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Abstract 
Embryo transfer in cattle is an increasingly important technique for cattle production. Full attainment of 
the benefits of the technology will depend on overcoming hurdles to optimal performance using embryos 
produced in vitro. Given its importance, embryo technology research should become a global research 
priority for animal reproduction science. Among the goals of that research should be developing methods 
to increase the proportion of oocytes becoming embryos through optimization of in vitro oocyte 
maturation and in vitro fertilization, producing an embryo competent to establish and maintain pregnancy 
after transfer, and increasing recipient fertility through selection, management and pharmacological 
manipulation. The embryo produced in vitro is susceptible to epigenetic reprogramming and methods 
should be found to minimize deleterious epigenetic change while altering the developmental program of 
the resultant calf to increase its health and productivity. There are widening opportunities to rethink the 
technological basis for much of the current practices for production and transfer of embryos because of 
explosive advances in fields of bioengineering such as microfluidics, three-dimensional printing of cell 
culture materials, organoid culture, live-cell imaging, and cryopreservation. 
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A call to prioritize embryo technology research 

Embryo transfer in cattle has been a reality since December 19, 1950 when Elwyn Willet and 
colleagues at the American Foundation for the Study of Genetics and the University of 
Wisconsin produced the first calf (named “Prima”) derived from transfer of an embryo 
(Willett et al., 1951; Betteridge, 2000). However, the utility of embryo transfer as a tool for 
genetic improvement was limited until the introduction of the first high density SNP chip for 
cattle in 2009 (Matukumalli et al., 2009). This chip made it possible to identify genetically-
superior females with high reliability. Until then, genetic progress from embryo transfer was 
hampered by the fact that accuracy of selecting females was poor when compared to the high 
degree of accuracy conferred by progeny testing of bulls. The utilization of embryo transfer 
has almost doubled since the introduction of genotyping platforms. The Data Retrieval 
Committee of the International Embryo Transfer Association reported 794,397 embryos had 
been transferred in 2008 (Thibier, 2009). The same committee found that the number of 
transfers reported in 2022 was 1,558,482 (Viana, 2023). 

The importance of embryo technologies will continue to rise. Embryo transfer can increase 
the rate of genetic selection by increasing the intensity of genetic selection on the female side 
(VanRaden, 2020) and by shortening the generation interval. Genetic selection can be made as 
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early as the blastocyst stage (Agerholm et al., 2023). Somatic cell nuclear cloning and 
production of gene-edited animals are both technologies that depend on production of 
embryos in the laboratory and which can contribute to genetic improvement of livestock. A 
more revolutionary event in the future may be the development of “in vitro breeding” where 
rounds of genetic selection of embryos produced in vitro are followed by generation of stem 
cells from those embryos that can be differentiated into sperm cells and oocytes to produce 
the next generation of embryos for selection (Goszczynski et al., 2023). Embryo transfer can 
also increase the value of beef calves produced from dairy animals (Crowe et al., 2021) and can 
be used to improve fertility in heat-stressed and repeat-breeder cows and, eventually, more 
broadly (Hansen, 2020a). Indeed, the potential impact of embryo technologies on cattle 
production is so broad that this author has speculated that embryo transfer may eventually 
rival artificial insemination (AI) as an assisted reproduction technique (Hansen, 2023). 

The scientific developments that have brought embryo technologies to their current standing 
were achieved with less investment in research than for other important topics in cattle 
reproduction. Research in bovine reproduction since the 1980s and earlier has been dominated 
by efforts to develop ovulation synchronization strategies and to improve fertility in the high-
producing dairy cow. A search in PUBMED identified 4,924 papers related to AI in cattle, 3,873 
papers related to dairy cow fertility and 2,745 papers related to embryo transfer in cattle (Figure 
1). Research efforts toward ovulation synchronization research and improving dairy cow fertility 
have been enormously successful. Timed AI programs are now routinely implemented on many 
dairy farms in countries where pharmaceutical use is widely available. A host of protocols have 
been developed that enhance fertility as well as allow appointment breeding (Fricke and 
Wiltbank, 2022). Dairy cow fertility has been improved because of an assemblage of advances 
including increased use of ovulation synchronization programs, improved transition cow health 
programs, enhanced feeding regimens, and other practices. Ovulation synchronization has also 
made AI in beef cattle more practical than formerly and can result in more calves born earlier in 
the calving season (Baruselli et al., 2018; Monteiro et al., 2023). 

