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Abstract 
Pregnancy losses negatively affect the cattle industry, impacting economic indices and consequently the 
entire production chain. Early embryonic failure has been an important challenge in the embryo industry 
because proper identification of embryo death at the beginning of gestation is difficult. This review aimed 
to provide a better understanding on reproductive failure and the relationship between early embryonic 
loss and different reproductive biotechniques. This review also considers insights and possible strategies 
for reducing early embryonic loss. The strategies addressed are as follows: i) great impact of rigorous 
embryo evaluation on reducing embryo losses; ii) selection of recipients at the time of transfer, taking into 
account health and nutritional status, and classification of the corpus luteum using ultrasound, either in 
area or vascularization; and iii) paternal effect as one of the factors that contribute to pregnancy losses, 
with a focus on embryo transfer. 

Keywords: embryo mortality, embryo classification, recipient selection, evaluation of corpus luteum, 
paternal effect. 

Introduction 

Cattle farming is of great economic importance both globally and nationally. Despite the 
importance of cattle farming, reproductive failure remains a substantially managerial and 
economic challenge. Globally, reproductive inefficiency are estimated to cost the cattle industry 
more than US $ 1 billion annually (USDA, 2009, 2010). Although several factors influence 
reproductive efficiency, the main cause is gestational loss (Perkel et al., 2015), which reinforces 
the need for a greater understanding of the subject. 

The period of gestational loss in cattle is generally classified as early embryonic mortality 
(EEM), when it occurs between fertilization and 28 to 32 days after fertilization, late embryonic 
mortality (LEM) when it occurs between days 28 and 30 and up to 45 days, early fetal mortality 
when it occurs between days 45 and 60, and late fetal mortality from day 60 until the end of 
gestation (Smith et al., 2022; Albaaj et al., 2023). In cattle, gestational losses are more prevalent 
in the embryonic than in the fetal stages (Santos et al., 2004), have variable causes (Diskin and 
Morris, 2008; Farin, Piedrahita, Farin, 2006; Cheng et al., 2016; Pohler et al., 2016; Abdalla et al., 
2017) and are often undetermined (Santos et al., 2004). 

A summary of the incidence of gestational losses has been reported in specific meta-
analyses of dairy cattle (Albaaj et al., 2023) and beef cattle (Reese et al., 2020); however, several 
factors, including the animal's production category, stage of pregnancy, and environmental 
conditions, influence gestational losses (Diskin et al., 2016; Fernandez-Novo et al., 2020). 
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In dairy cattle, an average of 27% of gestational loss occurs in the early embryonic period 
(Albaaj et al., 2023) and can reach 40% in cows with moderate production (Diskin et al., 2016), 12% 
(ranging from 3.5 to 25%; Wiltbank, et al., 2016; Santos et al., 2004) in the late embryonic period, 7% 
in the early fetal period, and 2% in the late fetal period (Albaaj et al., 2023). In beef cattle, an average 
of 28.4% of gestational losses occurred up to day 7 of gestation, 3.9% occurred between days 7 and 
16, and 15.6% occurred between days 16 and 32, totaling 47.9% of losses in the early embryonic 
period. Therefore, 6% of gestational losses occur after the first month of gestation (Reese et al., 
2020) and can vary between 5 and 20% (Perry et al., 2005; Wiltbank et al., 2016). Although the 
periods investigated vary among studies, the results provide a summary of the percentages of 
cattle losses and highlight their biological and economic challenges, especially concerning 
embryonic losses. Therefore, it is important to discuss the relationship between embryonic losses 
in different reproductive biotechniques (Baruselli et al., 2010; Reese et al; Hansen, 2020). 

In addition, because the highest percentage of gestational losses in cattle occurs in the 
embryonic phase, detecting these losses, especially by diagnosing them at 30 and 60 days, offers 
an opportunity for timely reproduction and reduces the costs associated with this source of 
reproductive inefficiency (Reese et al., 2020). Currently, there are several techniques for detecting 
gestational status, such as transrectal ultrasound, circulating concentrations of progesterone, 
circulating placental products (pregnancy-associated glycoproteins (PAGs) and microRNAs), and 
interferon-stimulating gene expression in peripheral blood leukocytes (Ealy, Seekford, 2019). 

Transrectal B-mode ultrasound is a highly accurate method and widely used for gestational 
diagnosis. However, its use is limited to after–27th-28th day of gestation (Nation et al., 2003). 
Pregnancy-associated glycoproteins expressed in the third week of gestation in cattle 
(Wallace et al., 2015) have also been shown to be accurate for commercial diagnosis, but are limited 
to the 28th day of gestation (Ribeiro et al., 2014; Pohler et al., 2016), and their concentrations are 
associated with the likelihood of maintaining pregnancy (Pohler et al., 2016). Therefore, Doppler 
ultrasound has been proposed as an accurate method for identifying nonpregnant females from 
the 20th day of pregnancy (Siqueira et al., 2013; Pugliesi et al., 2014; Melo et al., 2020). 

