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Abstract 

In vitro-produced embryos exhibit lower viability compared to their in vivo counterparts. Mammalian 
preimplantation embryos have the ability to reach the blastocyst stage in diverse culture media, 
showcasing considerable metabolic adaptability, which complicates the identification of optimal 
developmental conditions. Despite embryos successfully progressing to the blastocyst stage, adaptation 
to suboptimal culture environments may jeopardize blastocyst viability, cryotolerance, and implantation 
potential. Enhancing our capacity to support preimplantation embryonic development in vitro requires a 
deeper understanding of fundamental embryo physiology, including preferred metabolic substrates and 
pathways utilized by high-quality embryos. Armed with this knowledge, it becomes achievable to optimize 
culture conditions to support normal, in vivo-like embryo physiology, mitigate adaptive stress, and 
enhance viability. The objective of this review is to summarize the evolution of culture media for bovine 
embryos, highlighting significant milestones and remaining challenges. 
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Introduction 

While advancements have been made in bovine oocyte maturation and embryo culture 
over the past decades, in vitro embryo technologies capable of producing embryos with similar 
viability as those developing in vivo have remained elusive. There is still much to unravel 
regarding the in vitro requirements of oocytes and embryos to facilitate successful 
development and the production of healthy offspring. Exposure of embryos to suboptimal 
culture conditions, resulting in altered embryo metabolism, not only leads to decreased 
blastocyst formation and reduced embryo viability, but also negatively impacts the 
maintenance of pregnancy, fetal growth, and health of offspring (Farin et al., 2001). The 
metabolic adaptability of embryos is remarkable, but it comes at considerable cost. Therefore, 
to mitigate the adaptive stress leading to poor embryo quality, diminished pregnancy potential, 
and adverse health outcomes in future offspring, it is imperative that embryo culture 
conditions support normal embryo physiology. 

Oocyte maturation in vitro is a critical component of in vitro embryo production, but it will 
not be covered here. Development of maturation medium that better supports oocyte 
developmental competence is worthy of an independent review. The reader is directed to other 
manuscripts for treatment of this topic (Krisher, 2004, 2013; Labrecque and Sirard, 2014; 
Dumesic et al., 2015; Lonergan and Fair, 2016; Aguila et al., 2020; Marei and Leroy, 2022; Fair 
and Lonergan, 2023). 
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Commercial application of bovine in vitro embryo production 

Each year, the Data Retrieval Committee of the International Embryo Technology Society 
(IETS) gathers, organizes, and publishes statistics describing the embryo industry in farm 
animal species. The most recent data available for the calendar year 2022 show that the global 
bovine embryo industry continues to grow (Viana, 2023). However, the actual growth rate 
between 2021 and 2022 (5.5%) was decreased compared to that observed between 2020 and 
2021 (25.6%). For in vitro produced (IVP) embryos specifically, from 2020 to 2021 the number 
of embryos produced grew by 31.5%, whereas between 2021 and 2022, this growth rate 
dropped to 6.3%. Nonetheless, almost 1.5 million bovine embryos were transferred globally in 
2022. Cryopreservation is also a growing trend in cattle embryo technologies, with almost half 
of all cattle embryo transfers utilizing frozen embryos. In vivo derived embryos are more 
commonly cryopreserved (65%) than IVP embryos (44%), due in part to reduced cryotolerance 
of IVP embryos particularly when slow freezing/direct transfer is used versus vitrification. This 
difference in cryotolerance has implications for how or even if IVP embryos are used for export. 
In general, embryo technologies are utilized in 28% of countries worldwide, with 95% of the 
reported embryos being specifically cattle embryos. Notably, more than 80% of all bovine 
embryos produced globally are in vitro derived, and in vitro derived embryos continue to drive 
growth in commercial embryo technologies. Based on the sales of embryo transfer materials, 
the data retrieval committee suggests that these numbers are in fact an underestimate and 
that the actual number of embryos produced in vitro in 2022 was likely more than 2 million 
globally. Indeed, for the last decade in vitro technologies have been supplanting superovulation 
and collection of in vivo embryos as the preferred method for cattle embryo production. In 
2022, seven out of the top 10 embryo producing countries reported a higher number of IVP 
embryos compared to in vivo derived (IVD) embryos. 