 
Figure 1. Analysis of PUBMED to assess research activity related to embryo technologies as compared to 
research focused on artificial insemination and dairy cow fertility. Shown are the number of papers 
meeting specific search criteria for a search conducted March 7 2024. The search terms related to 
artificial insemination were “artificial insemination and (cattle or cow or heifer)”. The search terms for 
dairy cow fertility were “(fertility or infertility or fertile or infertile) and cow and (dairy or Holstein or 
Jersey)”. The search terms for embryo transfer were “embryo transfer and (cow or cattle or heifer)”. 

The potential that embryo technologies present for transforming genetic improvement and 
improving fertility has been limited by suboptimal processes for producing and transferring 
embryos. The promise offered by the transferrable embryo, coupled with the current obstacles 
to optimization, means that research to improve embryo technologies should become national 
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priorities for those countries in which cattle production is an important economic activity. Now 
is the time to increase funding for embryo technologies. In this paper, the goal will be to outline 
particular areas where research should be focused. The topics are not meant to be inclusive 
and the coverage of the literature is non-exhaustive. The approach is to highlight some areas 
that are particularly amenable to improvements or where recent advances show promise. 

Making a better oocyte and zygote 
The production of embryos in vitro is very inefficient. The percent of oocytes that are placed into 

oocyte maturation medium that later become a transferrable embryo is dependent on the culture 
system but is usually between 20 and 40%. These values are lower than what can be achieved in 
vivo. For example, the percent of inseminated heifers that was pregnant at day 7 was 54% in a study 
with beef animals in Ireland (Carter et al., 2008) and 70.9% for dairy heifers in New Zealand 
(Berg et al., 2022). A total of 56% of lactating cows inseminated at 40-60 days in milk yielded high- 
or fair-quality embryos at day 5 or 6 after insemination (Denis-Robichaud et al., 2022). 

The low yield of transferrable embryos following procedures for in vitro production is not because 
oocytes fail to mature or become fertilized. Indeed, rates of nuclear maturation and fertilization are 
high (>70%). Instead, it is because many fertilized embryos fail to develop adequately in culture. They 
fail largely because of errors in the process of in vitro maturation and fertilization. 

The conclusion that inadequate conditions for maturation and fertilization are a major 
cause of poor embryo competence are based on experiments in which measures of embryonic 
development were made for embryos produced in vivo, in vitro or in a combination of both 
conditions. Results of one such experiment, by Gad et al. (2012), are shown in Figure 2. The 
percent of oocytes that became blastocysts following in vitro maturation, fertilization and 
embryonic development was 12.2%. If in vitro produced embryos were transferred to the 
uterus at the 16-cell stage, there was no improvement in blastocyst development (10.6%) while 
transfer to the oviduct at the 4-cell stage caused a slight increase in development (26.6%). In 
contrast, production of embryos by superovulation, followed by flushing from the animal and 
subsequent culture at either the 4-cell stage or 16-stage resulted in most oocytes becoming 
blastocysts (83.0% and 69.8%, respectively). What was most crucial to ensuring blastocyst 
development was the period of oocyte maturation, fertilization, or development through the 
4-cell stage. Findings of two earlier experiments by Rizos et al. (2002) also highlighted the 
importance of oocyte maturation and fertilization. In the first experiment, the percent of 
putative zygotes (i.e, oocytes exposed to sperm) becoming blastocysts if maturation, 
fertilization and embryo development occurred in vitro was 39%. The percent rose to 78% if 
oocyte maturation alone occurred in vivo. In the second experiment, percent blastocyst was 
39% for embryos produced totally in vitro, 58% for embryos from oocytes that were matured 
in vivo but fertilized and allowed to develop in vitro, and 74% for embryos from oocytes where 
maturation and fertilization but not development occurred in vivo. 