Given the importance of reproductive loss, it is necessary to develop strategies to reduce 
pregnancy failure. This review aimed to provide insights into possible strategies for reducing 
embryonic loss after embryo transfer. 

Reproductive biotechniques vs. pregnancy loss 

The use of biotechniques as a reproductive management tool has evolved considerably in 
recent decades, resulting in increased reproductive efficiency in dairy and beef cattle. Despite the 
increase in reproductive ability, provided to the herd through reproductive biotechniques such 
as artificial insemination (AI), fixed-time artificial insemination (FTAI), embryo transfer (ET), and in 
vitro fertilization (IVF), understanding the factors related to their success during application is 
necessary. In this context, pregnancy rates were obtained, mainly the rates of pregnancy loss. 

Several studies have investigated the influence of in vivo and in vitro methods of embryo 
production and cryopreservation on pregnancy rates and embryo loss. IVP blastocysts have 
many characteristics that differ from those of blastocysts produced in vivo by superovulation, 
such as accumulation of intracellular lipids, oxygen consumption, DNA methylation, and gene 
expression (Burdge, Lillycrop, 2010; Rizos et al., 2002; Reese et al., 2020; Banliat et al., 2022). 

The reproductive failure rates in beef cattle described in a meta-analysis were 32.2%, 49.5%, 
and 54.6% for cows subjected to AI after the natural expression of estrus, FTAI, and ET, 
respectively (Reese et al., 2020). Reportedly, a reduction of up to 24% in the pregnancy rate for 
embryos produced in vitro compared to in vivo (Farin, Crosier, Farin, 2001) and 7.4% lower 
pregnancy rate for recipients who received cryopreserved embryos (frozen or vitrified) than 
fresh ones (Hansen, 2020). The status (fresh or cryopreserved) of the embryo also tends to 
influence gestational loss (17.2% vs. 22.3%; Baruselli et al., 2010). This corroborates the findings 
of Stewart et al. (2011) and Demetrio et al. (2007),who observed greater gestational loss after 
the initial diagnosis in both in vitro and in vivo ET than in AI. 
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In a study conducted by Ealy, Seekford (2019) on embryos produced in vitro, pregnancy rates 
ranged from 29.5% to 54.3% with an average of 40.1%. In contrast, for embryos produced in 
vivo, pregnancy rates were higher, ranging from 41.5% to 90% with an average of 64.1%. 
Furthermore, the pregnancy loss rates in IVP embryos range from 5% to 7% after 90 days of 
pregnancy. Surprisingly, only 27.1% of the cows that received IVP embryos were able to 
maintain pregnancy until term. Moreover, early embryonic loss (32 d) after fixed-time embryo 
transfer (FTET) in dairy cattle ranges from 53% (Diskin et al., 2006) to 58% (Pereira et al., 2016). 

Notably, bovine embryos are normally transferred to recipient females approximately seven 
days after estrus or early ovulation when the embryo has reached the blastocyst stage of 
development. Therefore, most biological, physiological, and technical causes of a female's failure 
to produce a blastocyst seven days after natural insemination or AI are avoided when a 
blastocyst-stage embryo is transferred to a female (Hansen, 2020). Therefore, ET recipients are 
expected to have higher pregnancy success rates than inseminated females. However, except for 
heat stress or in cases where the female is a repeat breeder, in the absence of these infertility 
factors, the percentage pregnant cows after ET is generally equal to (or only slightly higher than) 
AI (Carter et al., 2008; Sartori et al., 2002; Wiltbank et al., 2016 - data compilated by Hansen 2020). 

In the following topics of this review, we addressed tools or alternatives to improve 
pregnancy success after ET, allowing the embryo's competence for survival and maternal 
capacity to support embryonic development. Among them are the production of a better 
embryo (with rigorous quality and stage classification) and improved uterine receptivity, taking 
into account the nutritional and health aspects, as well as the characteristics of the corpus 
luteum. In addition, we also examined the paternal effects on transferred embryos. 

Strategies for minimize embryonic mortality 

Embryo selection: different strategies to reduce losses 

Observing the comparative results between embryonic losses derived from transferred 
embryos and conception rates by AI/TAI, we observed differences. Thus, efforts have been focused 
on reproductive biology research to determine the morphological, cellular, and molecular 
characteristics involved in the successful development of pregnancy. These efforts have advanced 
our understanding of the mechanisms for evaluating embryos transferred to recipients. 
Furthermore, these pregnancy losses typically occur in the first few weeks after ovulation or 
embryo transfer and are, on average, 40%–60% (Wiltbank et al., 2016). Environmental factors can 
interfere with gametes and embryos quality; therefore, events occurring pre and post ovulation can 
affect the development of gametes, zygotes, and embryos (Denicol, Siqueira, 2023). Compared with 
embryos produced in vivo, pregnancy rates of in vitro embryos are 10–40% lower than those of 
embryos produced in vivo (Ealy, Seekford, 2019; Reese et al., 2020). 

