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Abstract 
Gene editing technologies have revolutionized the field of livestock breeding, offering unprecedented 
opportunities to enhance animal welfare, productivity, and sustainability. This paper provides a 
comprehensive review of recent innovations and applications of gene editing in livestock, exploring the 
diverse applications of gene editing in livestock breeding, as well as the regulatory and ethical 
considerations, and the current challenges and prospects of the technology in the industry. Overall, this 
review underscores the transformative potential of gene editing in livestock breeding and its pivotal role 
in shaping the future of agriculture and biomedicine. 
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Introduction 

In animal production, gene editing tools represent a significant improvement, overcoming 
the limitations of traditional breeding methods. While conventional approaches like natural 
breeding and trait selection have historically driven progress, they are often yield 
unpredictable or inefficient outcomes. Traditional breeding struggles to introduce or enhance 
high-quality genes without inadvertently introducing undesirable traits, such as infertility or 
low growth (Bishop and Van Eenennaam, 2020). Furthermore, continued genetic 
improvements through selective breeding rely on the existence of beneficial natural genetic 
variation within the population. Without such variation, there is limited scope for trait 
improvement (Whitworth et al., 2022; Menchaca, 2020). In contrast, gene editing offers a novel 
pathway towards rapid advancement, characterized by precision and efficiency. 

Furthermore, it’s crucial to address the evolving requirements of the global food production, 
including environmental, economic, and social concerns (Henchion et al., 2021). The FAO projects 
a continued increase in the consumption of animal protein, highlighting the need for higher-
quality foods to meet global demands (FAO, 2009). Achieving this necessitates both genetic and 
sustainable management-based productivity enhancements (Fahrenkrug et al., 2010). Thus, this 
technology presents opportunities to accelerate genetic improvement with unprecedented 
accuracy, revolutionizing agricultural productivity, sustainability, and animal welfare 
simultaneously (Mueller and Van Eenennaam, 2022: Mariano et al., 2024). 

In recent years, changing public opinion and regulatory landscapes have permitted the 
integration of gene-edited animals into production systems and even for human consumption 
(Epstein et al,2021). Programs like the FDA/CVM in the USA regulate and evaluate the risk of 
intentional genomic alterations (IGAs) in animals before they enter the food supply or the 
environment. Several models, including Atlantic salmon, the α-gal pig, and the SLICK cattle, have 
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been approved for human consumption through such programs. The use of safer and more 
efficient technologies has demonstrated that genetically modified animals serve purposes 
beyond food, contributing to human health, serving as bio-models for disease treatment, and 
providing biomaterials for tissue and organ reconstruction (Kues and Niemann, 2004). 

Gene editing tools 

Several gene editing tools are utilized in the production of livestock animals, primarily 
involving the generation of a double-strand DNA break followed by repair through non-
homologous end joining (NHEJ) or homology directed repair (HDR) pathways. These tools 
include Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENS), 
CRISPR-associated 9 (Cas9) system (Carlson et al, 2012; Navarro-Serna et al., 2020). 

Zinc Finger nucleases 

Zinc Finger nucleases were among the earliest technologies developed to induce site-
directed DSBs at specific loci by anchoring endonuclease catalytic domains to modular DNA-
binding proteins. ZFNs, are chimeric proteins that combine zinc finger proteins with 
endonucleases, usually the cleavage domain of the FokI restriction enzyme (Kim and Kim, 
2014). ZFNs constitute an effective tool to perform gene silencing (knockout), correcting 
defective genes, or to introduce DNA sequences at DSB sites (Carroll, 2011). ZFNs can be 
introduced into cells or embryos, as DNA, RNA, or protein (Harrison et al., 2014). 

This tool has been utilized effectively in editing the genomes of various livestock animals, 
including fish (Dong et al., 2011), cattle (Liu et al., 2014), and pigs (Bao et al., 2014; Qian et al., 
2015). However, concerns have been raised regarding its off-target activity (Pattanayak et al., 
2011). Additionally, the cost of effective commercial Zinc Finger Nuclease (ZFN) reagents 
remains high, and despite the availability of some open-source libraries for the project, the 
process of engineering ZFNs remains complex. 