 
Figure 2. Percent of oocytes becoming blastocysts where embryos were produced in vivo, in vitro or in a 
combination of both conditions. Data are obtained from Gad et al. (2012). 
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These results indicate that the zygote formed from in vitro maturation and fertilization is already 
compromised in its ability to proceed to the blastocyst stage. A similar conclusion can be derived 
from experiments with other species including the human, mouse and rhesus monkey (Hansen, 
2020b). There is a compelling need, therefore, to rethink the conditions for oocyte maturation and 
fertilization in vitro. Perhaps, the most fruitful approaches will be those that try to mimic in vitro the 
processes for oocyte maturation and fertilization that occur in vivo. There may also be some 
prospects to improve blastocyst yield by changing conditions for development after fertilization. 

Oocyte maturation 

Maturational events in the cumulus-oocyte complex in vivo are driven by luteinizing 
hormone (LH) and mediators of LH action like amphiregulin, neuroregulin, epiregulin and 
betacellulin (Strączyńska et al., 2022). Key events include dynamic changes in oocyte 
concentrations of cGMP and cAMP controlled by loss of gap junctions between cumulus cells 
and oocytes. Premature loss of oocyte cAMP in vitro is believed to result in premature nuclear 
maturation and a decoupling of the processes of nuclear and cytoplasmic maturation (Gilchrist 
and Thompson, 2007). Artificial regulation of oocyte cAMP during in vitro maturation by 
pharmacological methods has sometimes (but not always) been reported to increase the 
proportion of oocytes developing to the blastocyst stage (Gilchrist et al., 2016; Leal et al., 2022). 

Another approach to improve oocyte maturation in vitro is to add to culture medium specific 
cell signaling ligands involved in maturation in vivo including follicle stimulating hormone, 
amphiregulin, insulin-like growth factor 1, estradiol, progesterone, androstenedione, neuroregulin 
1 and natriuretic peptide C. Improvements in the characteristics of blastocysts produced have been 
reported (Soares et al., 2017; Dellaqua et al., 2023) but the percent of oocytes becoming blastocysts 
is still below what is achieved in vivo. Recently, Zhang et al. (2023) reported that C-X-C motif 
chemokine ligand 12 acts on oocytes during maturation to increase the percent that become 
blastocysts following fertilization or parthenogenetic activation. 

Fertilization 

The experiment by Rizos et al. (2002) comparing blastocyst development for oocytes fertilized in 
vivo vs in vitro is indicative that conditions for in vitro fertilization are not optimal for developmental 
competence of the resulting embryo. Sperm cells vary in ability to produce embryos with high 
developmental competence (Hendricks and Hansen, 2010; Behnam et al., 2023; Vallet-Buisan et al., 
2023; Li et al., 2023; Yaghoobi et al., 2024). Perhaps the probability of fertilization with a defective 
spermatozoan is greater for in vitro fertilization than for fertilization in vivo. Sperm concentration for 
in vitro fertilization is usually 1 x 106/mL while estimated numbers of sperm in the oviduct after 
insemination are in the 10’s of thousands; the number that reach the site of fertilization are likely to 
be in the hundreds or lower (Hawk, 1987). It is possible that the sperm winnowing process in the 
reproductive tract (see Miller, 2024) is such that sperm more fit for fertilization and support of 
embryonic development have greater likelihood to reach the oocyte than less-fit sperm. In mice, for 
example, passage through the utero-tubal junction depends upon presence of expression of specific 
genes in the male such as Adam3 and Lypd4 (Fujihara et al., 2019) and sperm with fragmented DNA 
are less likely to transit the utero-tubal junction (Hourcade et al., 2010). 