In in vitro production, we evaluated the stages of development; however, oocyte 
competence occurred when the pre-ovulatory follicle and the oocyte itself needed to complete 
a series of cellular events (Blondin et al., 2002), such as the accumulation of organelles and 
maternal mRNA (Krisher, 2004), in addition to the resumption of meiosis (Franciosi et al., 2014). 
Previous studies have shown that oocytes that mature in vivo are more competent in 
supporting embryonic development than those that mature in vitro (Rizos et al., 2002). These 
differences may be due to differences in gene expression, transcription, and protein 
abundance in early embryos derived from these oocytes (Banliat et al., 2022). 

Oocytes play an important role in initially supplying the embryo with mRNAs and organelles 
during maternal-to-zygotic transition. Therefore, the oocyte quality and changes in oogenesis 
and/or maturation can affect embryonic development. Furthermore, the presence of miRNAs 
is also important. MiRNAs are small non-coding RNAs that regulate gene expression after 
transcription. miRNAs are present in transcriptionally quiescent mature oocytes and 
preimplantation embryos and exhibit low levels of transcription prior to embryonic genome 
activation (Telford, Watson, Schultz, 1990; Misirlioglu et al., 2006). 
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In a recent study, 935 unique targets were identified in bovine embryos using 73 miRNAs 
on days three and five of development. Gene ontology for these targets showed enrichment 
for 54 terms, the most substantial being RNA polymerase II transcription, cell cycle, cell 
maturation, and most notably, stem cell differentiation (Paulson et al., 2022). These results 
indicate the essential role of miRNAs in bovine preimplantation and embryonic development. 

In this context, pre-implantation embryos are extremely sensitive to the environment, 
resulting in changes in their development (Wooldridge et al., 2022). Moreover, it is 
unremarkable that conditions during the preimplantation period can exert short-, medium-, 
and long-term effects on the embryo. This period of development involves a multitude of 
events that set the stage for future progression of pregnancy (Denicol, Siqueira, 2023). 
Epigenetic markers, such as DNA methylation, are lost and reinserted during reprogramming 
for embryonic implantation under the influence of the environment (Burdge, Lillycrop, 2010). 
The first cleavage division, degradation of maternal mRNA, minor and major embryonic 
genomic activation (Hamatani et al., 2004) and, differentiation of extraembryonic tissues 
(Grazul-Bilska et al., 2011), are among the distinct events that occur during preimplantation 
and can be affected by environmental signals. Finally, changes in the peri-ovulatory 
microenvironment, highlighting follicular fluid (Sohel et al., 2013; Ávila et al., 2020) can have 
impacts during oocyte and embryonic development. 

In bovine embryo transfer protocols at the blastocyst stage, embryos are normally 
transferred to recipient females approximately seven days after estrus or early ovulation. Once 
this embryo is transferred, all possibilities of the cow failing to produce blastocysts are covered, 
unlike in AI/TAI. However, the pregnancy rates are generally similar between ET and AI. Factors 
intrinsic to the recipient female are discussed in the following sections. Furthermore, factors 
related to embryo production stages and the means used, among other factors, can directly 
reflect the production rate and maintenance of embryo pregnancy in vitro. The success of 
maintaining a pregnancy after ET depends on the creation/selection of an embryo of extreme 
quality, improving the uterine receptivity of the recipient female, and optimizing the creation 
of new tools for the production and transfer of embryos (Hansen 2020). 

Embryos produced in vitro have a lower blastocyst yield per oocyte and lower embryo quality, 
contributing to greater sensitivity to cryopreservation, compared to those produced in vivo. At 
the beginning of IVM, the intrinsic quality of in vitro maturation is related to up to 60% of the 
failure to advance to the blastocyst stage. However, events that determine embryonic quality 
occur between the zygote and blastocyst stages (Lonergan et al., 2001). Despite the advances in 
in vitro biotechniques, processing causes stress to oocytes and embryos, thereby affecting their 
development (Melo-Sterza and Poehland, 2021). Characteristics such as darker cytoplasm, a 
greater proportion of lipids from the TAG class (Abd El Razek et al., 2000), vacuoles in 
trophoblastic cells, changes in intercellular connections (Fair et al., 2001) and greater fragility of 
the zona pellucida (Duby et al., 1997) have been reported as differences between in vitro and in 
vivo embryo production. 

Physiologically, free radicals have pronounced effects on DNA, RNA, and protein synthesis; 
however, they can alter the cell membrane, increase the intracellular pH, and interfere with 
mitochondrial function (Dias, Pivato, Dode, 2017). Embryos produced in vitro, mainly in high-
oxygen tension systems (20%), suffer from an imbalance in the production and/or 
accumulation of ROS, which is characterized by oxidative stress. This imbalance can have 
harmful effects on embryonic development, including metabolic changes (Pawlak et al., 2024), 
reduction in ATP levels, lipid peroxidation, changes in protein synthesis, membrane 
permeability, and mitochondrial and endoplasmic reticulum function (Cagnone and Sirad, 
2013; Yoon et al., 2014). 

