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Abstract 
Treating lactating sows with chorionic gonadotropins may allow controlling their post-weaning 
reproductive function, despite the occurrence of anestrous during lactation. This article reviews the 
potential effectiveness of treatment with both equine and human chorionic gonadotropins (eCG and hCG, 
respectively) during lactation on the control of estrus expression and ovulation in weaned sows. The use 
of 1,000 IU hCG at 24 and 48 h postpartum may induce ovulation in the treated sows, but the ovulation 
rate may be variable. Pregnancy rates may be improved with combined treatment after the second week 
of lactation with both chorionic gonadotropins: 1,500 IU eCG plus 500 – 1,000 hCG; or 1,000 IU eCG plus 
1,000 IU hCG. Treatment with eCG (1,000 – 2,000 IU) at the end of lactation may result in acceptable estrus 
expression and ovulation rates, although with marginal benefit for pregnancy rates. The subsequent 
response to treatments with chorionic gonadotropins during lactation is likely influenced by the treatment 
period, the suckling frequency during lactation, and the boar exposure during the weaning-to-estrus 
interval. A better understanding of the efficiency of such steroid-free treatments is increasingly relevant 
due to the constraints of the use of steroid hormones in livestock reproductive management. 
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Introduction 

Pig production represents 34% of global meat consumption and the consumer demand for 
pork is expected to increase in the coming decades, thus, improving the efficiency of pork 
production is the most critical goal for producers (MacLeod et al., 2013; Kim et al., 2024). 
Reproductive efficiency is a key factor for the successful production of pork (Britt, 1986) and 
significant changes in the sector have occurred as a direct result of the use of reproductive 
technologies, such as artificial insemination (AI; Knox, 2016). In this regard, some strategies 
have been applied in commercial pig farms to optimize the AI efficiency and some related 
management factors (i.e., labor and facility efficiency), such as the use of hormonal therapies 
to control the female reproductive function (Wood et al., 1992). 

Hormone therapies can control estrus and ovulation in both gilts and sows, especially 
considering the use of batch farrowing systems (Bown, 2006) and the possibility of using fixed-
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time AI in the future (reviewed by De Rensis and Kirkwood, 2016; Quirino et al., 2019). Several 
hormones can be used for these purposes, such as progestogens, prostaglandins, 
gonadotropin-releasing hormone (GnRH), and both hypophyseal and chorionic gonadotropins 
(reviewed by Knox, 2015; De Rensis and Kirkwood, 2016). The follicle-stimulating hormone 
(FSH) and the luteinizing hormone (LH) are hypophyseal gonadotropins naturally produced in 
both males and females from all species of the subphylum Vertebrata, whereas the equine 
(eCG) and human (hCG) chorionic gonadotropins are produced by the chorion of the placenta 
of some Equidae and primates, respectively (Hallast et al., 2008; Henke and Gromoll, 2008). 

As hypophyseal and chorionic gonadotropins have high structural similarities and share 
common receptors (Campbell, 2005), hCG binds to LH receptors and eCG binds to both FSH and 
LH receptors (Senger, 2012). However, chorionic gonadotropins present a longer half-life than 
hypophyseal gonadotropins, due to the presence of a polysaccharide chain in their molecules. 
Additionally, chorionic gonadotropins have strong interspecies molecular homology (Henke and 
Gromoll, 2008), which allows their therapeutical use in other species, such as pigs. In this species, 
eCG and hCG are commonly associated to induce puberty in gilts and for treatment of 
postweaning anestrous in sows (reviewed by Estill, 2000; Innamma and Roongsitthichai, 2015). 

Nevertheless, such hormones may be administered to lactating sows, which are in 
lactation-induced anestrous. That would suppress estrus expression after weaning in the 
treated sows to mitigate the consequences of early weaning or excessive catabolism 
(Zemitis et al., 2015; Kemp et al., 2018) and may also be potentially used to synchronize the 
postweaning estrus to homogenize the breeding groups, which is necessary in batch 
farrowing systems (Zemitis et al., 2015; Corezzolla et al., 2020). Furthermore, such treatment 
might allow AI during lactation, contributing to an increase in the number of litters weaned 
per female per year (Hausler et al., 1980). 