What accounts for the rapid increase in the adoption of in vitro embryo technologies? There 
is mounting pressure on animal agriculture to produce more protein, both milk and meat, for a 
growing world population. At the same time, producers must be mindful of sustainability goals 
and expectations from consumers. Embryo technologies can help to achieve both objectives. 
Genetically superior animals, identified by genotyping, are more efficient in their production of 
protein. The use of semen in conventional AI allows bulls of high genetic merit to contribute more 
to the next generation of production animals, but male genetics are only half the equation. Using 
embryos accounts for both male and female genetics, making genetic progress much faster 
(Sirard, 2018). A valuable female can produce significantly more embryos over her lifetime when 
ovum pick up and in vitro fertilization are used to produce embryos, versus superovulation and 
embryo flushing. Oocytes can even be collected from prepubertal and pregnant females. 
Importantly, using ovum pick up in calves via laparoscopy and in pre-pubertal heifers can 
significantly shorten generation interval, resulting in even faster genetic gain. This approach 
enables the most genetically superior animals to make the greatest contribution to the 
succeeding generation, leading to swift improvements in production efficiency and ultimately 
enhancing the sustainability of animal agriculture overall. Currently, the higher cost of embryos 
relative to semen is the main roadblock to even greater implementation of embryo technologies, 
given that pregnancy rates are roughly equal between the two technologies. Efforts to automate 
embryo production to drive down costs while increasing efficiency, quality, and scale are 
currently being investigated. Relevant to both human and bovine embryo technology, semi-
automated vitrification systems have been reported and used in clinical trials (Wang et al., 2024; 
Roy et al., 2014; Hajek et al., 2021; Barberet et al., 2022). 

Challenges of in vitro fertilization technology 

In vitro embryo production, despite its widespread commercial application, remains an 
inefficient process. This inefficiency significantly contributes to the high cost per embryo, 
limiting adoption for many producers. The largest inefficiency in the system is the loss between 
oocytes recovered at ovum pick up and transferrable quality embryos produced following in 
vitro fertilization (IVF). Only about 25% of all oocytes collected become good quality embryos, 
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and this number is even lower if sexed semen is used for fertilization. Another large loss occurs 
following embryo transfer, as less than 50% of good quality embryos result in pregnancy. Early 
embryonic losses before day 60, as well as additional losses to abortion or stillborn calves, 
contribute as well. Overall, fewer than 10 calves are born for every 100 viable oocytes collected. 
Improvement in the system would mean that oocytes could be collected from fewer, more 
genetically valuable donors, requiring less farm and laboratory labor to reduce cost and 
advance genetic gain (Figure 1). However, despite concentrated efforts to improve embryo 
culture media over the last 20 years, we have seen only minimal improvement in embryo 
production efficiencies and embryo quality. 

 
Figure 1. A better understanding of embryo biology informs the development of more effective culture 
media. Improved media produce embryos that are more in vivo-like, which further advance our 
understanding of embryo biology, improve cryotolerance and the outcome of embryo transfer, and 
ultimately result in increased genetic gain, increased production value and producer profit, and a more 
sustainable industry. 