However, from all the changes comparing IVP embryos to in vivo embryos, it is well 
established that better quality embryos result in higher pregnancy rates than lower quality 
embryos. Therefore, if embryos can be accurately evaluated and high-quality embryos can be 
selected for ET, the commercial value of the selected embryos would increase, with a 
subsequent decrease in the number of recipients required and an overall improvement in ET 
efficiency. Therefore, evaluating the embryo before transferring to the recipients is extremely 
important especially when this embryo is being used post freezing (Bó, Mapletoft, 2018). 
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To date, the most common way to determine embryonic quality has been through 
morphological assessments using stereomicroscopy (Hansen, 2020). However, because 
embryonic quality is based on visual analysis, it varies between observers, has low 
reproducibility, and can be influenced by the observers (Rocha et al., 2017). Due to the 
subjectivity of this assessment, differences have already been observed in the ultrastructure 
(López-Damián et al., 2008) and the blastocyst transcriptome determined similarly using 
microscopy has already been observed (Driver et al., 2012). Thus, an ideal scenario would be a 
large-scale use to discover possible markers of embryonic quality with the aim of predicting 
post-transfer embryo survival and pregnancy outcomes. Consequently, a wide variety of 
methodologies, from optical methodologies to methodologies based on omics assessments, 
have been used to evaluate and analyze bovine embryos (Rabel et al., 2023). 

Notably, the best-quality embryo must be selected with quality grade I (1: Excellent or Good. 
The embryos have a symmetrical and spherical mass with individual blastomeres that are 
uniform in size, color, and density, see in IETS, 2020) and/or grade II quality for transfer to a 
recipient, and selection must be applied when this embryo goes through the cryopreservation 
process. Farin, Slenning, Britt (1999) concluded that embryos selected for better quality had 
higher pregnancy rates. Additionally, they highlighted the differences and subjectivity between 
the types of evaluators when selecting embryos (evaluated under a stereomicroscope). The 
difference in conception rates between the selected embryos with quality grades I and II in in 
vitro embryos of approximately 17% in heifers and 22% in lactating cows has already been 
observed, with the highest percentage being for quality grade I (Demétrio et al., 2020); while 
this difference in embryos transferred in vivo was 44.15% and 32.58%, for grade I and grade II, 
respectively, after 30 days of transfer into Simmental cows (Erdem et al., 2020). 

Additionally, there have been many questions about the best developmental stage for 
embryo transfer to the recipient. However, the vast majority of studies have shown that the 
developmental phase does not have much influence, but when evaluating embryonic quality, 
it is relevant at these stages. (Coleman et al., 1987; Hasler, 2001; Bényei et al., 2006; 
Ferraz et al., 2016; Erdem et al., 2020). According, to Putney et al. (1988), the lowest pregnancy 
rate was achieved after the transfer of embryos at the morula stage; however,, there was an 
increase in the pregnancy rate according to embryonic development in the blastocyst phase, 
initial to expanded blastocysts. 

Hasler et al. (1987) determined that the highest pregnancy rate was achieved after 
transferring embryos at the early blastocyst and blastocyst stages and that both stages of 
development were associated with a higher pregnancy rate than the compact morula and 
expanded blastocyst. When the quality of the structures was evaluated, similar results were 
obtained: a higher pregnancy rate in the initial blastocyst and blastocyst. Furthermore,  Park et al. 
(2023) showed that pregnancy rates in Hanwoo (Bos taurus coreanae) cows varied according to 
the stage of embryonic development of embryos transferred in vivo (67.86% vs. 63.49% for 
morula stage; 64.00% vs. 54.72% for early blastocysts; and 50.00% vs. 47.83% for blastocysts in 
fresh vs. frozen/thawed embryos, respectively). This difference between the results clarifies to 
technicians that particularities are still highly expressed in each situation/reality evaluated in the 
field. More studies and standardization of protocols for embryonic culture according to the 
different subspecies, categories, and conditions of animals are necessary. 

In this context, to enhance the embryonic quality and development analysis, one of the 
most useful optical options with satisfactory results during bovine embryos evaluation is the 
Time-Lapse Monitoring (TLM) method; however, this method has not been used on a large-
scale bovine production. Since embryonic development is a dynamic process, critical 
developmental phases may go unnoticed with traditional and unique morphological 
assessments (Rocha et al., 2017; Angel-Velez et al., 2023; Magata, 2023). In addition, some 
studies have observed that morphokinetic indicators (MKIs), such as the timing of first 
cleavage, number of blastomeres at first cleavage, and number of blastomeres, could be used 
as markers to predict blastocyst quality and pregnancy outcomes (Sugimura, Akai, Imai, 2017). 
Some researchers have even proposed that MKIs would be a superior solution to replace the 
IETS morphology-based classification systems (Rabel et al., 2023). 
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Since biomarkers are detected in-omics technologies, especially related to transcriptomics 
and metabolomics, presence of markers related to embryonic quality are also suspected 
(Saadi et al., 2014; Herrera, 2016; Mullaart, Wells, 2018). However, during field applications of 
these technologies, more questions are raised than provisional solutions. For example, if a 
transcriptomic or metabolomic assessment is used for evaluating embryos in the field, it would 
be possible to perform a biopsy and extract RNA from the entire embryo produced in each in 
vitro production cycle. Additionally, analysis of all the results in terms of time for transfer might 
be possible; however, this process is not feasible. 