Despite such potential benefits, treatment with chorionic gonadotropins in lactating sows 
is not commonly conducted in commercial pig farms. Nevertheless, the legislation of several 
countries restricts the use of steroid hormones to control the estrus cycle in livestock 
(European Union, 2003; Lane et al., 2008; FDA, 2021). Therefore, the use of chorionic 
gonadotropins may be a feasible alternative to the use of synthetic progestogens. The present 
review aimed to discuss the use of chorionic gonadotropins during the lactation of sows in 
therapies to control their subsequent reproductive function. 

Lactational anestrous 

The lactational anestrous is established from 6 h postpartum, when newborn piglets start 
suckling at regular intervals (De Rensis et al., 1993; Sesti and Britt, 1994), which promotes the 
release of hormones that stimulate lactogenesis and galactopoiesis, such as endogenous 
opioid peptides (EOP), oxytocin, prolactin, and somatotropin (Quesnel, 2009). Those 
substances inhibit GnRH release from the hypothalamus (Barb et al., 1994) and, thus, also 
inhibit LH and FSH release from the hypophysis (Wylot et al., 2013). As small and medium 
follicles with at most 2 mm diameter do not depend on gonadotropins for their development, 
they may be present in the ovaries of lactating sows but are unlikely to mature and ovulate, 
which would require highly frequent LH pulses (Quesnel, 2009). Consequently, while the 
suckling stimuli persist in the mammary glands, especially in large litters (Terry et al., 2014), 
lactating sows remain in anestrous (Costermans et al., 2020a; Figure 1A). 

Among the EOP, dynorphins and enkephalins are the major suppressors of cyclicity in 
lactating sows (Barb et al., 1986). During lactation, the administration of morphine, an agonist 
of opioid receptors, is related to the reduction in serum LH concentration (De Rensis et al., 
1998), whereas the administration of naloxone, an antagonist of EOP, is related to increased 
LH concentration, even though such effect is not observed in weaned sows (Barb et al., 1986; 
De Rensis et al., 1998). Oxytocin is also released through a neuroendocrine reflex induced by 
suckling. Besides its well-known effect on milk ejection, oxytocin is also related to behavioral 
and metabolic functions. Increased serum oxytocin concentration prepartum is associated 
with the nest-building behavior expressed by sows before farrowing (Yun et al., 2014). Oxytocin 
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concentration is positively correlated with the concentration of non-esterified fatty acids (NEFA) 
and with weight loss in lactating sows (Valros et al., 2004). Additionally, oxytocin influences the 
secretion of prolactin and LH by porcine anterior pituitary cells in vitro (Bogacka et al., 2002). 

 
Figure 1. Scheme representing the lactational anestrus in sows (A) and the potential use of 
gonadotropins to induce follicular growth (I) and luteinization or ovulation (II) during this period for 
synchronizing the estrous cycle after weaning (B). GnRH: gonadotropin-releasing hormone; FSH: follicle-
stimulating hormone; LH: luteinizing hormone; EOP: endogenous opioid peptides; eCG: equine chorionic 
gonadotropin; hCG: human chorionic gonadotropin. 

The prolactin secretion is mostly mediated by the action of EOP (Armstrong et al., 1988). 
Prolactin concentration increases during the first two weeks of the lactation, but such levels 
gradually decline thereafter, as the suckling frequency is reduced (Schams et al., 1994). 
Nonetheless, contrary to what occurs in other mammals, in sows, the reduction in serum 
prolactin concentration is not followed by increased LH release during lactation (De 
Rensis et al., 1998). Even so, prolactin is involved in promoting lactational anestrous, since it 
acts directly at the ovarian level, modulating both steroidogenesis and angiogenesis, which are 
essential for follicle growth and development (Basini et al., 2014). 