Embryo metabolism and the evolution of culture media 

The identification of a suitable combination of nutrients, including appropriate 
concentrations and timing of provision, was pivotal to the formulation of successful embryo 
culture media. The pioneering investigations into embryo culture utilized murine embryos, 
which largely rely on carbohydrate metabolism to support development (Brinster, 1965; 
Biggers et al., 1967). Embryos at the early cleavage stages primarily utilize pyruvate and lactate, 
whereas in later stages, there is a transition to reliance on glucose metabolism through 
glycolysis to support formation and expansion of the blastocyst (Gardner and Leese, 1987; 
Gardner et al., 2001). Murine embryos could develop to the blastocyst stage in simple salt 
solutions with glucose, lactate, and pyruvate as the only energy sources, usually in the presence 
of albumin (Whitten and Biggers, 1968). Although the general pattern of carbohydrate 
metabolism is similar for bovine embryos, with the early cleavage stages primarily reliant on 
pyruvate oxidation and glycolysis becoming the dominant pathway after the morula stage 
(Rieger et al., 1992a, 1992b; Kim et al., 1993; Thompson et al., 1996; Krisher et al., 1999), early 
culture media developed for the mouse were not effective for culturing bovine embryos. 
Therefore, the first embryo culture systems for bovine embryos utilized media designed for 
somatic cell culture and often relied heavily on support cells in a co-culture environment. Co-
culture was able to overcome the 8-16 cell block in bovine embryos, as well as improve the 
quantity and quality of blastocysts produced (Ellington et al., 1990; Goto et al., 1992; Voelkel 
and Hu, 1992; Thomas and Seidel, 1993; Abe and Hoshi, 1997; Krisher et al., 1998). Similar 
positive effects were observed using cell culture conditioned medium (Eyestone et al., 1991; 
Hernandez-Ledezma et al., 1993; Vansteenbrugge et al., 1994). It was hypothesized that 
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somatic cells removed inhibitory substances from the culture media, which at that time was 
sub-optimal. However, the complexity and undefined nature of co-culture and conditioned 
media systems made it virtually impossible to study the metabolic requirements of 
preimplantation bovine embryos in vitro. 

Although many media have been independently developed, three media are the backbone 
formulations of most bovine culture media used today: synthetic oviductal fluid (SOF), Charles 
Rosenkrans medium with amino acids (CR1AA), and potassium simplex optimized medium 
(KSOM), each developed using slightly different approaches. Synthetic oviductal fluid has been 
a frequently utilized medium for culturing bovine embryos in vitro for more than 20 years. 
Initially, SOF was developed through the biochemical analysis of ovine oviductal fluid 
(Tervit et al., 1972). The strategy of mimicking the in vivo environment has been described as 
the ‘back to nature’ approach (Leese, 1998). Another extension of mimicking the in vivo 
environment was the concept of sequential media specifically devised to cater to the evolving 
needs of the embryo during its developmental journey, with one medium for early cleavage 
stage embryos and another for compaction and blastocyst formation (Gardner and Lane, 
1997). A variety of single-step and sequential versions of SOF have been developed, which 
include the supplementation of amino acids (Gardner et al., 1994; Steeves and Gardner, 1999), 
incorporation of citrate (Keskintepe et al., 1995), the exclusion of glucose (Takahashi and First, 
1992), and the inclusion of EDTA for the first 72 hours of the culture period (Gardner et al., 
2000). One of the other primary strategies for culture medium design is to provide the embryo 
with all the nutrients it may need in a single medium, that may or may not be refreshed during 
the culture period. The rationale behind this strategy is to let the embryo select which nutrients 
it utilizes for development from those provided and is often described as ‘let the embryo 
choose’ (Biggers, 1998; Biggers and Racowsky, 2002). Empirical evaluations of the effects of 
specific carbohydrates, amino acids, and vitamins led to the formulation of CR1AA 
(Rosenkrans et al., 1993; Rosenkrans and First, 1994). A systematic approach known as simplex 
optimization was used to develop KSOM (potassium simplex optimized medium), originally 
designed to overcome the 2-cell block in mouse embryos and allow development to the 
blastocyst stage (Lawitts and Biggers, 1991, 1992; Erbach et al., 1994). This medium was quickly 
adapted for bovine embryo culture (Liu and Foote, 1995, 1996, 1997; Moreira et al., 2002). 
There are advantages and disadvantages to each type of system, and one system has not 
proven to be superior to the other (Macklon et al., 2002; Biggers and Summers, 2008; 
Machtinger and Racowsky, 2012; Quinn, 2012; Swain et al., 2016; Swain, 2019). Typically, SOF is 
used as a sequential medium (Matsuyama et al., 1993; Gardner et al., 2000; Gandhi et al., 
2000), whereas CR1AA and KSOM are often used as a single step medium. Use of these two 
different systems has been debated for more than ten years, and choice is often dictated by 
what is currently in fashion, or what is most convenient for laboratory workflow. 