TALENs 

Transcription activator-like effector nucleases (TALENs) are naturally produced by 
phytopathogenic bacteria of the genus Xanthomonas sp. and naturally function to modulate host 
gene expression. After delivery to host cells via the bacterial type III secretion system, TAL 
effectors enter the nucleus, bind to specific effector sequences in host gene promoters, and 
activate transcription (Bogdanove et al., 2010). As a DNA editing tool, TAL effectors are fused to 
the catalytic domain of the FokI nuclease to create DSBs at the target DNA (Miller et al., 2011). 
TALENs function in pairs, binding opposite targets through a spacer, which brings the FokI 
domains together, working as a dimer, to cleave the DNA creating the DSB (Cermak et al., 2011). 

Compared to ZFNs, TALENs have higher specificity and are easier to design and construct. 
Consequently, TALENs have been successfully deployed for genome editing of livestock 
animals such as pigs (Carlson et al., 2012), cattle (Carlson et al., 2012), sheep (Li et al., 2016), 
and goats (Cui et al., 2015). However, TALENs have been diminishing use with the emergence 
of the CRISPR/Cas9 system. 

CRISPR 

The CRISPR/Cas9 system, originally an adaptive immune system in bacteria to protect 
against invading viruses, has been repurposed for gene editing, offering a precise and versatile 
tool for targeted DNA modification(s) (Doudna and Charpentier 2014; Hsu et al., 2013). It 
utilizes a single guide RNA (sgRNA) of 20 nucleotides that undergoes Watson-Crick base pairing 
with a specific DNA sequence adjacent to a protospacer adjacent motif (PAM: NGG, where N is 
any of the four bases of DNA) sequence, guiding the Cas9 endonuclease to induce a DSB at the 
target DNA sequence (Cong et al., 2013). Unlike previous technologies like ZFNs or TALENs, 
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which require custom protein engineering for each target sequence, CRISPR/Cas9 relies solely 
on the design of the sgRNA for specificity (Doudna and Charpentier, 2014). 

Following cleavage, the cell’s repair mechanisms come into action. The nonhomologous 
repair pathway (NHEJ) becomes the cells preferred path of choice, albeit error-prone and can 
lead to the formation of random short insertions and/or deletions and thus change the 
structure of mutations and disrupting gene function. Alternatively, with the introduction of an 
exogenous repair template, homology-directed repair (HDR) can occur, allowing for precise 
gene editing or the insertion of desired DNA sequences. With the ease of this system and NHEJ 
being the cells preferred repair mechanism the NHEJ represents the main method of 
generating gene knockouts mediated by CRISPR/Cas9. 

The NHEJ repair mechanism has led to the generation of the first successful disruption of 
endogenous genes in a variety of livestock species (Whitworth et al., 2014; Ni et al., 2014; 
Wang et al., 2015; Gao et al., 2017). Similarly, this technology has successfully produced 
livestock knock-in animals by HDR like pigs (Wang et al., 2018) and small ruminants 
(Eaton et al., 2019), and has been widely used until today. This tool has been widely studied 
and applied to improve livestock heredity, reproduction, and nutrition levels. All the CRISPR 
and CRISPR-associated protein (Cas) can be easily customized to effectively introduce 
mutations at specific locations within genes in mammalian cells (Cong et al., 2013). 

Recent developments in CRISPR technology are presenting new promising CRISPR variants. 
For example, base editing (BE), a variation of Cas9 that consists of a catalytically impaired Cas9 
endonuclease fused to a reverse transcriptase allowing precise targeted insertions, deletions 
and point mutations without requiring DSBs or donor DNA templates (Perisse et al., 2021). BE 
systems offer lower off target activity and fewer by products than previous alternatives 
(Anzalone et al., 2019). Based on these advantages, several groups have produced various 
models to improve livestock production, reproduction, milk-production, and wool-production 
traits (Li et al., 2019; Zhu et al., 2022: Wang et al., 2022). 

Delivery methods 

The development of gene-editing techniques in livestock animals has increased in recent 
years, particularly with the advancements in technologies such as CRISPR/Cas9 and 
improvements in delivery methods. Although the first GE livestock animals were produced by 
micromanipulation in 1985 (Hammer et al., 1985), the conventional gene targeting approaches 
of that time were inefficient and the techniques were limited in scope. However, over the past 
20 years, the emergence of new tools has demonstrated relevant techniques for producing 
different gene-edited livestock models across various species. 