At low concentrations, prolactin is related to increased expression of FSH receptors in 
granulosa cells, indirectly stimulating progesterone and estradiol synthesis. On the other hand, 
at increased concentrations, prolactin inhibits the differentiation of granulosa cells and the 
expression of FSH receptors (Porter et al., 2000). The expression of genes that encode the 
prolactin molecule and receptors is detected in both theca and granulosa cells, indicating a 
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paracrine effect of prolactin (Basini et al., 2014). Thus, although prolactin inhibits the synthesis 
of both progesterone and estradiol in granulosa cells in a dose-dependent mechanism, its 
stimulatory action over progesterone synthesis on theca cells and on luteal cells is even greater 
than that of LH (Słomczyńska et al., 2001). Additionally, prolactin presents a luteotropic effect 
during gestation (Ziecik et al., 2018), stimulating the expression of angiogenic factors in vitro 
(Basini et al., 2014). 

The release of somatotropin (GH) is also stimulated by suckling (Lucy, 2008). Though, the 
release of both GH and the growth hormone-releasing factor (GHRF) is inhibited in the 
presence of raising naloxone concentrations, indicating that the somatotropic axis is regulated 
through the EOP during lactation (Armstrong et al., 1990). During lactation, the GH is related to 
increasing circulatory concentrations of insulin-like growth factor type 1 (IGF-1), NEFA, and 
glucose, which redirects the flow of energy and nutrients from the adipose tissue to the 
mammary gland (Lucy, 2008). 

The neuroendocrine, metabolic, and hormonal stimuli triggered by suckling also redirect the 
sow’s energy reserves to milk production (Quesnel, 2009; Van Wettere et al., 2017). Therefore, 
the greater the number of suckling piglets, the greater both mammary gland development and 
milk production (Hansen et al., 2012), which commonly results in a negative energy balance, 
mainly when the feed consumption is inferior to the energy expense. Under such metabolic 
condition, signaling molecules such as IGF-1, insulin, and leptin are in reduced concentrations, 
indicating a decline in follicle growth, steroidogenesis, and oocyte quality (Costermans et al., 
2020b; 2020c). Moreover, increased concentration of metabolites generated from muscle and fat 
catabolism, such as urea, creatine, and NEFA, are also related to reduced follicle development 
and steroidogenesis (Hoving et al., 2012; Costermans et al., 2020a). 

Post-weaning endocrine environment 

As the lactation progresses, the negative feedback on the hypothalamus-hypophysis-ovaries 
axis is gradually weakened, as the piglets reduce the suckling frequency, start to explore the 
farrowing room environment, and begin to ingest a solid diet, which leads to a decline in milk 
production (Valros et al., 2002) and in protein and energy catabolism by sows (Hansen et al., 
2012; Costermans et al., 2020a). That results in an increase in serum gonadotropin 
concentrations, especially of LH, which boosts follicle development (Lopes et al., 2020). 
Considering a common 3-week lactation, follicles exposed to this endocrine environment may 
reach 4 – 6 mm in diameter in the third week (Lucy et al., 2001). 

After weaning, without local stimuli on the mammary glands, the LH pulses amplitude reduces 
while their frequency increases (Van den Brand et al., 2000), allowing the selection of responsive 
follicles previously recruited by the action of FSH (Quesnel, 2009), increased estradiol synthesis 
and subsequent estrus expression. Yet, the weaning-to-estrus interval (WEI) may be prolonged 
due to some risk factors. That may occur for sows with excessive catabolism during the lactation, 
in which an erratic pattern of LH release may impair follicle selection, resulting in irregular 
cyclicity and reduction in the subsequent litter size (Segura Correa et al., 2013; Rabelo et al., 
2016). Those disorders may be frequent in primiparous sows, characterizing the second parity 
syndrome (Kemp et al., 2018), since primiparous sows may still need to achieve their adult weight 
and may have lower energy body reserves compared to multiparous sows (Hoving et al., 2012). 
Additionally, negative energy balance may be aggravated during periods of high environmental 
temperatures, in which the feed intake may be reduced (Rabelo et al., 2016), particularly in some 
hyper prolific genetic lineages (Hidalgo et al., 2014). 