Once media were available that would effectively support the development of bovine 
blastocysts in vitro, an increased emphasis was placed on not just producing blastocysts, but 
on the quality/viability of those blastocysts and their potential to produce healthy offspring. 
The conditions under which embryos are cultured impacts their ability to metabolize glucose 
(Du and Wales, 1993a, b; Rieger et al., 1995). Because the uptake and utilization of glucose are 
intricately linked to the developmental competency of embryos and likely mirror the energy 
needs of the embryo (Renard et al., 1980; Gardner and Leese, 1987), culture media choice and 
optimal laboratory practices are critical to produce high quality, viable blastocysts. Embryos 
cultured in oviductal cell-conditioned medium exhibited heightened glucose metabolism rates, 
but lower cell counts and delayed development, indicating that elevated glucose metabolism 
rates might correlate with diminished embryo viability (Rieger et al., 1995). An increased rate 
of glucose metabolism at the blastocyst stage has also been associated with reduced embryo 
viability in mice (Lane and Gardner, 1996). 

Once metabolic changes were linked to viability the next step in the evolution of culture 
media was to provide a specific set of substrates to modulate the metabolism of in vitro-
produced embryos to closely emulate their more viable counterparts produced in vivo. One 
such strategy is based on the “Quiet Embryo Hypothesis”, which states that viable embryos, 
exhibit reduced oxidative phosphorylation activity and consequently consume less oxygen 
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because they require less energy to repair stress-induced damage (Leese, 2002; 
Baumann et al., 2007; Leese et al., 2007, 2008). Another hypothesis suggests that embryo 
metabolism might resemble that observed in rapidly proliferating cancer cells, a metabolic 
phenomenon referred to as the Warburg effect (Krisher and Prather, 2012; Smith and Sturmey, 
2013). In this model, the most viable embryo is not necessarily the one exhibiting the lowest 
activity within a particular pathway, but rather the embryo metabolizing specific substrates 
through the most suitable pathway(s). As the focus has shifted to an evaluation of overall 
embryo metabolic activity thru multiple pathways, the importance of fatty acids and amino 
acids as substrates has become apparent. 

Somewhat unexpectedly, sheep, pig, and cow embryos can thrive successfully with or without 
glucose in the culture medium (Tervit et al., 1972; Petters et al., 1990; Takahashi and First, 1992; 
Thompson et al., 1992; Rosenkrans and First, 1994; Steeves and Gardner, 1999; Gandhi et al., 
2000). It is evident that embryos in these species are capable of utilizing endogenous fatty acids 
and/or amino acids for energy production even in the absence of carbohydrates. Mammalian 
embryos utilize fatty acids as an energy source (Ferguson and Leese, 2006; Sturmey et al., 2006, 
2009b), with Kane (1979) being the first to identify the significance of fatty acids in this context. 
Interestingly, it appears that fatty acid oxidation in the oocyte and early embryo is closely 
intertwined with glucose metabolism, likely operating in an interdependent and compensatory 
manner (Sutton-McDowall et al., 2012; Paczkowski et al., 2014; Herrick et al., 2020). Amino acids 
also contribute to preimplantation embryo metabolism. The uptake and synthesis of amino acids 
have been observed in embryos across various species and have been linked to outcomes such 
as DNA damage, ploidy, embryo sex, and quality (Sturmey et al., 2009a; Picton et al., 2010). 
Supplementation with a combination of essential and non-essential amino acids in the absence 
of coculture was found to be advantageous for embryo development (Rosenkrans and First, 
1994; Gardner et al., 1994; Steeves and Gardner, 1999), leading to an increase in the cell number 
of blastocysts cultured in vitro. 

The effects of metabolic activity on the reduction-oxidation (REDOX) potential of the cell are 
now known to be as important, if not more so, than simple ATP production. Throughout the 
preimplantation phase, preserving a normal redox state is crucial for embryo development 
(Harvey et al., 2002). The cellular redox state is chiefly influenced by the ratios of key redox 
couples: NAD+:NADH (largely influenced by lactate dehydrogenase activity) and NADP+:NADPH 
(partially regulated by the pentose phosphate pathway (PPP)), along with the intracellular 
balance of reduced glutathione (GSH) to oxidized glutathione (GSSG). These nicotinamide 
molecules serve as vital cofactors for numerous metabolic reactions or act as their end-
products. Thus, fostering optimal embryo metabolism in culture is imperative for preserving 
redox equilibrium and ensuring developmental competency. 