Zygote editing 

Editing zygotes, as opposed to other methods such as somatic cell nuclear transfer (SCNT), 
offers advantages for production purposes, allowing for the creation of diverse foundation 
animals that are genetically distinct, as opposed to identical animals derived from a clonal cell 
line (Bishop and Van Eenennaam, 2020; Mariano et al., 2024). Initially, microinjection was the 
traditional method used to deliver gene editing reagents. However, newer techniques like 
electroporation have emerged as promising alternatives, offering a less time-consuming and 
more cost-effective approach. 

Microinjection involves injection of gene editing reagents by micromanipulation of one-cell 
stage embryos (Figure 1). Initially, microinjection proved to be effective in producing several 
transgenic species such as mice, rabbits, pigs, sheep, cattle, and goats through microinjection 
of gene constructs into the pronucleus of a zygote (Wall, 1996). With the use of CRISPR/Cas9, 
the process became easier and faster, allowing the microinjection into the cytoplasm rather 
than the pronucleus. Thus, CRISPR/Cas9 microinjection has become more innocuous and 
efficient in livestock animals (Menchaca et al., 2020). 
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Figure 1. Schematic diagram of gene editing delivery methods to produced livestock animals. IVF= in 
vitro fertilization, AI= Artificial Insemination, SCNT=Somatic cells nuclear transfer. 

Furthermore, the method requires the use of expensive equipment and skilled personnel 
to microinject zygotes with genome-editing reagents in a single zygote cadence. In addition to 
these limitations, the timing between microinjection and fertilization significantly impact the 
results, sometimes making it a challenge to achieve consistent results. It is known that to obtain 
efficient and consistent results, it is crucial to attempt the narrow time window between 
gamete fusion and the first embryo cell division for delivering editing tools. Thus, many models 
prefer, when possible, in respect to species, to use in vitro fertilized embryos to determine the 
most appropriate time to deliver gene editing reagents prior to the first cell division and avoid 
mosaicism (Lin et al., 2021; Ratner et al., 2021). 

Electroporation of zygotes offers a simplified and streamlined approach for transfecting 
mammalian zygotes (Figure 1). The technique was initially used for gene transfer and introducing 
other agents into cells (Knutson and Ye,  1987). However, in the last decade, the success of the 
technique to introduce genes into zygotes of different species has been demonstrated. The first 
protocol was established in pre-implantation embryos in mice (Peng et al., 2012), followed by 
various protocols for editing zygotes by electroporation (Qin et al., 2015; Chen et al., 2016) 
enhancing the system efficiency. However, none of these protocols were repeatable in other 
species such as bovine (Wei et al., 2018), largely due to differences in embryo structure, e.g. the 
zona pellucida. The electroporator system directs pulses of electrical currents through the 
zygotes via electrodes creating temporary micro-holes in the zona pellucida and plasma 
membrane which facilitate the movement of genome editing reagents into the zygotes (Lin et al., 
2021). Modifications to the different parameters (voltage, number of pulses, and pulse length), 
have demonstrated to be adaptable to the needs of the different species and enabling the 
generation of edited animals like bovine (Camargo et al., 2020), buffalo (Punetha et al., 2024), and 
porcine (Tanihara et al., 2016) with success. The workflow of delivering genome-editing reagents 
is considerably accelerated compared to microinjection, affording simultaneous electroporation 
of 35 to 100 zygotes (Modzelewski et al., 2018). 

The recent success of electroporation can also be attributed in part to its combination with 
Cas9 as a protein. The compact nature of the RNP complex allows it to easily enter through the 
pores generated in zygotes, contrasting with larger Cas9 mRNA or other editing tools. This 
makes the process more efficient and less time-consuming (Ratner et al., 2021). Furthermore, 
this technique is continuously evolving with new adaptations, such as the novel method called 
improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD). i-GONAD delivers 
CRISPR RNPs to E0.7 embryos via in situ electroporation. The oviductal electroporation 
effectively edits the zygotes while retaining the reproductive function of the female. This 
approach holds high promise as an in vivo gene therapy tool for germline gene correction 
(Takabayashi et al., 2018). 
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Cell line editing 

