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://doi.org/10.1002/mrd.20494 PMid:16804881.
    » http://doi.org/10.1002/mrd.20494
  • Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673-9. http://doi.org/10.1530/jrf.0.0990673 PMid:8107053.
    » http://doi.org/10.1530/jrf.0.0990673
  • Fujii T, Naito A, Hirayama H, Kashima M, Yoshino H, Hanamure T, Domon Y, Hayakawa H, Watanabe T, Moriyasu S, Kageyama S. Potential of preimplantation genomic selection for carcass traits in Japanese Black cattle. J Reprod Dev. 2019;65(3):251-8. http://doi.org/10.1262/jrd.2019-009 PMid:30905888.
    » http://doi.org/10.1262/jrd.2019-009
  • Gandhi AP, Lane M, Gardner DK, Krisher RL. A single medium supports development of bovine embryos throughout maturation, fertilization and culture. Hum Reprod. 2000;15(2):395-401. http://doi.org/10.1093/humrep/15.2.395 PMid:10655312.
    » http://doi.org/10.1093/humrep/15.2.395
  • Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994;50(2):390-400. http://doi.org/10.1095/biolreprod50.2.390 PMid:8142556.
    » http://doi.org/10.1095/biolreprod50.2.390
  • Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175-80. http://doi.org/10.1016/S0015-0282(01)02888-6 PMid:11730746.
    » http://doi.org/10.1016/S0015-0282(01)02888-6
  • Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367-82. http://doi.org/10.1093/humupd/3.4.367 PMid:9459282.
    » http://doi.org/10.1093/humupd/3.4.367
  • Gardner DK, Lane MW, Lane M. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Mol Reprod Dev. 2000;57(3):256-61. http://doi.org/10.1002/1098-2795(200011)57:3<256::AID-MRD7>3.0.CO;2-P PMid:11013433.
    » http://doi.org/10.1002/1098-2795(200011)57:3<256::AID-MRD7>3.0.CO;2-P
  • Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242(1):103-5. http://doi.org/10.1002/jez.1402420115 PMid:3598508.
    » http://doi.org/10.1002/jez.1402420115
  • Goto K, Iwai N, Takuma Y, Nakanishi Y. Co-culture of in vitro fertilized bovine embryos with different cell monolayers. J Anim Sci. 1992;70(5):1449-53. http://doi.org/10.2527/1992.7051449x PMid:1526913.
    » http://doi.org/10.2527/1992.7051449x
  • Guzewska MM, Myszczynski K, Heifetz Y, Kaczmarek MM. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface. Cell Commun Signal. 2023;21(1):210. http://doi.org/10.1186/s12964-023-01221-1 PMid:37596609.
    » http://doi.org/10.1186/s12964-023-01221-1
  • Hajek J, Baron R, Sandi-Monroy N, Schansker S, Schoepper B, Depenbusch M, Schultze-Mosgau A, Neumann K, Gagsteiger F, von Otte S, Griesinger G. A randomised, multi-center, open trial comparing a semi-automated closed vitrification system with a manual open system in women undergoing IVF. Hum Reprod. 2021;36(8):2101-10. http://doi.org/10.1093/humrep/deab140 PMid:34131726.
    » http://doi.org/10.1093/humrep/deab140
  • Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod. 2019;101(3):526-37. http://doi.org/10.1093/biolre/ioz030 PMid:31220231.
    » http://doi.org/10.1093/biolre/ioz030
  • Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren’t pregnancy rates greater and what can we do about it? J Anim Sci. 2020;98(11):skaa288. http://doi.org/10.1093/jas/skaa288 PMid:33141879.
    » http://doi.org/10.1093/jas/skaa288
  • Harvey AJ, Kind KL, Thompson JG. REDOX regulation of early embryo development. Reproduction. 2002;123(4):479-86. http://doi.org/10.1530/rep.0.1230479 PMid:11914110.
    » http://doi.org/10.1530/rep.0.1230479
  • Harvey AJ, Santos AN, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev. 2007;74(3):290-9. http://doi.org/10.1002/mrd.20617 PMid:16998843.