Given the variability in ability of sperm to support embryonic development, one strategy for 
improving outcomes of in vitro fertilization is to devise new methods for selecting sperm for 
fertilization. Selection of sperm based on rheotaxis, for example, increased the proportion of cleaved 
embryos becoming a blastocyst as compared to oocytes from sperm isolated by centrifugation 
(Yaghoobi et al., 2024). Another strategy is to mimic sperm-oviductal interactions that occur in vivo. 
Sperm binding to the oviductal epithelium promotes sperm survival (Pollard et al., 1991) and, based 
on experiments in rabbits and pigs, the oviductal isthmus is important for reducing polyspermy 
(Mahé et al., 2021). Capacitation of sperm in vivo involves complex changes in the sperm mediated by 
the oviduct (Mahé et al., 2021; Delgado-Bermúdez et al., 2022). Capacitation of sperm in vitro is 
caused by heparin (Parrish, 2014) and it may be that this glycosaminoglycan does not completely 
mimic oviduct-induced changes in sperm function associated with capacitation. Delayed or 
incomplete capacitation could conceivably result in fertilization with a defective sperm or oocyte 
aging, which can reduce embryo competence for development (Koyama et al., 2014). Co-culture of 
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sperm, oviductal epithelial cells and oocytes in a system termed “oviduct-on-a-chip” resulted in 
reduced incidence of polyspermy and parthenogenesis (Ferraz et al., 2017). 

Embryo culture 

Expression of large number of genes encoding for receptors for cell-signaling ligands by the 
early embryo (Sang et al., 2021; Hoorn et al., 2023) is evidence that the preimplantation 
embryo is in active communication with the mother. Addition of oviductal fluid (Lopera-
Vasquez et al., 2017) or several specific growth factors whose gene is expressed in the oviduct 
or endometrium can increase the percent of in vitro produced embryos developing to the 
blastocyst stage. Examples of molecules that can increase blastocyst yield include activin A 
(Trigal et al., 2011; Kannampuzha-Francis et al., 2017; Tríbulo et al., 2018), colony stimulating 
factor 2 (CSF2; Dobbs et al., 2013), C-X-C motif chemokine ligand 12 (Zhang et al., 2023), 
hepatoma-derived growth factor (Gómez et al., 2017), insulin-like growth factor 1 (Tríbulo et al., 
2018), WNT5A (Jeensuk et al., 2022), and WNT7A (Tríbulo et al., 2018). 

Cell-signaling ligands that can enhance embryonic function have been termed embryokines 
(Hansen et al., 2014). One of the features of actions of embryokines in vitro is that the magnitude 
of the increase in blastocyst yield is modest. It is likely that these molecules cannot overcome the 
reduction in developmental competence caused by inadequate conditions for oocyte maturation 
or fertilization. In addition, other components of culture medium, most notably albumin, can alter 
growth factor biological activity (Gómez et al., 2017; Jeensuk et al., 2022). It is also possible that 
embryos themselves secrete specific embryokines so addition of an exogenous source of the 
molecule might not be impactful. Recently, it was surmised that the reason why bovine embryos 
are more likely to become blastocysts when cultured in groups than when cultured singly 
(Donnay et al., 1997) is because of embryonic secretion of L-cathepsin. This proteinase is 
secreted in higher amounts by embryos classified as excellent or good than for embryos 
classified as poor (Raes et al., 2023). Moreover, addition of L-cathepsin to embryos cultured 
individually increased the proportion that became blastocysts (Raes et al., 2023). 

Making a better transferrable embryo 

The blastocyst produced in vitro differs from its in vivo produced counterpart in many 
respects including in terms of ultrastructure, lipid content, gene expression, epigenetic 
modifications, cell numbers, and incidence of chromosomal abnormalities (Hansen, 2023). Not 
surprisingly, pregnancy rates achieved following transfer of an in vitro produced embryo are 
often lower than those achieved following transfer of an embryo produced in vivo by 
superovulation (Ealy et al., 2019). An example of results from one such study comparing 
pregnancy outcomes for both kind of embryos, that of Pérez-Mora et al. (2020), is shown in 
Figure 3. In some reports, but not all, pregnancy losses after the initial pregnancy diagnosis 
were also greater for pregnancies involving embryos produced in vitro than pregnancies 
established by AI (reviewed by Hansen, 2023; also see Crowe et al., 2024). 