Chorionic gonadotropins 

The eCG and the hCG are heterodimer glycoproteins composed of two subunits: the α 
subunit is common to all gonadotropins; and the β subunit gives specific structural differences 
to each molecule (Campbell, 2005). The eCG starts to be synthesized by the trophoblastic cells 
of the endometrial calyces of the mare chorion approximately at the 38th d of gestation. When 



Gonadotropins treatment in lactating sows 
 

 

Anim Reprod. 2024;21(2):e20230118 5/13 

administered to females from species other than equine, eCG acts as a gonadotropin. As the 
eCG molecule binds to FSH receptors, it stimulates follicle growth. Since eCG can also bind to 
LH receptors present in antral follicles, it may stimulate ovulation and help to luteinize follicles 
that eventually do not ovulate (Senger, 2012). Hence, eCG treatment is used to induce estrus 
and ovulation and to indirectly promote increased progesterone circulating concentration 
through the formation of accessory corpora lutea (Murphy, 2018). 

The hCG is synthesized by syncytiotrophoblast cells of the human placenta since early 
gestation (Cole, 2010), also acting as a gonadotropin when used therapeutically, especially in 
treatments of reproductive disorders in women (Ezcurra and Humaidan, 2014) as well in animals 
(Am-in et al., 2018). The hCG can bind to LH receptors in the follicles and presents a longer half-
life than LH (28 h vs 20 min). Thus, compared to LH, the actions of hCG on promoting ovulation, 
luteinization, and progesterone synthesis by corpora lutea are more intense (Ziecik et al., 2021). 

Since both chorionic gonadotropins can promote follicle development and induce 
ovulation, their use in pigs is mostly aimed to induce puberty in gilts and to mitigate post-
weaning anestrous in sows (reviewed by Estill, 2000; Innamma and Roongsitthichai, 2015). Such 
hormones may be also efficient when administered during lactation, to either suppress or 
synchronize estrus after weaning as well as to optimize AI programs in lactating sows. 

Estrus suppression and synchronization after weaning 

Eventually, performing AI on the first estrus after weaning may be related to negative effects 
on the subsequent reproductive performance, resulting in increased embryo resorption rate and 
reduction in farrowing rate and litter size, as occurs when lactational catabolism is excessive, or 
after early weaning at periods shorter than 21 d (Levis, 1997; Zemitis et al., 2015). That may be 
avoided by skipping the first post-weaning estrus, allowing weaned sows to have more time to 
restore their body condition, and conducting AI at the second estrus after weaning (Hidalgo et al., 
2014; Kemp et al., 2018). Nonetheless, the number of non-productive days added by such 
practice would correspond to the duration of an additional estrous cycle, which would impair the 
herd's reproductive efficiency (Dial et al., 1992). Thus, using chorionic gonadotropins during 
lactation may be an alternative to suppress the first post-weaning estrus for a shorter period, 
allowing the synchronization of the subsequent estrus (Kirkwood et al., 1999; Zemitis et al., 2015; 
Figure 1B). That would be particularly suitable for herds transitioning from conventional weekly 
management to batch farrowing (Corezzolla et al., 2020), optimizing labor and facility efficiency. 

However, treatment with chorionic gonadotropins during lactation may result in 
inconsistent ovulation response (Table 1). Administration of 1,000 IU hCG to sows within 24 h 
after farrowing resulted in ovulation in 80% of primiparous and 71.9% of multiparous 
(Armstrong et al., 1999). In other studies (Kirkwood et al., 1999; Zemitis et al., 2015), the same 
treatment performed within 24 – 48 h postpartum resulted in lower ovulation rates (22 – 41%) 
in primiparous or multiparous sows. Additionally, treatment with the 400 IU eCG + 200 IU hCG 
combination 24 h postpartum was effective to induce the luteinization of antral follicles in 
females with parity ≥ 1 (Van Wettere et al., 2013). Although the reasons related to such 
discrepancies are not yet clearly established, the treatment period and the size of the available 
follicles are potential candidates (Armstrong et al., 1999; Kirkwood et al., 1999). 

