Goat |
MSTN, PrP, NUP, BLG
|
Creating knockout models for diseases |
CRISPR/Cas9-mediated knockout |
Ni et al. (2014)Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One. 2014;9(9):e106718. http://dx.doi.org/10.1371/journal.pone.0106718. PMid:25188313. http://dx.doi.org/10.1371/journal.pone.0...
|
Sheep |
CFTR
|
Creating model for cystic fibrosis |
CRISPR/Cas9-mediated knockout |
Fan et al. (2018)Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight. 2018;3(19):e123529. http://dx.doi.org/10.1172/jci.insight.123529. PMid:30282831. http://dx.doi.org/10.1172/jci.insight.12...
|
Bovine |
IARS
|
Repairing recessive mutation |
CRISPR/Cas9-mediated knock-in |
Ikeda et al. (2017)Ikeda M, Matsuyama S, Akagi S, Ohkoshi K, Nakamura S, Minabe S, Kimura K, Hosoe M. Correction of a disease mutation using CRISPR/Cas9-assisted genome editing in Japanese black cattle. Sci Rep. 2017;7(1):17827. http://dx.doi.org/10.1038/s41598-017-17968-w. PMid:29259316. http://dx.doi.org/10.1038/s41598-017-179...
|
Bovine |
TFAM
|
In vitro model for mitochondrial diseases |
CRISPR/Cas9-mediated knockout |
Oliveira et al. (2019Oliveira VC, Moreira GSA, Bressan FF, Gomes Mariano C Jr, Roballo KCS, Charpentier M, Concordet JP, Ambrósio CE. Edition of TFAM gene by CRISPR/Cas9 technology in bovine model. PLoS One. 2019;14(3):e0213376. http://dx.doi.org/10.1371/journal.pone.0213376. PMid:30845180. http://dx.doi.org/10.1371/journal.pone.0...
, 2020Oliveira VC, Gomes Mariano C Jr, Belizário JE, Krieger JE, Fernandes Bressan F, Roballo KCS, Fantinato-Neto P, Meirelles FV, Chiaratti MR, Concordet JP, Ambrósio CE. Characterization of post-edited cells modified in the TFAM gene by CRISPR/Cas9 technology in the bovine model. PLoS One. 2020;15(7):e0235856. http://dx.doi.org/10.1371/journal.pone.0235856. PMid:32649732. http://dx.doi.org/10.1371/journal.pone.0...
) |
Pig |
HTT
|
Creating model for Huntington's disease |
CRISPR/Cas9-mediated knock-in |
Yan et al. (2018)Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C, Yang H, Li L, Liu Q, Shi H, Xu G, Zhao H, Wei H, Pei Z, Li S, Lai L, Li XJ. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell. 2018;173(4):989-1002.e13. http://dx.doi.org/10.1016/j.cell.2018.03.005. PMid:29606351. http://dx.doi.org/10.1016/j.cell.2018.03...
|
Pig |
IAPP
|
Creating model for type 2 diabetes mellitus |
CRISPR/Cas9-mediated knock-in |
Zou et al. (2019)Zou X, Ouyang H, Yu T, Chen X, Pang D, Tang X, Chen C. Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death Dis. 2019;10(11):823. http://dx.doi.org/10.1038/s41419-019-2056-5. PMid:31659151. http://dx.doi.org/10.1038/s41419-019-205...
|
Pig |
CD163
|
Creating model for PRRSV |
CRISPR/Cas9-mediated knockout |
Whitworth et al. (2014)Whitworth KM, Lee K, Benne JA, Beaton BP, Spate LD, Murphy SL, Samuel MS, Mao J, O’Gorman C, Walters EM, Murphy CN, Driver J, Mileham A, McLaren D, Wells KD, Prather RS. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. 2014;91(3):78. http://dx.doi.org/10.1095/biolreprod.114.121723. PMid:25100712. http://dx.doi.org/10.1095/biolreprod.114...
, Yang et al. (2018)Yang H, Zhang J, Zhang X, Shi J, Pan Y, Zhou R, Li G, Li Z, Cai G, Wu Z. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res. 2018;151:63-70. http://dx.doi.org/10.1016/j.antiviral.2018.01.004. PMid:29337166. http://dx.doi.org/10.1016/j.antiviral.20...
, Tanihara et al. (2021)Tanihara F, Hirata M, Nguyen NT, Le QA, Wittayarat M, Fahrudin M, Hirano T, Otoi T. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim Biotechnol. 2021;32(2):147-54. http://dx.doi.org/10.1080/10495398.2019.1668801. PMid:31558095. http://dx.doi.org/10.1080/10495398.2019....
|
Pig |
APN
|
Creating model for TGEV and PDCoV |
CRISPR/Cas9-mediated knockout |
Whitworth et al. (2019)Whitworth KM, Rowland RR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS. Resistance to coronavirus infection in aminopeptidase N-deficient pigs. Transgenic Res. 2019;28(1):21-32. http://dx.doi.org/10.1007/s11248-018-0100-3. PMid:30315482. http://dx.doi.org/10.1007/s11248-018-010...