 
Figure 3. Comparison of pregnancy outcomes for transfer of embryos produced by superovulation (in 
vivo) or in vitro for beef cows in tropical conditions in Mexico (Pérez-Mora et al., 2020). 
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It is not known whether reduced competence of the embryo produced in vitro to establish 
and maintain pregnancy is related to errors associated with oocyte maturation, fertilization, 
embryo culture or some combination. There are a multitude of experiments describing specific 
conditions of embryo culture that change blastocyst gene expression, relative or absolute 
numbers of cells in the trophectoderm (TE) and inner cell mass (ICM), or other characteristics. 
For example, many of the cell-signaling molecules produced by the endometrium that have 
embryokine activity can modify allocation of cells of the blastocyst into TE, ICM and hypoblast. 
Examples of embryokines that have been reported to alter the number of ICM cells in the 
blastocyst include connective tissue growth factor (Kannampuzha-Francis et al., 2017), C-
natriuretic peptide (Sang et al., 2020), interleukin 6 (IL6, Wooldridge et al., 2019; Wooldridge 
and Ealy, 2021; Seekford et al., 2021), and WNT5A (Jeensuk et al., 2022). Furthermore, Dickopf 
WNT signaling inhibitor 1 (DKK1), (Denicol et al., 2014), fibroblast growth factor 2 (Yang et al., 
2011), and IL6 (Wooldridge and Ealy, 2021) can promote differentiation of hypoblast cells from 
ICM. Also, DKK1 can increase number of TE cells (Denicol et al., 2014; Amaral et al., 2022a). It is 
unclear, however, whether any of these embryokines can improve competence of embryos to 
establish pregnancy. Early experiments indicated that treatment of embryos with CSF2 from 
day 5 to 7 of development increased pregnancy success after transfer to recipients 
(Loureiro et al., 2009; Denicol et al., 2014) but a recent meta-analysis of all embryo transfer 
experiments with CSF2 failed to support the idea that CSF2 increases embryo survival 
(Hansen et al., 2024). Embryo transfer experiments with DKK1 have also yielded mixed results 
(Denicol et al., 2014; Amaral et al., 2022b). Pregnancy rates at day 70 for cows receiving an 
embryo treated with IL6 were numerically but non-significantly higher than for cows receiving 
control embryos (12/28 vs 11/43) and fetal size for IL6 embryos was more similar to that of 
fetuses derived by AI than for fetal size of control embryos (Seekford et al., 2021). 

One difficulty in understanding determinants of embryo competence for pregnancy is that 
most embryo transfer experiments designed to test improvements in embryo survival are 
underpowered. Adequately powered experiments in which pregnancy outcome is the endpoint 
requires hundreds of observations per treatment. This size of experiment requires resources 
beyond the reach of most academic laboratories. Commercial laboratories can do these kinds 
of experiments but it is often not practical to modify a functioning system of embryo 
production for experimental purposes. 

One alternative approach is to identify markers of embryo competence that can be used to 
rapidly screen potential treatments for improving embryo competence for pregnancy 
establishment. The most promising treatments could then be tested for efficacy in a large-scale 
embryo transfer experiment. Recently, Rabaglino et al. (2023) has used machine learning to 
analyze a variety of datasets on gene expression in bovine embryos including those from demi-
blastocysts in which one half of the blastocyst was transferred and one-half was subjected to 
RNA sequencing. A total of eight genes were identified whose expression together predicted with 
high accuracy whether pregnancy would result after transfer. Screening of the transcript 
abundance of these genes could provide insights into the conditions for producing an embryo 
competent to establish pregnancy. There are also likely to be metabolic signatures of an embryo 
competent to establish pregnancy as indicated by analysis of spent culture medium of 
blastocysts that did or did not establish pregnancy after transfer (Oliveira Fernandes et al., 2023). 