    » http://doi.org/10.1002/mrd.20617
  • Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online. 2021;42(1):39-54. http://doi.org/10.1016/j.rbmo.2020.11.011 PMid:33303367.
    » http://doi.org/10.1016/j.rbmo.2020.11.011
  • Hernandez-Ledezma JJ, Villanueva C, Sikes JD, Roberts RM. Effects of CZB versus medium 199 and of conditioning culture media with either bovine oviductal epithelial cells or buffalo rat liver cells on the development of bovine zygotes derived by in vitro maturation-in vitro fertilization procedures. Theriogenology. 1993;39(6):1267-77. http://doi.org/10.1016/0093-691X(93)90229-X
    » http://doi.org/10.1016/0093-691X(93)90229-X
  • Herrick JR, Greene-Ermisch AF, Schoolcraft WB, Krisher RL. Exogenous growth factors do not affect the development of individually cultured murine embryos. J Assist Reprod Genet. 2018;35(3):523-31. http://doi.org/10.1007/s10815-017-1103-3 PMid:29270871.
    » http://doi.org/10.1007/s10815-017-1103-3
  • Herrick JR, Lyons SM, Greene AF, Broeckling CD, Schoolcraft WB, Krisher RL. Direct and osmolarity-dependent effects of glycine on preimplantation bovine embryos. PLoS One. 2016;11(7):e0159581. http://doi.org/10.1371/journal.pone.0159581 PMid:27459477.
    » http://doi.org/10.1371/journal.pone.0159581
  • Herrick JR, Rajput S, Pasquariello R, Ermisch A, Santiquet N, Schoolcraft WB, Krisher RL. Developmental and molecular response of bovine embryos to reduced nutrients in vitro. Reprod Fertil. 2020;1(1):51-65. http://doi.org/10.1530/RAF-20-0033 PMid:35128423.
    » http://doi.org/10.1530/RAF-20-0033
  • Huang B, Luo X, Wu R, Qiu L, Lin S, Huang X, Wu J. Evaluation of non-invasive gene detection in preimplantation embryos: a systematic review and meta-analysis. J Assist Reprod Genet. 2023;40(6):1243-53. http://doi.org/10.1007/s10815-023-02760-9 PMid:36952146.
    » http://doi.org/10.1007/s10815-023-02760-9
  • Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105-12. http://doi.org/10.1073/pnas.1907472116 PMid:31235575.
    » http://doi.org/10.1073/pnas.1907472116
  • Isaac E, Berg DK, Pfeffer PL. Using extended growth of cattle embryos in culture to gain insights into bovine developmental events on embryonic days 8 to 10. Theriogenology. 2024;214:10-20. http://doi.org/10.1016/j.theriogenology.2023.10.004 PMid:37837723.
    » http://doi.org/10.1016/j.theriogenology.2023.10.004
  • Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, Scholte Op Reimer Y, Castel G, Bruneau A, Maenhoudt N, Lammers J, Loubersac S, Freour T, Vankelecom H, David L, Rivron N. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5. http://doi.org/10.1038/s41586-021-04267-8 PMid:34856602.
    » http://doi.org/10.1038/s41586-021-04267-8
  • Kane MT. Fatty acids as energy sources for culture of one-cell rabbit ova to viable morulae. Biol Reprod. 1979;20(2):323-32. http://doi.org/10.1095/biolreprod20.2.323 PMid:572233.
    » http://doi.org/10.1095/biolreprod20.2.323
  • Keskintepe L, Burnley CA, Brackett BG. Production of viable bovine blastocysts in defined in vitro conditions. Biol Reprod. 1995;52(6):1410-7. http://doi.org/10.1095/biolreprod52.6.1410 PMid:7632849.
    » http://doi.org/10.1095/biolreprod52.6.1410
  • Kim JH, Funahashi H, Niwa K, Okuda K. Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology. 1993;39(4):875-86. http://doi.org/10.1016/0093-691X(93)90425-5 PMid:16727260.
    » http://doi.org/10.1016/0093-691X(93)90425-5
  • Kim Y, Kim I, Shin K. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Exp Mol Med. 2023;55(10):2127-37. http://doi.org/10.1038/s12276-023-01097-8 PMid:37779144.