Table 1. Ovulation rate for sows treated with chorionic gonadotropins during lactation. 

Reference Genetic Parity Protocol Administration 
time* 

Ovulation rate,  
% (n/n) 

Armstrong et al. (1999) LW × LD × YS 
1 1,000 IU hCG 24 h 80.0 (12/15) 

≥ 2 1,000 IU hCG 24 h 71.4 (15/21) 

Kirkwood et al. (1999) NI ≥ 1 1,000 IU hCG 24 h 40.6 (28/69) 

Zemitis et al. (2015) NI 
≥ 1 1,000 IU hCG 24 h 31.3 (5/16) 

≥ 1 1,000 IU hCG 48 h 22.2 (4/18) 

Van Wettere et al. (2013) LW × LD ≥ 1 400 IU eCG + 200 IU hCG 24 h 5.6 (1/18) 
*Post-partum. hCG: human chorionic gonadotropin; eCG: equine chorionic gonadotropin. LW: Large White; LD: 
Landrace; YS: Yorkshire; NI: Not informed. 
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For the primiparous and multiparous sows that ovulated after hCG treatment 24 h post-
farrowing and weaned after 14 and 18 d, the average WEI was 10 d. Furthermore, when 
prostaglandin F2α (PGF2α) was administered at weaning (14 d postpartum), the WEI was 
prolonged up to 17 d (Armstrong et al., 1999). In fact, lactogenic hormones released during 
lactation, such as prolactin, somatotropin, and IGF-1, may also have luteotropic action, 
stimulating progesterone synthesis from corpora lutea during lactation (Yuan and Lucy, 1996). 
That suggests that the corpora lutea formed during lactation may last longer than those 
formed during regular estrous cycles, which may explain why sows weaned after either 14 or 
18 d of lactation presented similar WEI (Armstrong et al., 1999). Though, depending on the 
period of the estrous cycle, administration of exogenous PGF2α may either inhibit or stimulate 
progesterone synthesis by corpora lutea, as observed in vitro (Przygrodzka et al., 2014). 

In a natural estrous cycle, before the 12th d, the PGF2α binds to receptors on luteal cells 
and acts synergically with LH and prostaglandin E2 to activate cyclic adenosine 
monophosphate (cAMP), stimulating steroidogenesis and angiogenesis (Ziecik et al., 2018). 
Subsequently, after 12 d, corpora lutea acquire luteolytic capacity, since PGF2α triggers 
transcriptional changes through activation of inositol triphosphate (IP3), which down-
regulates genes that code LH receptors and the StAR protein (Diaz and Wiltbank, 2005), 
stimulating luteolysis (Ziecik et al., 2018). Therefore, the similar WEI observed for 
primiparous and multiparous sows weaned after hCG treatment either at 14 or 18 d during 
lactation (Armstrong et al., 1999) may be because PGF2α was administered before the 
acquisition of luteolytic activity by the corpora lutea. 

It is important to consider that luteinization/ovulation may occur later after hCG treatment 
in early postpartum sows compared to weaned or cyclic females, since luteinized follicles could 
not be identified through ultrasonography 3 d after hCG treatment in sows with parity ≥ 1 
treated with hCG 24 or 48 h post-partum (Zemitis et al., 2015). As follicles having 3 – 4 mm 
diameter grow naturally following LH stimulus (Driancourt et al., 1995), ovulations induced by 
hCG treatment in lactating sows may be spontaneous, after the endogenous LH increase as 
lactation progresses, or directly related to hCG treatment, due to its long half-life. Also, 
lactogenic hormones may influence the acquisition of luteolytic capacity by the corpora lutea 
explaining, at least in part, the refractoriness to PGF2α treatment at weaning in sows previously 
treated with hCG, which still needs to be investigated. 