On the other hand, as an alternative to the zygote edition (Microinjection or 
electroporation), is the editing of somatic cells by transfection and the production of the animal 
by SCNT (Figure 1). Since the birth of Dolly in 1996 (Wilmut et al., 1997), SCNT has become the 
cell-mediated platform for livestock genetic engineering (Perisse et al., 2021). This technique 
offers several advantages, due to the efficiency of editing in somatic cells and the possibility to 
have multiplex editing (Sato et al., 2017). Additionality, it enables the manipulation and 
characterization of genetically modified cells before SCNT, ensuring the birth of animals with 
the desired genotype and desired sex (Clark and Whitelaw, 2003). This capability facilitates the 
replication of the same line of gene-edited animals and, more importantly, reduces mosaicism 
in animals generated (Ratner et al., 2021). 

However, this technique is time consuming like microinjection and requires highly trained 
personnel and expensive equipment. Furthermore, it’s efficiency is hindered by the low 
proportion of transferred embryos and low pregnancy rates. There are also concerns about 
potential SCNT related epigenetic alterations and an increase in stillborn or low newborn 
survival rates (Keefer, 2015; Perisse et al., 2021). 

Applications 

The application of gene editing technology in animals has significantly contributed to 
various aspects of livestock production, including the development of desirable production 
traits, reducing the generation interval, and improving animal resistance to diseases, making 
them more adapted and resilient (Mueller and Van Eenennaam, 2022; Mariano et al., 2024). 
Additionally, diverse approaches have demonstrated potential for biomedical applications. 
These include the generation of animal models for studying human genetic diseases, the 
production of biopharmaceuticals, and the exciting prospects of utilizing gene-edited animals 
as potential sources of tissues and organs for human transplantation. 

Agricultural 

Production traits 

In efforts to increase animal protein production, early research focused on modifying 
growth hormone genes in fish. This editing led to enhanced growth rates, with fish growing 30 
to 50% faster and larger than the wildtype counterparts. One notable example is the growth 
hormone transgenic Atlantic salmon (AquAdvantage® salmon), which contains a copy of the 
growth hormone from Coho salmon (Du et al., 1992). Approved by the FDA for human 
consumption in 2015 and for commercial production in Canada and USA in 2016, these salmon 
represent a milestone in genetic modification for agricultural purposes. 

Another common approach to increase productivity is through the knockout of the 
myostatin gene (MSTN). This genetic modification allows for an increase in muscle percentage, 
leading to enhanced meat production across various animal species, including sheep 
(Crispo et al., 2015), cattle (Proudfoot et al., 2015), pigs (Tanihara et al., 2016), fish (Zhong et al., 
2016; Khalil et al., 2017), and goats (Wang et al., 2018). 

Animal health 

Harnessing the potential of gene editing technologies like CRISPR/Cas9 offers a 
transformative approach to combatting diseases in bovine and porcine populations (Ran et al., 
2013; Proudfoot et al., 2015; Ruan et al., 2017). By precisely manipulating key genetic factors 
involved in disease susceptibility or resistance, researchers and genetic companies aim to 
bolster the natural defenses of these animals against prevalent pathogens. In the bovine 
sector, ailments such as bovine respiratory disease complex (BRDC) and bovine viral diarrhea 
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(BVD) significantly impact productivity and profitability (Workman et al., 2023). Other models 
for disease resistance have been developed for common infections such as mastitis, 
tuberculosis, and bovine spongiform encephalophathy through the insertion of genes like 
human lysozyme (Liu et al., 2014), human NRAMP1 (Gao et al., 2017) and disruption of the 
PRNP gene (Bevacqua et al., 2016). Similarly, in porcine farming, diseases like porcine 
reproductive and respiratory syndrome (PRRS) and African swine fever (ASF) pose persistent 
challenges (Prather et al., 2017; Carriquiry et al., 2021). Through targeted genetic 
modifications, pigs can be fortified with enhanced immunity against these devastating 
diseases, safeguarding herd health and global pork production. Genus plc recently published 
successful development of a sizable PRRS-resistant pig population, providing compelling 
evidence of the practical application of genetic technologies in addressing disease and health-
related traits (Burger et al., 2024; Nesbitt et al., 2024). 