    » http://doi.org/10.1038/s12276-023-01097-8
  • Krisher RL, Gibbons JR, Gwazdauskas FC. Effectiveness of Menuzo’s B2 medium with buffalo rat liver cells for development of in vitro matured/in vitro fertilized bovine oocytes. J Assist Reprod Genet. 1998;15(1):50-3. http://doi.org/10.1023/A:1022582422932 PMid:9493067.
    » http://doi.org/10.1023/A:1022582422932
  • Krisher RL, Heuberger AL, Paczkowski M, Stevens J, Pospisil C, Prather RS, Sturmey RG, Herrick JR, Schoolcraft WB. Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology. Reprod Fertil Dev. 2015;27(4):602-20. http://doi.org/10.1071/RD14359 PMid:25763765.
    » http://doi.org/10.1071/RD14359
  • Krisher RL, Lane M, Bavister BD. Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol Reprod. 1999;60(6):1345-52. http://doi.org/10.1095/biolreprod60.6.1345 PMid:10330091.
    » http://doi.org/10.1095/biolreprod60.6.1345
  • Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79(5):311-20. http://doi.org/10.1002/mrd.22037 PMid:22431437.
    » http://doi.org/10.1002/mrd.22037
  • Krisher RL. In vivo and in vitro environmental effects on mammalian oocyte quality. Annu Rev Anim Biosci. 2013;1(1):393-417. http://doi.org/10.1146/annurev-animal-031412-103647 PMid:25387025.
    » http://doi.org/10.1146/annurev-animal-031412-103647
  • Krisher RL. The effect of oocyte quality on development. J Anim Sci. 2004;82 E-Suppl:E14-23. PMid:15471793.
  • Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082 PMid:24233546.
    » http://doi.org/10.1093/molehr/gat082
  • Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11(9):1975-8. http://doi.org/10.1093/oxfordjournals.humrep.a019527 PMid:8921074.
    » http://doi.org/10.1093/oxfordjournals.humrep.a019527
  • Lange-Consiglio A, Lazzari B, Pizzi F, Idda A, Cremonesi F, Capra E. Amniotic microvesicles impact hatching and pregnancy percentages of in vitro bovine embryos and blastocyst microRNA expression versus in vivo controls. Sci Rep. 2020;10(1):501. http://doi.org/10.1038/s41598-019-57060-z PMid:31949175.
    » http://doi.org/10.1038/s41598-019-57060-z
  • Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31(3):189-94. http://doi.org/10.1002/mrd.1080310305 PMid:1554503.
    » http://doi.org/10.1002/mrd.1080310305
  • Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91(2):543-56. http://doi.org/10.1530/jrf.0.0910543 PMid:2013878.
    » http://doi.org/10.1530/jrf.0.0910543
  • Lazzari G, Wrenzycki C, Herrmann D, Duchi R, Kruip T, Niemann H, Galli C. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002;67(3):767-75. http://doi.org/10.1095/biolreprod.102.004481 PMid:12193383.
    » http://doi.org/10.1095/biolreprod.102.004481
  • Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16-42. http://doi.org/10.1093/humupd/dmz033 PMid:31774124.
    » http://doi.org/10.1093/humupd/dmz033
  • Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667-72. http://doi.org/10.1093/molehr/gan065 PMid:19019836.
    » http://doi.org/10.1093/molehr/gan065
  • Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod. 2007;22(12):3047-50. http://doi.org/10.1093/humrep/dem253 PMid:17956925.
    » http://doi.org/10.1093/humrep/dem253
  • Leese HJ. Human embryo culture: back to nature. J Assist Reprod Genet. 1998;15(8):466-8. http://doi.org/10.1023/A:1022526219202 PMid:9785193.
    » http://doi.org/10.1023/A:1022526219202
  • Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845-9. http://doi.org/10.1002/bies.10137 PMid:12210521.
    » http://doi.org/10.1002/bies.10137
  • Li Y, Donnelly CG, Rivera RM. Overgrowth syndrome. Vet Clin North Am Food Anim Pract. 2019;35(2):265-76. http://doi.org/10.1016/j.cvfa.2019.02.007 PMid:31103180.