The administration of eCG during lactation can also be used to induce ovulation (Table 2). 
There is evidence that the closer eCG treatment is to the end of lactation, the greater would be 
the frequency of sows expressing estrus after weaning. According to Martinat-Botte (1975), 
administration of 2,000 IU eCG on the 16th d of lactation results in estrus expression 3 to 7 d 
after treatment in nearly one-third of the treated sows. Post-weaning ovulation rates may be 
increased by combining the eCG treatment with farrowing room management practices aimed 
to stimulate LH release by reducing the number of suckling piglets (e.g., through intermittent 
or segregated suckling), which may result in estrus expression on more than 70% of the treated 
primiparous or multiparous sows (Cole and Hughes, 1946; Crighton, 1970). However, even 
though the observed rates of estrus expression and ovulation may be eventually similar 
(Martinat-Botte, 1975), some sows may ovulate without expressing estrous signs, especially 
when not exposed to contact with a boar, since the EOP may inhibit the expression of 
behavioral estrous signs during lactation (Fuentes-Hernández et al., 2011). 

It is also important to mention that, regardless of the gonadotropin used, estrous detection 
conducted in the presence of a boar may by itself be a confounding factor. A positive response 
to boar exposure during lactation, when gonadotropin treatment is not used, may result in 
estrus expression within 5 d in more than 80% of the exposed sows, with subsequent ovulation 
in more than 60% of the sows with parity ≥ 1 (Van Wettere et al., 2013). The mechanism 
explaining the occurrence of LH release after boar exposure without exogenous hormone 
administration is not known, although it may involve the action of EOP, which may be 
elucidated through future research. 
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Table 2. Estrus expression and ovulation rate for sows treated with equine chorionic gonadotropin 
(eCG) during lactation. 

Reference Genetic Parity Protocol Administration 
time 

Estrus expression, 
% (n/n) 

Ovulation 
rate, % 

Cole and Hughes 
(1946) 

PC, B and DJ ≥ 2 700 – 1,400 IU* D0 – D37† 26.7% (4/15) . 

PC, B and DJ ≥ 2 750 – 1,500 IU* D38 – D67‡ 96.3 (26/27) . 

Kirkwood and 
Thacker (1998) 

YS × LD NI 1,000 IU D28** 85.2 (23/27) 92.6 

Crighton  
(1970) 

LW and LW × LD ≥ 1 1,500 IU D23** 88.9 (16/18) . 

LW and LW × LD ≥ 1 1,500 IU D23** 77.3 (17/22) . 

Martinat-Botte 
(1975) 

LW and PT NI 2,000 IU D16 33.3 (7/21) . 

LW and PT NI 2,000 IU D16** 76.5 (13/17) 71.4 

LW and PT NI 2,000 IU D18 57.1 (117/205) 41.6 

LW and PT NI 2,000 IU D25 74.3 (104/140) 75.0 

D0 = Day of farrowing; PC: Poland China; B: Berkshire; DJ: Duroc Jersey; YS: Yorkshire; LW: Large White; LD: Landrace; 
PT: Pietrain; NI: not informed. *Dosages varying from 700 to 1,400 IU eCG or 750 to 1,500 IU eCG; †Administration 
moment ranging from immediately postpartum to the 37th d postpartum; ‡Administration moment ranging from the 
38th to the 67th d postpartum; **Concurrently reduction of suckling stimulus. 

Use of gonadotropin treatment to allow AI during lactation 

Conducting AI in lactating sows may increase the number of litters per female per year 
(Hausler et al., 1980), which may boost the number of piglets weaned per female per year 
(Dial et al., 1992), as conception during lactation would allow delayed weaning, with no 
negative impact on overall herd productivity (Van Wettere et al., 2017). Piglets with older 
weaning age (e.g., 25 d) will be heavier when entering the nursery, present better immunity 
and gastrointestinal development, less incidence of diarrhea, and improved growth efficiency 
(López-Vergé et al., 2019; Ming et al., 2021). That would be financially beneficial for commercial 
farms, increasing the number of marketed pigs, due to a reduction of pig losses in the nursery, 
growing, and finishing phases (Faccin et al., 2020). 