Oxygen 

Although the culture medium plays a significant role in the quantity and quality of embryos 
produced, there are many other factors of the larger culture environment, such as air quality, 
plastics, oil, etc., that influence outcomes (Wale and Gardner, 2016). One of the most critical of 
these factors seems to be oxygen in the atmosphere within the incubator. In vivo, oxygen 
tension in the oviduct and uterus ranges from 1.5% to 8.7%, and is 5.3% at the time of 
blastocyst formation in hamsters and rabbits (Fischer and Bavister, 1993). Reduced 
concentrations of oxygen (<10%) relative to normal, atmospheric levels (20%) improve embryo 
development and viability in all species where it has been evaluated, including cattle 
(Thompson et al., 1990, 2000). As oxygen is necessary for mitochondrial ATP production, the 
benefits of reduced oxygen are associated with changes in metabolism, particularly an increase 
in glucose consumption and production of ATP via glycolysis (Thompson et al., 1996, 2000). 
However, oxygen can also influence the expression of genes not directly associated with 
metabolic activity, including anaphase promoting complex and myotrophin, suggesting 
beneficial effects of oxygen on other aspects of embryo physiology (Harvey et al., 2007). 
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Growth factors 

The fluids of the reproductive tract are known to contain a variety of growth factors, 
cytokines, and other cell signaling molecules, collectively known as embryokines, that influence 
embryo development and differentiation (Hansen and Tribulo, 2019). However, most culture 
media do not contain these embryokines. One reason for this discrepancy is the difficulty in 
studying the effects of growth factors. There are a large number of candidates whose effects 
can be inconsistent and dependent on the concentration used, the time of culture when they 
are included, and the composition of the medium (Herrick et al., 2018; Hansen and Tribulo, 
2019; Amaral et al., 2022). In addition, the effects of these embryokines are often very subtle, 
difficult to interpret, and/or only apparent post-transfer (Hansen and Tribulo, 2019; Sang et al., 
2020). For example, the inclusion of interleukin-8 (IL-8) in the culture medium increases the 
proportion of embryos that hatch but decreases the number of cells allocated to the inner cell 
mass (Sang et al., 2020). The effects of colony stimulating factor (CSF) 2 are dependent on the 
sex of the embryo, further complicating the formulation of media for typical (non-sorted 
sperm) IVF-produced embryos (Siqueira and Hansen, 2016). Although the addition of 
embryokines to culture media is not well understood, embryos do secrete them into the 
culture medium and these secreted embryokines are often credited with enhancing 
development of embryos cultured in groups versus individually. 

Fetal bovine serum 

Fetal bovine serum remains a common supplement used to compensate for suboptimal 
embryo culture environments. Serum can buffer stressors and insults in the embryo culture 
system that may inhibit embryo development. Although the inclusion of serum in the culture 
medium can enhance development to the blastocyst stage, it may also diminish the ability of 
resulting embryos to be cryopreserved, and to establish and maintain pregnancy (Rizos et al., 
2003; Amaral et al., 2022). Inclusion of serum in culture medium has also been implicated in 
large, or abnormal, offspring syndrome, although a direct causal link has not been confirmed 
(Lazzari et al., 2002; Hansen, 2020) nor is the timing of exposure or the threshold concentration 
of FBS leading to these effects understood. This congenital overgrowth syndrome is observed 
in ruminants born through assisted reproduction and characterized by significant 
dysregulation of the epigenome and transcriptome, excessive somatic growth, and various 
developmental anomalies such as enlarged tongues, umbilical hernias, muscle and skeletal 
deformities, abnormal organ growth, and aberrant placental development (Li et al., 2019, 2022; 
Rivera, 2019). The frequency of this syndrome may vary depending on the embryo culture 
system utilized. Although there are no good data on frequency of occurrence in the ET industry, 
rough estimates are in the 3-5% range. For producers using embryo transfer of in vitro 
produced bovine embryos on a large scale, this is a significant drawback and has been 
detrimental to the acceptance of this technology. 