    » http://doi.org/10.1016/j.cvfa.2019.02.007
  • Li Y, Sena Lopes J, Coy-Fuster P, Rivera RM. Spontaneous and ART-induced large offspring syndrome: similarities and differences in DNA methylome. Epigenetics. 2022;17(11):1477-96. http://doi.org/10.1080/15592294.2022.2067938 PMid:35466858.
    » http://doi.org/10.1080/15592294.2022.2067938
  • Liu Z, Foote RH. Effects of amino acids and alpha-amanitin on bovine embryo development in a simple protein-free medium. Mol Reprod Dev. 1997;46(3):278-85. http://doi.org/10.1002/(SICI)1098-2795(199703)46:3<278::AID-MRD6>3.0.CO;2-M PMid:9041130.
    » http://doi.org/10.1002/(SICI)1098-2795(199703)46:3<278::AID-MRD6>3.0.CO;2-M
  • Liu Z, Foote RH. Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum Reprod. 1995;10(11):2985-91. http://doi.org/10.1093/oxfordjournals.humrep.a135834 PMid:8747059.
    » http://doi.org/10.1093/oxfordjournals.humrep.a135834
  • Liu Z, Foote RH. Sodium chloride, osmolyte, and osmolarity effects on blastocyst formation in bovine embryos produced by in vitro fertilization (IVF) and cultured in simple serum-free media. J Assist Reprod Genet. 1996;13(7):562-8. http://doi.org/10.1007/BF02066609 PMid:8844313.
    » http://doi.org/10.1007/BF02066609
  • Lledo B, Morales R, Antonio Ortiz J, Bernabeu A, Bernabeu R. Noninvasive preimplantation genetic testing using the embryo spent culture medium: an update. Curr Opin Obstet Gynecol. 2023;35(4):294-9. http://doi.org/10.1097/GCO.0000000000000881 PMid:37144571.
    » http://doi.org/10.1097/GCO.0000000000000881
  • Lonergan P, Fair T. Maturation of Oocytes in vitro. Annu Rev Anim Biosci. 2016;4(1):255-68. http://doi.org/10.1146/annurev-animal-022114-110822 PMid:26566159.
    » http://doi.org/10.1146/annurev-animal-022114-110822
  • Lopera-Vasquez R, Hamdi M, Maillo V, Gutierrez-Adan A, Bermejo-Alvarez P, Ramírez MÁ, Yáñez-Mó M, Rizos D. Effect of bovine oviductal extracellular vesicles on embryo development and quality in vitro. Reproduction. 2017;153(4):461-70. http://doi.org/10.1530/REP-16-0384 PMid:28104825.
    » http://doi.org/10.1530/REP-16-0384
  • Machtinger R, Racowsky C. Culture systems: single step. Methods Mol Biol. 2012;912:199-209. http://doi.org/10.1007/978-1-61779-971-6_12 PMid:22829376.
    » http://doi.org/10.1007/978-1-61779-971-6_12
  • Macklon NS, Pieters MH, Hassan MA, Jeucken PH, Eijkemans MJ, Fauser BC. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17(10):2700-5. http://doi.org/10.1093/humrep/17.10.2700 PMid:12351551.
    » http://doi.org/10.1093/humrep/17.10.2700
  • Marei WFA, Leroy JLMR. Cellular stress responses in oocytes: molecular changes and clinical implications. Adv Exp Med Biol. 2022;1387:171-89. http://doi.org/10.1007/5584_2021_690 PMid:34921349.
    » http://doi.org/10.1007/5584_2021_690
  • Marin D, Scott RT Jr. Extracellular vesicles: a promising tool for assessment of embryonic competence. Curr Opin Obstet Gynecol. 2018;30(3):171-8. http://doi.org/10.1097/GCO.0000000000000458 PMid:29664793.
    » http://doi.org/10.1097/GCO.0000000000000458
  • Matsuyama K, Miyakoshi H, Fukui Y. Effect of glucose levels during the in vitro culture in synthetic oviduct fluid medium on in vitro development of bovine oocytes matured and fertilized in vitro. Theriogenology. 1993;40(3):595-605. http://doi.org/10.1016/0093-691X(93)90412-X PMid:16727342.