Another potential method for distinguishing between embryos that are competent or non-
competent to establish pregnancy is the use of morphokinetic analysis of embryonic 
development. Incubators with built-in microscopes and cameras are now available that allow 
time-lapse imaging of individual embryos as they advance in development (Magata, 2023). 
Timing of blastocyst formation and specific morphological characteristics of the blastocyst 
have been found predictive of ability of the embryo to remain viable in culture after day 7.5 
(Huayhua et al., 2023). Future experiments to identify morphokinetic determinants of 
embryonic survival after transfer to recipients could result in a useful tool for increasing 
embryo competence for pregnancy establishment. 

One cause of pregnancy failure in embryos produced in vitro are chromosomal 
abnormalities. The proportion of embryos with errors in chromosomal segregation is higher 
for those produced in vitro than for those produced in vivo (Viuff et al., 1999; Tšuiko et al., 
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2017). Some of these embryos are probably discarded before transfer – development is 
slowest for haploid and polypoid embryos, intermediate for aneuploid embryos and fastest in 
embryos classified as diploid or mixoploid (Kawarsky et al., 1996). Incidence of chromosomal 
abnormalities is also inversely related to blastocyst quality grade and stage of development 
(Tutt et al., 2021). Recently, it was demonstrated that embryo biopsies used to estimate genetic 
merit of embryos can also be analyzed to identify chromosomal abnormalities (Bouwman and 
Mullaart, 2023). Thus, embryos can be simultaneously screened for both genetic merit and 
chromosomal abnormalities. 

Making a better calf epigenetically 

The preimplantation embryo undergoes extensive epigenetic modifications involving 
removal of epigenetic marks inherited from the egg and sperm followed by acquisition of 
epigenetic modifications required for differentiation (Zhu et al., 2021). This process can be 
modified by culture of the embryo (Niemann et al., 2010; Urrego et al., 2017; Canovas et al., 
2021; Ming et al., 2021). Differences in DNA methylation between calves produced from 
embryos produced in vitro vs in vivo also exist at birth (Rabaglino et al., 2022). Some of these 
neonatal differences could represent conserved changes in the epigenome that occurred in 
the embryo and others could represent changes in methylation downstream from cellular 
changes in the blastocyst. At least some changes in DNA methylation occurring in the embryo 
are not retained in the adult (Vargas et al., 2023). 

In any case, there is some evidence that in vitro production can result in changes in function of 
the animal at maturity. In one study, it was reported that cows derived from in vitro fertilization 
with reverse-sorted semen had reduced milk production compared to cows derived from embryos 
produced by AI, superovulation, or in vitro fertilization with conventional semen (Siqueira et al., 
2017). In that same study, calf mortality was highest for the reverse sex-sorted group. In contrast, 
there was no difference in milk yield between cows produced by AI, superovulation or in vitro 
production (Lafontaine et al., 2023). There was, however, a slight increase in interval from first 
service to conception in the cows derived by in vitro production. It should be noted that 
characteristics of the epigenome of the blastocyst produced in vitro depend upon conditions of 
culture (Canovas et al., 2021; Clare et al., 2021; Tutt et al., 2023). Thus, consequences of in vitro 
production of embryos could depend on the specific methodology utilized. 

The developmental program of the preimplantation embryo is malleable and a variety of 
changes in the environment of the mother or embryo can program development to affect 
postnatal phenotype (Hansen et al., 2016; Hansen, 2020b). As a result, it might be possible to 
alter culture conditions of the preimplantation embryo to enhance postnatal phenotype. Two 
embryokines and one nutrient have been reported to do so. As shown in Figure 4, CSF2 has 
been reported to increase postnatal growth in Holstein heifers (Kannampuzha-Francis et al., 
2015). No such effect was seen in Brahman calves (Estrada-Cortés et al., 2021a), which unlike 
Holsteins, were suckled by their dams. In the latter study, though, CSF2 treatment affected 
deposition of subcutaneous fat. Calves derived from DKK1-treated embryos were larger at 
birth than calves derived from control embryos but grew slower than controls thereafter 
(Amaral et al., 2022a). Culture of in vitro produced embryos with the micronutrient choline has 
been reported to change DNA methylation in the Brahman calf and increase weaning and 
slaughter weight (Estrada-Cortés et al., 2021b; Haimon et al., 2024). 