Development of next generation embryo culture media 

Investigations in our laboratory employed a gas chromatography-mass spectrometry 
platform to examine the nutrient composition of media following culture of individual embryos 
to better understand the metabolic profile of embryos in vitro. These metabolomic analyses 
suggested that embryos utilize only a fraction of the nutrients provided to them in the culture 
environment (Krisher et al., 2015; Herrick et al., 2016). The minimal amount of nutrients that are 
consumed compared to the abundance of nutrients available in the culture system prompted us 
to hypothesize that nutrient concentrations in the culture medium could be substantially 
decreased while still sustaining embryo development. In the mouse, nutrient concentrations 
(carbohydrates, amino acids, and vitamins) during the culture of murine embryos could be 
reduced by half with minimal impact on embryo development. However, decreasing nutrients, 
especially pyruvate and lactate, by more than 50% significantly impaired embryo development 
and viability (Ermisch et al., 2020). In the bovine embryo, development was largely unaffected 
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when nutrient concentrations were reduced by as much as 75%, and some embryos were able 
to develop in medium containing only 6.25% of the original nutrient concentrations (Herrick et al., 
2020). Other studies have replicated this work, demonstrating improved blastocyst development 
and quality when nutrients were reduced by half (Santos et al., 2021). The exceptional resilience 
of the bovine embryo to significant reductions in nutrient availability is linked to its capacity to 
utilize endogenous lipids. To further refine our reduced nutrient concentration media for bovine 
embryos, we supplemented this media with exogenous lipids and L-carnitine to promote lipid 
metabolism. Under these conditions, blastocyst development was significantly improved, and the 
expression of embryo quality related genes was increased, although blastocyst cell number was 
lower (Pasquariello et al., 2023). 

Transcriptomic analysis of in vivo produced embryos compared to in vitro embryos cultured 
in either standard or reduced nutrient conditions demonstrated that in vitro embryos 
produced in standard conditions were more active metabolically compared to in vivo produced 
embryos, while metabolic processes were in fact downregulated in embryos developed under 
reduced nutrient conditions (Ming et al., 2023). Embryos developed under reduced nutrient 
conditions upregulated genes associated with protein hydrolysis and cell survival, a strategy to 
maintain cellular homeostasis that is reminiscent of the high protein turnover that limits 
oxidative damage and extends lifespan in caloric restriction. Embryos developed in reduced 
nutrient conditions also had increased transmembrane transport, likely necessary for nutrient 
uptake in a restricted environment, again similar to caloric restriction response. Overall, the 
developmental potential of embryos cultured in reduced nutrient conditions was closer to in 
vivo embryos than that of embryos cultured in vitro under standard conditions (Ming et al., 
2023). These studies open a new frontier in bovine embryo culture media development and 
may result in a more developmentally competent in vitro embryo. However, additional studies 
including post-transfer embryo viability and calf health are needed to fully appreciate the 
capability of this reduced nutrient culture system. 

What does the future hold for bovine embryos? 