    » http://doi.org/10.1016/0093-691X(93)90412-X
  • Menjivar NG, Gad A, Gebremedhn S, Ghosh S, Tesfaye D. Granulosa cell-derived extracellular vesicles mitigate the detrimental impact of thermal stress on bovine oocytes and embryos. Front Cell Dev Biol. 2023;11:1142629. http://doi.org/10.3389/fcell.2023.1142629 PMid:37091982.
    » http://doi.org/10.3389/fcell.2023.1142629
  • Ming H, Zhang M, Rajput S, Logsdon D, Zhu L, Schoolcraft WB, Krisher R, Jiang Z, Yuan Y. In vitro culture alters cell lineage composition and cellular metabolism of bovine blastocyst. bioRxiv. 2023. http://doi.org/10.1101/2023.06.09.544379 PMid:37333292.
    » http://doi.org/10.1101/2023.06.09.544379
  • Moreira F, Paula-Lopes FF, Hansen PJ, Badinga L, Thatcher WW. Effects of growth hormone and insulin-like growth factor-I on development of in vitro derived bovine embryos. Theriogenology. 2002;57(2):895-907. http://doi.org/10.1016/S0093-691X(01)00694-X PMid:11991392.
    » http://doi.org/10.1016/S0093-691X(01)00694-X
  • Oliveira CS, Camargo LSA, da Silva MVGB, Saraiva NZ, Quintão CC, Machado MA. Embryo biopsies for genomic selection in tropical dairy cattle. Anim Reprod. 2023;20(2):e20230064. http://doi.org/10.1590/1984-3143-ar2023-0064 PMid:37547565.
    » http://doi.org/10.1590/1984-3143-ar2023-0064
  • Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction. 2014;148(4):429-39. http://doi.org/10.1530/REP-14-0015 PMid:25062802.
    » http://doi.org/10.1530/REP-14-0015
  • Pasquariello R, Zhang M, Herrick JR, Ermisch A, Becker J, Schoolcraft WB, Barfield JP, Yuan Y, Krisher RL. Lipid enriched reduced nutrient culture medium improves bovine blastocyst formation. Reprod Fertil. 2023;4(4):e230057. http://doi.org/10.1530/RAF-23-0057 PMid:37971749.
    » http://doi.org/10.1530/RAF-23-0057
  • Petters RM, Johnson BH, Reed ML, Archibong AE. Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J Reprod Fertil. 1990;89(1):269-75. http://doi.org/10.1530/jrf.0.0890269 PMid:2374120.
    » http://doi.org/10.1530/jrf.0.0890269
  • Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, Leese HJ, Harris SE. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16(8):557-69. http://doi.org/10.1093/molehr/gaq040 PMid:20571076.
    » http://doi.org/10.1093/molehr/gaq040
  • Pinzón-Arteaga CA, Wang Y, Wei Y, Ribeiro Orsi AE, Li L, Scatolin G, Liu L, Sakurai M, Ye J, Ming H, Yu L, Li B, Jiang Z, Wu J. Bovine blastocyst-like structures derived from stem cell cultures. Cell Stem Cell. 2023;30(5):611-616.e7. http://doi.org/10.1016/j.stem.2023.04.003 PMid:37146582.
    » http://doi.org/10.1016/j.stem.2023.04.003
  • Quinn P. Culture systems: sequential. Methods Mol Biol. 2012;912:211-30. http://doi.org/10.1007/978-1-61779-971-6_13 PMid:22829377.
    » http://doi.org/10.1007/978-1-61779-971-6_13
  • Renard JP, Philippon A, Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J Reprod Fertil. 1980;58(1):161-4. http://doi.org/10.1530/jrf.0.0580161 PMid:7359473.
    » http://doi.org/10.1530/jrf.0.0580161
  • Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ, Dessy F. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil. 1995;105(1):91-8. http://doi.org/10.1530/jrf.0.1050091 PMid:7490721.
    » http://doi.org/10.1530/jrf.0.1050091
  • Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev. 1992a;4(5):547-57. http://doi.org/10.1071/RD9920547 PMid:1299829.