Another way of evaluating embryonic quality is through evaluating the culture medium. 
However, for reliable evaluation, embryos should be cultured individually–a method used in 
basic research for metabolomic evaluation. Therefore, although these tools are powerful and 
useful for understanding pre-implantation embryo development/physiology, their large-scale, 
field-based applicability is nearly impossible. Hence, traditional evaluation methods, such as 
selection based on the morphological aspects of stereomicroscopy, are still used. Furthermore, 
it is expected that innovations will occur to optimize and make new possibilities accessible for 
embryo evaluation and enhance conception rates. 

Recipient selection 

An inadequate uterine environment can lead to pregnancy loss even before the 7th day in an 
inseminated cow or after the transfer of a good embryo. Therefore, the selection of recipients is 
equally relevant to the selection of the donors and embryos to be transferred. In 1998, McMillan 
estimated that only approximately 40–50% of recipients were able to maintain the pregnancy. 
Other studies have shown that cows exhibit the same behavior after receiving several embryo 
transfers, with some resulting in pregnancy and others having difficulty getting pregnant or 
becoming empty (Geary et al., 2016; Moraes et al., 2018). Further evidence of uterine receptivity 
problems as a cause of infertility was the finding that 32.4% of recipients, who received five 
embryos, were unable to become pregnant with any embryos (Martins et al., 2018). Other factors 
directly interfering with pregnancy after the embryo transfer include low body condition scores 
(Wallace et al. 2015), adequate health management (Aono et al., 2013), lactation period of dairy 
cows (Hasler, 2001; Ferraz et al., 2016), temperament, consequent management stress 
(Kasimanickam et al., 2018, 2019), and metabolic changes and diseases in the pre-and postpartum 
periods (Ferraz et al., 2016; Ribeiro et al., 2016; Barbosa et al., 2018; Estrada-Cortés et al., 2019). 

Sanity management 

The presence of reproductive diseases in cattle herds is the main obstacle to the expansion 
of global livestock farming. Approximately 50% of embryonic deaths are linked to infectious 
diseases (Aono et al., 2013). Questions have been raised regarding the potential risk of 
infection and the pathogenic effects of infectious diseases on preimplantation embryos since 
the advent of the commercialization of embryo transfer (Fray et al., 2000). 

Bovine alpha-herpesvirus 1 (BoHV-1) and bovine viral diarrhea virus (BVDV), the etiological 
agents of infectious bovine rhinotracheitis (IBR) and bovine viral diarrhea (BVD), respectively, 
exert a notable influence on pregnancy loss in cattle (Aono et al., 2013). BoHV-1 can directly 
affect ovarian functionality and embryonic quality, in addition to compromising oocyte viability 
(Bielanski et al., 2013). Furthermore, infections that occur before conception result in viral 
invasion of maturing oocytes within the follicles (Rufino et al., 2006). BVDV reaches 
reproductive tissues, interferes with follicular and embryonic development, and persists for 
weeks in the ovaries of infected females (Rahim-Tayefeh et al., 2023). Moreover, BVDV can 
infect embryos through donor females, reaching biological materials related to the technique 
(Bielanski et al., 2013). Furthermore, infection with this virus is associated with ovarian 
hypoplasia in persistently infected cattle (Grooms et al., 1998), delayed follicular growth 
(González Altamiranda et al., 2020), and reduced ovulation rates in response to treatments. 
superovulation (Kafi et al., 1997). 
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The interaction between BVDV biotypes and the oocyte zona pellucida affects the rate of 
early embryonic development during in vitro fertilization (Rahim-Tayefeh al., 2023). Briefly, 
BVDV can modify the expression of genes relevant to fundamental biological processes 
through the activation of signaling pathways, transcriptional regulation, and interference in the 
cellular microenvironment during persistent fetal infection (Hansen et al., 2010). 

Neosporosis, a disease caused by the parasite Neospora caninum that promotes infection in 
cattle, is one of the main causes of abortion and consequences for the embryo, birth of weak 
calves, neurological problems, and pregnancy loss in livestock (Rodríguez et al., 2022). According 
to Pessoa et al. (2016), cows seropositive for N. caninum have a higher incidence of pregnancy 
loss (35–270 days post-artificial insemination) than seronegative cows. Furthermore, N. caninum 
DNA was detected in 44.4% of the aborted fetuses from seropositive cows. In a study by De 
Souza et al. (2022), cows with a history of abortion were 2.3 times more likely to be seropositive 
for N. caninum. In addition, approximately 47.06% of females with a history of reproductive 
disorders tested positive for neosporosis, indicating an association between the infection and 
reproductive problems observed in this group of cows (De Souza et al., 2022). 