The occurrence of lactational anestrous may limit the adoption of AI during lactation, which 
would justify the use of therapies with chorionic gonadotropins to improve follicular growth, 
estrous expression, and AI in lactating sows, in the attempt to shorten the farrowing interval 
(Crighton, 1970; Hausler et al., 1980; Hodson et al., 1981). One of the first studies conducted in this 
field used different dosages of eCG (750 – 1500 IU) at various stages of lactation, and the authors 
reported that only 6% of the treated multiparous sows became pregnant when the eCG injection 
was performed between the farrowing and the 37th d of lactation. When the hormone was 
administered between the 38th and 67th d of lactation, a pregnancy rate of 70.4% was observed 
(Cole and Hughes, 1946). Pregnancy rates near 60% were found for sows with parity order ≥ 1 when 
eCG was administered within 21 – 28 d of lactation (Crighton, 1970; Kirkwood and Thacker, 1998). 

Greater pregnancy rates in primiparous and multiparous sows were observed combining eCG 
and hCG (Table 3), especially at increased doses: 1,000 – 1,500 IU eCG; and 500 – 1,000 IU hCG 
(Hodson et al., 1981). As the half-life of hCG is nearly 84-fold greater compared to LH, its luteotropic 
action results in substantial progestogen production (Ziecik et al., 2021), which stimulates 
histotrophic synthesis, favoring embryo nutrition and placenta formation (Almeida and Dias, 2022). 
Additionally, such treatment may mitigate seasonal negative effects on pregnancy rates, which are 
more pronounced in periods of high temperature (Hodson et al., 1981). 

Nevertheless, pregnancy rates observed after administration of high doses of eCG and hCG 
within a 96 h-interval on different days of lactation presented inconsistent results (Hausler et al., 
1980). Those findings suggest that the uterine environment is not suitable to support conception 
and embryo development before the second week postpartum, during which uterine involution 
commonly occurs (Meile et al., 2020). Therefore, compared to sows inseminated during such 
period, those inseminated within 23 – 25 d postpartum achieve greater farrowing rates (Levis, 
1997). Treatments combining eCG and hCG can be applied during consecutive lactations, with 
satisfactory pregnancy rates and no relevant production of anti-eCG antibodies (Crighton, 1970; 
Hodson et al., 1981). 
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Table 3. Pregnancy rate for sows treated with equine chorionic gonadotropin (eCG) – alone or combined 
with human chorionic gonadotropin (hCG) – during lactation. 

Reference Genetic Parity Protocol Administration 
time 

Breeding 
Pregnancy rate, 

% (n/n) 

Cole and Hughes 
(1946) 

PC, B and DJ ≥ 2 700 – 1,400 IU eCG* D0 – D37† NM 6.7 (1/15) 

PC, B and DJ ≥ 2 750 – 1,500 IU eCG* D38 – D67‡ NM 70.4 (19/27) 

Crighton  
(1970) 

LW and LW × LD ≥ 1 1,500 IU eCG D23** NM 61.1 (11/18) 

LW and LW × LD ≥ 1 1,500 IU eCG D23** NM 59.1 (13/22) 

Kirkwood and 
Thacker (1998) 

YS × LD NI 1,000 IU eCG D28** NM 65.2 (15/23) 

Hausler et al. 
(1980) 

DR × HS × YS ≥ 1 1,500 IU eCG + 1,000 IU hCG D13 – D32§ AI 80.0 (12/15) 

DR × HS × YS ≥ 1 1,500 IU eCG + 1,000 IU hCG D5 AI 0.0 (0/10) 

DR × HS × YS ≥ 1 1,500 IU eCG + 1,000 IU hCG D10 AI 20.0 (2/10) 

DR × HS × YS ≥ 1 1,500 IU eCG + 1,000 IU hCG D15 AI 80.0 (8/10) 

DR × HS × YS ≥ 1 1,500 IU eCG + 1,000 IU hCG D20 AI 60.0 (6/10) 

Hodson et al. 
(1981) 

NI ≥ 1 1,500 IU eCG +1,000 IU hCG D16 – D37# AI 80.0 (12/15) 