We might take a cue from the world of human IVF. Embryo diagnostics, such as embryo sex, 
genotype, identification of chromosomal abnormalities, presence of desirable production 
traits, and or prediction of viability would add significant value to a bovine embryo (Figure 1). 
Today, we can successfully genotype and sex embryos by taking a biopsy of the trophectoderm 
at the blastocyst stage without significantly compromising subsequent development 
(Fujii et al., 2019; Oliveira et al., 2023). In fact, biopsy is a recognized emerging technology as 
the number of embryos being sexed or genotyped is now being tracked by the IETS Data 
Retrieval Committee and was greater than 23,000 embryos in 2022. Bovine embryos can also 
be screened for chromosomal abnormalities via trophectoderm biopsy (Turner et al., 2019; 
Silvestri et al., 2021). Biopsy procedures necessitate advanced technical expertise and 
expensive equipment, potentially influencing both the precision of genetic testing and 
implantation potential. Reliable genotype information can be obtained from embryo biopsies, 
but only a limited number of laboratories are currently using this technology due to these 
limitations. Prediction of pregnancy success in human embryos using artificial intelligence and 
machine learning with either photos or time lapse video is in use today (Vermilyea et al., 2020; 
Enatsu et al., 2022; Diakiw et al., 2022; Salih et al., 2023). These algorithms haven't yet been 
developed specifically for cattle embryos, partly because of the high cost of time lapse 
incubators. However, affordable models targeted at the veterinary sector are emerging, 
suggesting this could soon become a possibility for bovine IVF, and preliminary research 
supports this assumption (Sugimura et al., 2017). Alternatively, information could be gained 
about embryo genetics and viability non-invasively from cell free DNA or extracellular vesicles 
in the culture medium after blastocyst development, or from blastocoel fluid. Noninvasive 
preimplantation genetic testing (niPGT) of human embryos demonstrates that cell free DNA 
suitable for genetic analysis can routinely be obtained from these samples, offering an 
alternative to embryo biopsy that requires less skill, poses less risk to the embryo, and is less 
expensive (Huang et al., 2019; Rubio et al., 2019; Leaver and Wells, 2020; Rubio et al., 2020; del 
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Collado et al., 2023). However, reported concordance rates between cell free DNA and biopsy 
results are variable between studies, and the diagnostic value of noninvasive preimplantation 
genetic testing remains controversial in human IVF (Huang et al., 2023; Lledo et al., 2023). 

Bovine embryos can also be a source of information to discover regulatory pathways 
important for development. Extracellular vesicles and their microRNA and protein cargo have 
emerged as pivotal bi-directional messengers between the embryo and its environment at 
various stages of pre- and post-implantation development (Lange-Consiglio et al., 2020; Salilew-
Wondim et al., 2020; Tesfaye et al., 2020; Guzewska et al., 2023). Extracellular vesicles can 
influence blastocyst development and modulate embryo stress in vitro, potentially by modulating 
embryo gene expression (Alminana et al., 2017; Lopera-Vasquez et al., 2017; Menjivar et al., 
2023). In addition, an embryos’ extracellular vesicles and microRNAs may provide clues about the 
quality and viability of that embryo, possibly leading to non-invasive diagnostic assays (Marin and 
Scott, 2018; Cimadomo et al., 2019; Hawke et al., 2021). Finally, extended embryo culture 
(Shahbazi et al., 2016; Isaac et al., 2024) and synthetic embryo models (Kagawa et al., 2022; 
Kim et al., 2023; Pinzon-Arteaga et al., 2023; Yu et al., 2023) enable us to discover physiological 
processes occurring in the embryo after the blastocyst stage, a period difficult to study in vivo. In 
the long run, delivering embryos at a reduced cost (closer to that of a straw of sexed semen, 
perhaps) while maintaining high value and enhancing outcomes will necessitate concurrent 
advancements in multiple areas. These include the development of improved culture media 
supporting normal embryo physiology, enhancements in the culture environment, and the 
integration of various diagnostic technologies. The forthcoming decade promises to be an 
exciting era of exploration in bovine in vitro embryo production and diagnostics. As these 
breakthroughs are applied to the commercial bovine embryo transfer industry, they will further 
bolster the utilization of in vitro produced embryos and propel the industry towards a more 
sustainable approach to feeding the world. However, it's imperative that these advancements 
are accessible at a price point that ensures a reasonable return on investment for producers, for 
this technology to be truly transformative. 

Conclusion 

Rapid adoption of in vitro embryo production in the bovine industry highlights the 
importance of embryo technology for genetic improvement. A growing human population, 
food insecurity, and climate change put enormous pressure on producers to make protein 
production more efficient and sustainable. However, large inefficiencies in the system 
significantly increase cost and may limit full realization of the potential of the technology. The 
low conversion percentage of oocytes to blastocysts, and the quality of those blastocysts 
produced, significantly contribute to these inefficiencies. Improvements in embryo culture 
media resulting in a more viable, more freezable embryo capable of a high level of pregnancy 
establishment and maintenance, and normal healthy calf production, is essential. 
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