The management of infection caused by N. caninum requires the detection and separation 
of infected animals, adoption of appropriate breeding practices, vector control, and 
implementation of sanitary and biosecurity measures (Villa et al., 2022). Moreover, it is crucial 
to adopt strict sanitary measures at all stages of the embryo transfer process. Techniques such 
as the polymerase chain reaction are effective tools for identifying the presence of viruses in 
embryos, uterine fluids, and lavage fluids (Rufino et al., 2006). In addition, the exposure of 
bovine embryos to infectious agents during in vitro production may pose a potential risk of 
spreading infectious diseases (González Altamiranda et al., 2020). Therefore, it is essential to 
monitor and prevent possible viral contamination in embryos to ensure the health and integrity 
of herds (Smirnova et al., 2012). 

Nutritional management 

Another important factor is body condition score (BCS). An adequate balance in 
carbohydrate intake is essential for maintaining pregnancy and preventing pregnancy loss. 
Metabolic factors such as the excessive formation of ketone bodies and increased blood urea 
nitrogen may be a threat to pregnancy (Szelényi et al., 2023). 

Although, Middleton, Minela, Pursley  (2019) and Santos et al. (2023) did not observe any 
interference in pregnancy loss rates according to BCS, Thangavelu et al. (2015) showed a higher 
pregnancy loss rate in cows with a low BCS, reaching 9.1%, compared with females with a high 
BCS, which had a pregnancy loss rate of 1.9%. Furthermore, cows with a low BCS have a longer 
interval from calving to first estrus and are more frequently subjected to pregnancy loss 
(Spitzer et al., 1995). Female cattle with a BCS between 2–3 had a higher rate of pregnancy loss, 
corresponding to 14.91%, whereas cows with a BCS of 3 (1 to 5 points described by Lowman, 
Scott, Somerville, 1976) had a lower rate of pregnancy loss. 

Moreover, the effect of BCS on the rate of late pregnancy loss was most substantial between 
days 43 and 53 after conception (Jones, Lamb, 2008). Grimard et al. (2006), reported that the 
incidence of late embryonic mortality was higher in high milk-producing cows and in cows with 
BCS ≥ 2.5 compared to cows with BCS < 2. Lima et al. (2022) observed that cows that lost their 
body condition during days 28–56 of gestation had a higher rate (11.6%) of embryonic loss than 
cows that maintained (4.7%) or gained (5.7%) their body condition during this period. In addition, 
pregnancy loss rates have been observed to be relatively low, ranging from 3% to 5%, with 
primiparous females having a lower probability of pregnancy losses (ultrasound performed 
between 30 and 80 days) than multiparous cows (Zobel et al., 2011; Carvalho et al., 2014). 

Energy balance rather than physical condition or reproductive history is an accurate 
indicator for predicting pregnancy loss in primiparous and multiparous dairy cows, which have 
similar rates of pregnancy loss with normal and low BCS (Carvalho et al., 2014). Dahl et al. 
(2020) noted a deterioration in embryonic quality in animals under unfavorable circumstances 
and in multiparous animals. Furthermore, females that deteriorated their body condition 
during early lactation showed significant changes in serum lipid levels and increased serum 
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levels of non-esterified fatty acids, suggesting a molecular response in cumulus cells that may 
have an impact on embryo quality. and fertility (Ruebel et al., 2022). 

Maintaining an adequate energy balance is especially important because it directly affects 
reproductive function, fertility, ovulation, embryo quality, and pregnancy maintenance. 
Feeding strategies that aim to meet specific nutritional needs at different stages of the 
reproductive cycle, such as the postpartum period, are essential to ensure reproductive health 
and minimize pregnancy loss rates (Jones; Lamb, 2008; Middleton, Minela, Pursley  (2019). 

Using the CL classification to select recipients 

The success of ET depends on factors associated with the embryo and recipient cow, or 
even the interaction between these factors, the embryo-uterine environment, and the corpus 
luteum of the recipient. Recipient cows are one of the main factors (along with embryo 
selection discussed in the previous section) that determine successful pregnancy 
establishment after ET (Thomson et al., 2021). Initially, in the development of the ET technique, 
the presence of the CL, which is an evidence of successful ovulation identified by transrectal 
palpation, was sufficient. The identification of the CL using B-mode ultrasound demonstrated 
a sensitivity of 86.2% and a specificity of 70.3% (Gómez-Seco et al., 2017). Therefore, many 
commercial-scale transfer programs recommend only the identification of CL (Pontes et al., 
2011; Morotti et al., 2014; Pellegrino et al., 2016; Baruselli et al., 2018; Lovarelli, Bacenetti, 
Guarino, 2020). However, it is known that evaluating the presence of CL in a recipient's ovary 
may be sufficient to assess the quality of the CL and consequently support pregnancy. 

Although some studies have indicated that the CL size may be important for the 
maintenance of pregnancy (Gonella-Diaza et al., 2018; Velho et al., 2022), others have not 
confirmed that the CL size is a mandatory aspect of pregnancy establishment (Pugliesi et al., 
2019; Thomson et al., 2021; Santos et al., 2023). Therefore, this issue requires further 
investigation, although there is a tendency to prioritize animals with CL. 