The most deleterious example of disordered development associated with in vitro 
production is large offspring syndrome (LOS) or, as it is more accurately termed, abnormal 
offspring syndrome (Farin et al., 2010). The most obvious representation of the syndrome is 
the extremely large size at birth of affected calves (Figure 5). Other developmental defects 
including umbilical hernia, organomegaly, abdominal wall defects, and changes in DNA 
methylation are associated with the condition (Nava-Trujillo and Rivera, 2023). Once thought 
to be exclusively associated with in vitro production of embryos and somatic cell nuclear 
transfer, it is now clear that LOS can occur with natural mating or AI (Nava-Trujillo and Rivera, 
2023). There are no reliable estimates on the incidence of the syndrome - even the definition 
of LOS varies among investigators. In our laboratory, the frequency of calved produced by in 
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vitro fertilization that have LOS (defined as very large calves that are born dead or die soon 
after birth) has been about 5%. The fact that the frequency is so low means it will be difficult to 
perform experiments to identify culture conditions that minimize the incidence. The best 
solution will be to identify markers of the syndrome in the embryo or pregnant cow and 
terminate pregnancies with a high probability of development of a LOS calf. Efforts to identify 
such markers are underway (Rivera et al., 2022). 

 
Figure 4. Programming of postnatal growth by exposure of preimplantation embryos to colony 
stimulating factor 2 (CSF2) from day 5 to 7 of culture. Data are body weights of calves derived from control 
embryos or embryos cultured with CSF2. Data are least-squares means ± standard error (error bars are 
not visible when errors were smaller than the symbol). The interaction between treatment and month of 
age affected weight (P < 0.001) and weight-to-height ratio (P = 0.0089). The figure is from Kannampuzha-
Francis et al. (2015) and is reproduced with permission from Molecular Reproduction and Development. 
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Figure 5. Example of a stillborn bull calf with large offspring syndrome. Body weight was 59 kg and 
macroglossia was present. The figure is from Amaral et al. (2022a) and is reproduced with permission 
from Biology of Reproduction. 

Increasing receptivity of the recipient 

Pregnancy success after embryo transfer depends not only on the competence of the 
embryo to establish pregnancy but also on the ability of the recipient to support pregnancy. 
Using data from experiments in which two potential pregnancies per female were established, 
McMillan (1998) estimated that only about 50% of females were capable to maintaining a 
pregnancy vs 70% of embryos produced in vivo and 60% of embryos produced in vitro. 
Moreover, experiments in which females underwent repeated rounds of embryo transfer 
make it clear that some cows are inherently and repeatedly fertile while others are inherently 
subfertile (Geary et al., 2016). It is to be expected that pregnancy success after embryo transfer 
will be increased if methods are developed to 1) either identify inherently-fertile cows or 2) to 
manage cows so that the proportion of recipients that are fertile (i.e., receptive) is increased. 

There are physiological characteristics that distinguish cows on their basis for supporting 
pregnancy. Cows that display estrus in fixed-time embryo transfer procedures have higher 
pregnancy rates than cows that do not (Cedeño et al., 2020). Blood flow to the corpus luteum 
at the time of transfer is also positively related to pregnancy outcomes (Kanazawa et al., 2016; 
Pugliesi et al., 2019; Santos et al., 2023). Other markers of receptivity include expression of 
specific mRNA (Ponsuksili et al., 2012) and miRNA in the endometrium (Ponsuksili et al., 2014). 