    » http://doi.org/10.1071/RD9920547
  • Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the metabolism of glucose and glutamine by cattle embryos produced and co-cultured in vitro. J Reprod Fertil. 1992b;95(2):585-95. http://doi.org/10.1530/jrf.0.0950585 PMid:1518013.
    » http://doi.org/10.1530/jrf.0.0950585
  • Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev. 2019;32(2):65-81. http://doi.org/10.1071/RD19276 PMid:32188559.
    » http://doi.org/10.1071/RD19276
  • Rizos D, Gutiérrez-Adán A, Pérez-Garnelo S, De La Fuente J, Boland MP, Lonergan P. Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol Reprod. 2003;68(1):236-43. http://doi.org/10.1095/biolreprod.102.007799 PMid:12493719.
    » http://doi.org/10.1095/biolreprod.102.007799
  • Rosenkrans CF Jr, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7. http://doi.org/10.2527/1994.722434x PMid:8157527.
    » http://doi.org/10.2527/1994.722434x
  • Rosenkrans CF Jr, Zeng GQ, MCNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod. 1993;49(3):459-62. http://doi.org/10.1095/biolreprod49.3.459 PMid:8399836.
    » http://doi.org/10.1095/biolreprod49.3.459
  • Roy TK, Brandi S, Tappe NM, Bradley CK, Vom E, Henderson C, Lewis C, Battista K, Hobbs B, Hobbs S, Syer J, Lanyon SR, Dopheide SM, Peura TT, McArthur SJ, Bowman MC, Stojanov T. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Hum Reprod. 2014;29(11):2431-8. http://doi.org/10.1093/humrep/deu214 PMid:25164022.
    » http://doi.org/10.1093/humrep/deu214
  • Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1-13. http://doi.org/10.1016/j.ajog.2020.04.035 PMid:32470458.
    » http://doi.org/10.1016/j.ajog.2020.04.035
  • Rubio C, Rienzi L, Navarro-Sánchez L, Cimadomo D, García-Pascual CM, Albricci L, Soscia D, Valbuena D, Capalbo A, Ubaldi F, Simón C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510-9. http://doi.org/10.1016/j.fertnstert.2019.04.038 PMid:31200971.
    » http://doi.org/10.1016/j.fertnstert.2019.04.038
  • Salih M, Austin C, Warty RR, Tiktin C, Rolnik DL, Momeni M, Rezatofighi H, Reddy S, Smith V, Vollenhoven B, Horta F. Embryo selection through artificial intelligence versus embryologists: a systematic review. Hum Reprod Open. 2023;2023(3):hoad031. http://doi.org/10.1093/hropen/hoad031 PMid:37588797.
    » http://doi.org/10.1093/hropen/hoad031
  • Salilew-Wondim D, Gebremedhn S, Hoelker M, Tholen E, Hailay T, Tesfaye D. The role of microRNAs in mammalian fertility: from gametogenesis to embryo implantation. Int J Mol Sci. 2020;21(2):585. http://doi.org/10.3390/ijms21020585 PMid:31963271.
    » http://doi.org/10.3390/ijms21020585
  • Sang L, Ortiz W, Xiao Y, Estrada-Cortes E, Jannaman EA, Hansen PJ. Actions of putative embryokines on development of the preimplantation bovine embryo to the blastocyst stage. J Dairy Sci. 2020;103(12):11930-44. http://doi.org/10.3168/jds.2020-19068 PMid:33041033.
    » http://doi.org/10.3168/jds.2020-19068
  • Santos ECD, Fonseca AMD Jr, Lima CB, Ispada J, Silva JVAD, Milazzotto MP. Less is more: reduced nutrient concentration during in vitro culture improves embryo production rates and morphophysiology of bovine embryos. Theriogenology. 2021;173:37-47. http://doi.org/10.1016/j.theriogenology.2021.07.010 PMid:34329894.
    » http://doi.org/10.1016/j.theriogenology.2021.07.010
  • Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A, Bolton V, Fogarty NNM, Campbell A, Devito L, Ilic D, Khalaf Y, Niakan KK, Fishel S, Zernicka-Goetz M. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol. 2016;18(6):700-8. http://doi.org/10.1038/ncb3347 PMid:27144686.