Furthermore, the use of collor Doppler ultrasonography to evaluate blood perfusion in the 
CL has been intensively investigated. Several studies have demonstrated a direct relationship 
between the CL blood perfusion and pregnancy maintenance in FTET programs (Pinaffi et al., 
2015; Pugliesi et al., 2018; 2019; Santos et al., 2023; Rossignolo et al., 2023). Thus, cows and 
heifers with greater blood perfusion in the CL have higher serum concentrations of P4, and 
consequently, higher pregnancy rates (Gómez-Seco et al., 2017; Fontes, Oosthuizen, 2022). 

A recent study evaluated a total of 1,700 Brangus recipients to determine whether area and 
luteal blood perfusion of corpus luteum (CL) may have any impact on the conception rate and 
the occurrence of pregnancy loss in a large-scale timed embryo transfer (TET) program 
(Santos et al., 2023). This study considered commercial IVP embryos in which all recipients with 
at least one CL received an embryo on the seventh day after ovulation. Each recipient was 
evaluated by B-mode ultrasound to determine the CL area (cm2) into small (< 3 cm2), medium 
(> 3 and < 4 cm2), and large (> 4 cm2), in addition to evaluation in color Doppler mode to classify 
luteal blood perfusion into low (vascularization < 40% of the CL), medium (vascularization > 
45% and < 50%), and high score (vascularization > 50%). The results are expressed in Figure 1 
and were interesting because it showed that the CL area/size did not affect (P > 0.1) the results 
of conception or pregnancy loss, but luteal blood flow determined an increase (P < 0.05) in the 
conception rate and a reduction (P < 0.05) in pregnancy loss. Therefore, strategically, this study 
showed that the use of Doppler ultrasound to evaluate recipients allows for a more accurate 
classification of the reproductive efficiency in embryo recipients. Positively impacting to 
increase the conception rate and reducing the occurrence of pregnancy loss, probably due to 
the better quality of the CL in the maintenance of pregnancy. All the results mentioned above 
demonstrate that CL assessment is necessary to predict possible pregnancy success. However, 
it is still necessary to use different techniques to predict good recipients of bovine embryos on 
a large scale, and possibly when different aspects are measured/addressed (CL size, CL 
perfusion, and serum progesterone dosage), the reliability seems to increase. 
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Figure 1. Effect of corpus luteum (CL) area/size (small < 3 cm2; medium > 3 and < 4 cm2; and large > 4 cm2) and 
blood flow score (low < 40% of CL; medium > 45% and < 50% of CL; and high > 55% of CL) on the conception 
rate in embryo recipients submitted to a timed embryo transfer (TET) program. Different lowercase (a-b), 
uppercase (A-B) or Greek letters (α-β) for the same variable indicate statistically significant differences (P < 0.05). 
There was no effect of CL area/size on conception rates at 30 and 90 days or on pregnancy loss. 

Paternal contribution to gestational loss 

Among the factors that contribute to gestational loss in cattle, paternal effects have been 
highlighted as important. This has been highlighted in studies involving dairy and beef livestock 
production (Franco et al., 2020; Jena et al., 2021; Pohler et al., 2021). However, reproductive success is 
highly variable and is influenced by maternal and paternal factors. Maternal characteristics, including 
subspecies, parity, reproductive tract size, reproductive management strategies regarding estrus 
expression and detection, uterine environment, hormonal secretion, corpus luteum quality, and 
numerous other factors, can affect conception, pregnancy, and gestational loss (Pohler et al., 2021). 
However, despite the numerous maternal factors involved in establishing pregnancy, the contribution 
of bulls to reproductive failure has rarely been investigated and is often completely neglected. 

The establishment of pregnancy in cattle is a complex process that encompasses ovulation, 
fertilization, blastocyst formation, growth into an elongated conceptus, pregnancy recognition 
signaling, and the development of the embryo and placenta (Ortega et al., 2018). Failure of any 
of these events can compromise embryonic development and gestational success. Paternal 
factors that determine gestational success act mainly in early pregnancy events (Starbuck et al., 
2004) and have a significant influence on placental and pregnancy losses (Pohler, Oliveira, 2024). 

Chromosomal abnormalities caused by spermatogenesis-related disorders may be 
associated with recurrent embryonic mortality. A study evaluating chromosomal defects in the 
semen of a group of men with recurrent pregnancy loss, with (fertile group) or without (infertile 
group) eventual success in pregnancy through assisted reproduction, reported a higher 
incidence of aneuploidy in the sperm from the infertile group than in the fertile group of men 
(Cheung et al., 2019). Furthermore, transcriptomic evaluation of fresh bovine semen identified 
transcripts that were substantially associated with fertilization and embryogenesis, with a 
greater abundance of THSD4 and PAG5 among the identified PAG proteins, both with strong 
associations with placental development (Selvaraju et al., 2017). Kropp et al. (2017) analyzed 
embryos fertilized with either a high- or low-fertility Holstein bull, and RNA-sequencing analysis 
revealed that 98 genes were differentially expressed. A total of 65 genes were upregulated in 
high-fertility bull-derived embryos, and 33 genes were upregulated in low-fertility-derived 
embryos. Furthermore, evaluation of the epigenetic signature of spermatozoa between high- 
and low-fertility bulls revealed 76 differentially methylated regions. 