Fixed-time embryo transfer is widely used as a management tool for recipients; work continues 
on optimizing the hormonal treatments employed for this procedure (Pereira et al., 2013; 
Bonacker et al., 2020). Efforts to improve pregnancy outcomes by modifying the endocrine 
environment around the time of embryo transfer has yielded mixed results, with reports of both 
positive effects and lack of effectiveness. This has been the case for treatment with progesterone, 
GnRH and human chorionic gonadotropin (Block et al., 2003; Monteiro et al., 2015; Niles et al., 
2019; García-Guerra et al., 2020; El-Azzi et al., 2023; Chen et al., 2023; Laurindo et al., 2024). A 
treatment with a more consistent benefit on pregnancy outcomes is administration of flunixin 
meglumine or other anti-inflammatories at the time of embryo transfer (Besbaci et al., 2021; 
Barnes et al., 2023). These treatments reduce inflammation associated with the process of transfer 
itself since they are particularly effective at increasing pregnancy rate in cows in which it was difficult 
to pass the embryo transfer pipette through the cervix (Besbaci et al., 2021). 

Improving embryo freezability 

In 2022, 44% of the global total of recorded transfers of embryos produced in vitro involved 
a cryopreserved embryo (Viana, 2023) even though pregnancy success after transfer of a 
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cryopreserved embryo remains lower than for transfer of a fresh embryo (Hansen 2020a, 
2023). Enhancements in the conditions for production of embryos could conceivably reduce 
the difference in pregnancy rates between cryopreserved and fresh embryos. So too could 
enhancements in techniques for cryopreservation. The ideal cryopreservation system would 
be one where an embryo could be transferred directly without the need for washing and 
repackaging because transfers could be performed in locations where trained technicians were 
not available. Gómez et al. (2020) has reported that freezing in an ethylene-glycol based 
cryoprotectant solution with polyvinyl alcohol instead of bovine serum albumin yielded 
pregnancy rates similar to those with transfer of fresh embryos [40/80 (50% vs 30/58 (52%). 
Similarly, Oliveira et al. (2020) reported an in-straw warming protocol for direct transfer of 
vitrified embryos involving transfer of an embryo from an open vitrification device into an 
embryo transfer straw held upright and containing liquid columns of 0.15 M sucrose and 
phosphate-buffered saline. Ten of 25 recipients (40%) receiving such warmed embryos became 
pregnant as compared to a rate of 43% for recipients receiving fresh embryos. Other 
experiments have been performed to determine whether addition of various biologically-active 
molecules to embryos around the time of cryopreservation improves embryonic survival. 
Examples in which some improvement in survival was reported include antifreeze glycoprotein 
8 (Liang et al., 2017), ascorbate (Carrascal-Triana et al., 2022), and an inhibitor of Rho-
associated coiled-coil containing kinase (Abdelhady et al., 2023). All of these approaches for 
enhancing outcomes of embryo cryopreservation are promising but it will be important to 
perform large-scale embryo transfer experiments to confirm efficacy. 

Designing better tools for embryo production and transfer 

There are widening opportunities to rethink the technological basis for much of the current 
practices for production and transfer of embryos. There have been explosive advances in fields 
of bioengineering such as microfluidics, three-dimensional printing of cell culture materials, 
organoid culture, live-cell imaging and cryopreservation. Moreover, artificial intelligence will 
certainly have a role in embryo technologies. Examples of emerging technologies include 
microfluidics (Suh et al., 2006; Ferraz and Ferronato, 2023; Alkan et al., 2023), artificial tissues 
(Gargus et al., 2020), three-dimensional culture (Miles et al., 2017; Ferraz and Ferronato, 2023), 
non-invasive assessment of cellular function (Sciorio et al., 2022), time-lapse imaging (Magata, 
2023) and new advances in cryopreservation (Pomeroy et al., 2022). Even a technique as 
central to the field as transcervical embryo transfer could be re-engineered to avoid possible 
damage to the reproductive tract (see Hansen, 2020a for discussion). Could not an automated, 
autonomous device be designed that could traverse the cervix with minimal physical damage 
to tissues and without the need for technicians with specialized training? 
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