    » http://doi.org/10.1038/ncb3347
  • Silvestri G, Canedo-Ribeiro C, Serrano-Albal M, Labrecque R, Blondin P, Larmer SG, Marras G, Tutt DAR, Handyside AH, Farré M, Sinclair KD, Griffin DK. Preimplantation genetic testing for aneuploidy improves live birth rates with in vitro produced bovine embryos: a blind retrospective study. Cells. 2021;10(9):2284. http://doi.org/10.3390/cells10092284 PMid:34571932.
    » http://doi.org/10.3390/cells10092284
  • Siqueira LG, Hansen PJ. Sex differences in response of the bovine embryo to colony-stimulating factor 2. Reproduction. 2016;152(6):645-54. http://doi.org/10.1530/REP-16-0336 PMid:27601717.
    » http://doi.org/10.1530/REP-16-0336
  • Sirard MA. 40 years of bovine IVF in the new genomic selection context. Reproduction. 2018;156(1):R1-7. http://doi.org/10.1530/REP-18-0008 PMid:29636405.
    » http://doi.org/10.1530/REP-18-0008
  • Smith DG, Sturmey RG. Parallels between embryo and cancer cell metabolism. Biochem Soc Trans. 2013;41(2):664-9. http://doi.org/10.1042/BST20120352 PMid:23514173.
    » http://doi.org/10.1042/BST20120352
  • Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod. 1999;61(3):731-40. http://doi.org/10.1095/biolreprod61.3.731 PMid:10456851.
    » http://doi.org/10.1095/biolreprod61.3.731
  • Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction. 2006;132(6):829-37. http://doi.org/10.1530/REP-06-0073 PMid:17127743.
    » http://doi.org/10.1530/REP-06-0073
  • Sturmey RG, Hawkhead JA, Barker EA, Leese HJ. DNA damage and metabolic activity in the preimplantation embryo. Hum Reprod. 2009a;24(1):81-91. http://doi.org/10.1093/humrep/den346 PMid:18835872.
    » http://doi.org/10.1093/humrep/den346
  • Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009b;44(Suppl 3):50-8. http://doi.org/10.1111/j.1439-0531.2009.01402.x PMid:19660080.
    » http://doi.org/10.1111/j.1439-0531.2009.01402.x
  • Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63(4):353-7. http://doi.org/10.1262/jrd.2017-041 PMid:28552887.
    » http://doi.org/10.1262/jrd.2017-041
  • Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology. 2012;77(8):1632-41. http://doi.org/10.1016/j.theriogenology.2011.12.008 PMid:22365693.
    » http://doi.org/10.1016/j.theriogenology.2011.12.008
  • Swain JE, Carrell D, Cobo A, Meseguer M, Rubio C, Smith GD. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105(3):571-87. http://doi.org/10.1016/j.fertnstert.2016.01.035 PMid:26851765.
    » http://doi.org/10.1016/j.fertnstert.2016.01.035
  • Swain JE. Controversies in ART: considerations and risks for uninterrupted embryo culture. Reprod Biomed Online. 2019;39(1):19-26. http://doi.org/10.1016/j.rbmo.2019.02.009 PMid:31109893.
    » http://doi.org/10.1016/j.rbmo.2019.02.009
  • Takahashi Y, First NL. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37(5):963-78. http://doi.org/10.1016/0093-691X(92)90096-A PMid:16727096.
    » http://doi.org/10.1016/0093-691X(92)90096-A
  • Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 1972;30(3):493-7. http://doi.org/10.1530/jrf.0.0300493 PMid:4672493.
    » http://doi.org/10.1530/jrf.0.0300493
  • Tesfaye D, Hailay T, Salilew-Wondim D, Hoelker M, Bitseha S, Gebremedhn S. Extracellular vesicle mediated molecular signaling in ovarian follicle: Implication for oocyte developmental competence. Theriogenology. 2020;150:70-74. http://doi.org/10.1016/j.theriogenology.2020.01.075 PMID: 32088041.