Murine embryos with only a maternal genetic contribution presented an underdeveloped 
trophectoderm in the tissues of the conceptus, and embryos with only a paternal genetic 
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contribution had a well-proliferated trophectoderm (Surani et al., 1987). A study conducted 
with parthenogenetic bovine embryos (embryos without a paternal genome; Pohler et al., 
2021) found that the trophectoderm was well-developed up to 30 days of gestation, but no site 
of embryo attachment to the endometrium was found. Furthermore, the secretion of 
pregnancy-associated glycoproteins (PAG) and interferon-stimulated genes was not found in 
the maternal circulation. These results suggest that paternal genetics are necessary for post-
elongation attachment of the embryo to the endometrium. 

To monitor the occurrence of gestational loss, in addition to ultrasound examination, the 
concentration of circulating PAG has been widely used, as it allows pregnancy diagnosis before 
30 days of the conceptus, covering an earlier period and better reflecting the probability of 
pregnancy maintenance (Pohler et al., 2013, 2016; Franco et al., 2018). Using PAG 
quantification and ultrasound at 30 and 60 d, the paternal effect (eight Angus bulls) was 
evaluated for pregnancy loss in 658 cows subjected to fixed-time insemination (TAI; 
Franco et al., 2020). Overall, early embryonic death (between 24 and 30 days) was 5.54%, with 
values ranging from 1.8 to 11.7%, whereas late embryonic death was 6.7%, with values ranging 
from 2.3 to 12.6%. These results reinforce the importance of bulls’ contribution to the 
maintenance and establishment of pregnancy in cattle. 

Heat stress negatively affects the reproductive performance of cattle and genetic 
differences in thermotolerance are known to occur. Generally, Bos indicus embryos are more 
thermotolerant than Bos taurus embryos (Hernandez-Ceron et al., 2004). This scenario is 
evident in females and is repeated in bulls. The use of Gir bulls (Bos indicus) to inseminate 
lactating Holstein cows resulted in a higher pregnancy rate and reduced pregnancy loss 
compared to Holstein bulls (Bos taurus; Pegorer et al., 2007). Therefore, in addition to the other 
factors mentioned in this topic, the father's genetic group also stands out as another factor 
that can contribute to mitigating pregnancy loss, especially in herds that suffer the most from 
heat stress. Furthermore, it is believed that there is a link between the large variation in 
pregnancy rates among bulls when cows express estrus before TAI (Franco et al., 2018, 2020) 
with the genetic/molecular characteristics of the sperm. Thus, there is a need for a better 
understanding of the molecular and genetic components of sperm, as well as the interaction 
between sperm and the female reproductive tract. 

Finally, all the aforementioned selection criteria are extremely important for increasing conception 
rates on farms. Furthermore, several factors, such as seasonality and animal management, can affect 
the final results. In Chart 1, we summarize the strategies that can reduce EEM. 

Chart 1. Possible solution strategies for early pregnancy loss considering the donor's embryonic 
classification, recipient selection, and paternal contribution. 

So
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Lo
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 Embryo  

Selection 
Always prioritize Grade I quality embryos, regardless of in vitro or in vivo 
produced. 

Reference 

Farin, Slenning, Britt (1999), 
Erdem et al. (2020), 
Demetrio et al. (2020)  

Recipients 
 Selection 

Sanity Management 

Vaccination and 
control with BoHV-1, 
BVDV, Leptospira spp., 
and Neospora ssp 

Nutritional 
Management 

Select recipients with 
BCS above 2.5 to 4 
points (scale 1-5). 

CL Classification 

The presence of CL is 
required. CL perfusion 
is more important than 
diameter/dimensions. 

Rufino et al. (2006), 
Smirnova et al. (2012), 
Aono et al. (2013) González 
Altamiranda et al. (2020),  

Jones, Lamb (2008) 
Thangavelu et al. (2015), 
Moraes et al. (2018),  

Pugliesi et al. (2018, 2019), 
Santos et al. (2023) 
Rossignolo et al. (2023)  

Paternal 
Contribution 

Genetically proven bulls, preferably with real proof of progeny Use of 
suitable tours for each climate/region Nutritional and Sanity Management 

Franco et al. (2018, 2020), 
Kropp et al. (2017), 
Pohler et al. (2021) 

Results Better results are expected when all of the above are instituted in a bovine embryo transfer 
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Conclusion 

Considering the economic impact of gestational loss on cattle farming, it is necessary to 
understand the mechanisms that lead to embryonic loss. Current knowledge refers to the 
consideration of basic aspects, such as nutrition, health, appropriate classification of embryos 
and recipients, and paternal effects, as the major points to minimize gestational losses. Despite 
the common situation of trying a single factor responsible for gestational failure, we highlight 
the importance of all conditions involved in cattle production, including animal welfare, to 
improve reproductive efficiency and minimize embryonic loss. 
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