NI ≥ 1 1,500 IU eCG + 500 IU hCG D16 – D37# AI 60.0 (9/15) 

NI ≥ 1 1,000 IU eCG + 1,000 IU hCG D16 – D37# AI 71.4 (10/14) 

NI ≥ 1 1,000 IU eCG + 500 IU hCG D16 – D37# AI 46.7 (7/15) 

D0 = Day of farrowing; PC: Poland China; B: Berkshire; DJ: Duroc Jersey; LW: Large White; LD: Landrace; DR: Duroc; HS: 
Hampshire; YS: Yorkshire; NI: not informed; NM: natural mating; AI: artificial insemination. *Dosages varying from 700 
to 1,400 IU eCG or 750 to 1,500 IU eCG; †Administration moment ranging from immediately postpartum to the 37th d 
postpartum; ‡Administration moment ranging from the 38th to the 67th d postpartum; **Concurrently reduction of 
suckling stimulus; §Administration moment ranging from the 13th to the 32th d postpartum; #Administration moment 
ranging from the 16th to the 37th d postpartum. 

Progestogens during lactation 

Suppression and synchronization of post-weaning estrus can also be accomplished through 
supplementation with progestogens during lactation. Compared to non-supplemented sows 
(primiparous and multiparous), those supplemented with altrenogest from the 12th to the 18th 
d of lactation and weaned at the 21st d presented a similar number of follicles and farrowing 
rate, but greater follicle diameter at the time of estrus and greater subsequent litter size 
(Lopes et al., 2017). When the same supplementation was conducted in primiparous and 
multiparous sows during the last week of a 3-week lactation, follicle diameter at weaning was 
increased, corpora lutea were larger and uniform and estrus expression was concentrated 5 d 
after weaning (Gianluppi et al., 2021). 

Despite those promising results, it is important to emphasize that altrenogest, the only 
progestogen commercially available for use in sows, may be considered costly and labor-intensive 
since it requires oral supplementation every 24 h (Haas et al., 2017). Intravaginal devices for slow 
progestogen release, efficiently used to control estrous cycle in ruminants, have been tested in 
swine by our group (Gasperin et al., 2011; Freling et al., 2013; Ulguim et al., 2019; Quirino et al., 
2020; Fiúza et al., 2023), but such devices are still not validated for this species and currently not 
available in the market. Based on the effectiveness of gonadotropins treatment during lactation in 
inducing ovulation and luteinization, eCG and/or hCG treatment may represent an alternative to 
synthetic progestagens, which is currently being investigated by our group. 

The need for alternative protocols to control the estrous cycle of sows is also justified by 
the restrictions to the use of steroid hormones imposed by some markets, such as the 
European Union, New Zealand, Australia, USA, and Canada (European Union, 2003; Lane et al., 
2008; FDA, 2021). Such restrictions are based upon concerns related to potential 
environmental contamination and the negative collateral effects of residues of such hormones 
(Karg and Vogt, 1978). 

Final considerations 

Despite the occurrence of lactational anestrous, treatment with chorionic gonadotropins in 
lactating sows can be an important management strategy to control the subsequent 
reproductive cyclicity. Treatment with 1,000 IU hCG at 24 and 48 h after farrowing can induce 
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ovulation, whereas treatment with 1,000-2,000 IU eCG at the end of lactation may induce estrus 
and ovulation in a large frequency of treated sows. Such therapies can be used to either 
suppress or synchronize estrous after weaning, also allowing AI to be conducted during 
lactation. Improvement in pregnancy rates can be achieved through the administration of high 
doses of chorionic gonadotropins (e.g., 1,500 IU eCG plus 500 – 1,000 IU hCG; or 1,000 IU eCG 
plus 1,000 IU hCG) after the third week of lactation. Future studies should evaluate whether 
the efficiency of such treatments may be influenced by factors such as the reduced suckling 
stimuli in farrowing rooms and the presence of boars during estrus detection. Furthermore, 
the viability of using such an approach as an alternative to synthetic steroid treatment to 
prolong the WEI deserves investigation. 
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