    » http://doi.org/10.1016/j.theriogenology.2020.01.075
  • Thomas WK, Seidel GE Jr. Effects of cumulus cells on culture of bovine embryos derived from oocytes matured and fertilized in vitro. J Anim Sci. 1993;71(9):2506-10. http://doi.org/10.2527/1993.7192506x PMid:8407663.
    » http://doi.org/10.2527/1993.7192506x
  • Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89(2):573-8. http://doi.org/10.1530/jrf.0.0890573 PMid:2401984.
    » http://doi.org/10.1530/jrf.0.0890573
  • Thompson JG, Simpson AC, Pugh PA, Tervit HR. Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol Reprod Dev. 1992;31(4):253-7. http://doi.org/10.1002/mrd.1080310405 PMid:1571159.
    » http://doi.org/10.1002/mrd.1080310405
  • Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106(2):299-306. http://doi.org/10.1530/jrf.0.1060299 PMid:8699414.
    » http://doi.org/10.1530/jrf.0.1060299
  • Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000;118(1):47-55. http://doi.org/10.1530/reprod/118.1.47 PMid:10793625.
    » http://doi.org/10.1530/reprod/118.1.47
  • Turner KJ, Silvestri G, Black DH, Dobson G, Smith C, Handyside AH, Sinclair KD, Griffin DK. Karyomapping for simultaneous genomic evaluation and aneuploidy screening of preimplantation bovine embryos: the first live-born calves. Theriogenology. 2019;125:249-58. http://doi.org/10.1016/j.theriogenology.2018.11.014 PMid:30476758.
    » http://doi.org/10.1016/j.theriogenology.2018.11.014
  • Vansteenbrugge A, Van Langendonckt A, Scutenaire C, Massip A, Dessy F. In vitro development of bovine embryos in Buffalo rat liver- or bovine oviduct-conditioned medium. Theriogenology. 1994;42(6):931-40. http://doi.org/10.1016/0093-691X(94)90116-Z PMid:16727598.
    » http://doi.org/10.1016/0093-691X(94)90116-Z
  • VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, Miller A, Picou A, Murphy AP, Perugini M. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. http://doi.org/10.1093/humrep/deaa013 PMid:32240301.
    » http://doi.org/10.1093/humrep/deaa013
  • Viana JHM. 2022 statistics of embryo production and transfer in domestic farm animals: the main trends for the world embryo industry still stand. Embryo Technology Newsletter. 2023;41(4):20-38.
  • Voelkel SA, Hu YX. Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems. Theriogenology. 1992;37(5):1117-31. http://doi.org/10.1016/0093-691X(92)90109-5 PMid:16727109.
    » http://doi.org/10.1016/0093-691X(92)90109-5
  • Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2-22. http://doi.org/10.1093/humupd/dmv034 PMid:26207016.
    » http://doi.org/10.1093/humupd/dmv034
  • Wang S, Chen L, Fang J, Sun H. A compact, high-throughput semi-automated embryo vitrification system based on hydrogel. Reprod Biomed Online. 2024;48(5):103769. http://doi.org/10.1016/j.rbmo.2023.103769 PMid:38492415.
    » http://doi.org/10.1016/j.rbmo.2023.103769
  • Whitten WK, Biggers JD. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil. 1968;17(2):399-401. http://doi.org/10.1530/jrf.0.0170399 PMid:5749384.
    » http://doi.org/10.1530/jrf.0.0170399
  • Yu L, Logsdon D, Pinzon-Arteaga CA, Duan J, Ezashi T, Wei Y, Ribeiro Orsi AE, Oura S, Liu L, Wang L, Liu K, Ding X, Zhan L, Zhang J, Nahar A, Stobbe C, Katz-Jaffe M, Schoolcraft WB, Tan T, Hon GC, Yuan Y, Wu J. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell. 2023;30(9):1246-1261.e9. http://doi.org/10.1016/j.stem.2023.08.002 PMid:37683605.
    » http://doi.org/10.1016/j.stem.2023.08.002

Publication Dates

  • Publication in this collection
    23 Sept 2024
  • Date of issue
    2024

History

  • Received
    21 Apr 2024
  • Accepted
    20 Aug 2024
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com