, Xu et al. (2020)Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, Fang L, Ge C, Wei Y, Zhang X, Xu C, Che J, Fan Z, Xiang G, Guo J, Shang H, Li H, Xiao S, Li J, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife. 2020;9:e57132. http://dx.doi.org/10.7554/eLife.57132. PMid:32876563. http://dx.doi.org/10.7554/eLife.57132...
|
Pig |
DMD, TYR, LMNA, RAG1, RAG2, IL2RG
|
Creating pigs with gene mutations |
Cytosine base editors (CBEs) |
Xie et al. (2019)Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y, Liu Z, Gou S, Wu H, Lai C, Fan N, Jin Q, Shi H, Liang Y, Lan T, Quan L, Li X, Wang K, Lai L. Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun. 2019;10(1):2852. http://dx.doi.org/10.1038/s41467-019-10421-8. PMid:31253764. http://dx.doi.org/10.1038/s41467-019-104...
|
Rabbit |
DMD
|
Creating model for Duchenne Muscular Dystrophy |
CRISPR/Cas9-mediated knockout |
Sui et al. (2018)Sui T, Lau YS, Liu D, Liu T, Xu L, Gao Y, Lai L, Li J, Han R. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech. 2018;11(6):dmm032201. http://dx.doi.org/10.1242/dmm.032201. PMid:29871865. http://dx.doi.org/10.1242/dmm.032201...
|
Dog |
DMD
|
Developing therapy for Duchenne Muscular Dystrophy |
CRISPR/Cas9-mediated knockout |
Amoasii et al. (2018)Amoasii L, Hildyard JC, Li H, Sanchez-Ortiz E, Mireault A, Caballero D, Harron R, Stathopoulou T, Massey C, Shelton JM, Bassel-Duby R, Piercy RJ, Olson EN. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86-91. http://dx.doi.org/10.1126/science.aau1549. PMid:30166439. http://dx.doi.org/10.1126/science.aau154...
|
Cat |
HAP2
|
Creating mutant parasite for T. gondii vaccine |
CRISPR/Cas9 |
Ramakrishnan et al. (2019)Ramakrishnan C, Maier S, Walker RA, Rehrauer H, Joekel DE, Winiger RR, Basso WU, Grigg ME, Hehl AB, Deplazes P, Smith NC. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats. Sci Rep. 2019;9(1):1474. http://dx.doi.org/10.1038/s41598-018-37671-8. PMid:30728393. http://dx.doi.org/10.1038/s41598-018-376...
|
Cat |
Type I interferon signaling genes |
Studying FIPV and vaccine production |
CRISPR/Cas9 |
Mettelman et al. (2019)Mettelman RC, O’Brien A, Whittaker GR, Baker SC. Generating and evaluating type I interferon receptor-deficient and feline TMPRSS2-expressing cells for propagating serotype I feline infectious peritonitis virus. Virology. 2019;537:226-36. http://dx.doi.org/10.1016/j.virol.2019.08.030. PMid:31539770. http://dx.doi.org/10.1016/j.virol.2019.0...
|
Cat |
FeLV |
Reducing FeLV viral load |
CRISPR/Cas9 |
Helfer-Hungerbuehler et al. (2021)Helfer-Hungerbuehler AK, Shah J, Meili T, Boenzli E, Li P, Hofmann-Lehmann R. Adeno-associated vector-delivered CRISPR/Sa Cas9 system reduces feline leukemia virus production in vitro. Viruses. 2021;13(8):1636. http://dx.doi.org/10.3390/v13081636. PMid:34452500. http://dx.doi.org/10.3390/v13081636...
|
Zebrafish |
Many genes |
Creating knock-in models for diseases |
CRISPR/Cas9-mediated knock-in |
Kalueff et al. (2014)Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci. 2014;35(2):63-75. http://dx.doi.org/10.1016/j.tips.2013.12.002. PMid:24412421. http://dx.doi.org/10.1016/j.tips.2013.12...
, Bellipanni et al. (2016)Bellipanni G, Cappello F, Scalia F, Conway de Macario E, Macario AJ, Giordano A. Zebrafish as a Model for the Study of Chaperonopathies. J Cell Physiol. 2016;231(10):2107-14. http://dx.doi.org/10.1002/jcp.25319. PMid:26812965. http://dx.doi.org/10.1002/jcp.25319...
, Gore et al. (2018)Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: a fintastic model for hematopoietic development and disease. Wiley Interdiscip Rev Dev Biol. 2018;7(3):e312. http://dx.doi.org/10.1002/wdev.312. PMid:29436122. http://dx.doi.org/10.1002/wdev.312...
, Outtandy et al. (2019)Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol. 2019;34(5):751-62. http://dx.doi.org/10.1007/s00467-018-3921-7. PMid:29502161. http://dx.doi.org/10.1007/s00467-018-392...
, Wang et al. (2021)Wang X, Copmans D, Witte PA. Using zebrafish as a disease model to study fibrotic disease. Int J Mol Sci. 2021;22(12):6404. http://dx.doi.org/10.3390/ijms22126404. PMid:34203824. http://dx.doi.org/10.3390/ijms22126404...
, Katoch and Patial (2021)Katoch S, Patial V. Zebrafish: an emerging model system to study liver diseases and related drug discovery. J Appl Toxicol. 2021;41(1):33-51. http://dx.doi.org/10.1002/jat.4031. PMid:32656821. http://dx.doi.org/10.1002/jat.4031...
, Hoareau et al. (2022)Hoareau M, El Kholti N, Debret R, Lambert E. Zebrafish as a model to study vascular elastic fibers and associated pathologies. Int J Mol Sci. 2022;23(4):2102. http://dx.doi.org/10.3390/ijms23042102. PMid:35216218. http://dx.doi.org/10.3390/ijms23042102...
|