Gene editing holds promise in developing animals with heightened resistance to these 
infections, potentially reducing the need for costly interventions and pharmaceutical 
treatments. While ethical and regulatory considerations persist, the application of gene editing 
represents a paradigm shift in disease management strategies for sustainable agriculture and 
food security. 

Welfare 

With the aim of promoting a more sustainable and welfare-conscious animal production 
system, gene editing has also been developed to mitigate the need for labor-intensive 
management practices that rely on chemical or mechanical methods. For instance, gene editing 
techniques such as polled horned editing in bovine to avoid the dehorning process 
(Carlson et al., 2016) and KISS1 knockout editing in porcine to avoid the castration process 
(Flórez et al., 2023), thereby protecting the welfare of animals and their handlers. 

In addition, to enhance the adaptability and resilience of certain breeds into different 
environmental conditions, some genes can be selected from nature and introduced into non-
adapted breeds. For example, the PRLR gene (Rodríguez-Villamil et al., 2021) in bovine and the 
UPC1gene in porcine (Zheng et al., 2017) have been targeted to improve thermotolerance. 
Similarly, in the case of fish, gene editing has been utilized to address issues such as 
biodiversity conservation and avoid the problems of bioaccumulation. By regulating 
reproduction, sex ratio, and even inducing sterilitity in unwanted predatory species 
(Matsuda et al., 2002; Karigo et al., 2014; Tang et al., 2015, Wargelius et al., 2016) gene editing 
offers promising solutions for promoting animal welfare and environmental sustainability in 
aquaculture. 

Biomedical 

While the regulatory landscape for CRISPR/Cas9 in agricultural applications remain under 
review, gene editing in biomedicine and basic research continues to expand (Menchaca et al., 
2020). Large animals are increasingly used as models in biomedicine for studying human 
diseases and conducting preclinical trials for testing drugs and medical devices. Porcine models 
are particularly prevalent due to the anatomically and physiologically similarities to humans 
compared to small rodents (Hou et al., 2022). Recent advances in human genomics and genetic 
engineering have facilitated a deeper understanding of human genetic disorders, leading to a 
surge in the use of pig models in studies related to cancer (Soda et al., 2007, Schook et al., 
2015), diabetes (Rodriguez et al., 2020), cardiovascular diseases (Yang et al., 2011, Chen et al., 
2021), immunodeficiencies (Suzuki et al., 2012) and various neurological conditions 
(Andersen et al., 2022). Porcine biomodels play a crucial role not only to understand human 
disease pathogenesis but also in facilitating the development of novel treatments, accelerating 
preclinical trials, enabling combinations of therapies, develop new drugs and devices, 
identifying new drug indications with accurate dosages, creating diagnostic tools such as 
biomarkers and imagine technology, and enhancing surgical intervention systems. 
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On the other hand, other animal models such as zebrafish are widely utilized to address 
significant issues in genetics, reproduction, toxicology, drug-receptor, and host-pathogen 
interaction. Zebrafish, being a valuable model organism for aquaculture and biomedicine 
applications, have been successfully employed in studies utilizing RNA interference tools, 
making them essential for research in various fields (Carpio and Estrada, 2006). Additionally, 
CRISPR/Cas9 technology has been successfully used in the development of gene modification 
in other non-model species as the tilapia and the atlantic salmon (Li et al., 2014) 

Xenotransplantation 

Among the different porcine biomedical models, xenotransplantation represents a 
significant contribution. Given the imbalance between organ supply and demand for human 
organs, animal organs, tissues and cells are being explored as promising solutions to address 
the global organ shortage. However, immunological barriers pose challenges in clinical 
xenotransplantation. Consequently, numerous immunosuppressive therapies and gene-
editing strategies, including gene knockout models, have been reported in attempts to prevent 
hyperacute rejection and acute vascular rejection mechanisms to promote the tolerance in pig-
to-human xenotransplantation (Phelps et al., 2003; Lin et al., 2010; Estrada et al., 2015; 
Cowan et al., 2019) 

Furthermore, recent achievements in xenotransplantation, including the first human clinical 
trials, have continued to spark increased interested and the development of new technologies 
and approaches (Mallapaty and Kozlov, 2024). Despite regulatory challenges and ethical 
concerns surrounding gene editing and clinical xenotransplantation, ongoing efforts are 
advancing new regulatory standards and fostering a more favorable public opinion about gene 
editing and pig models (Crane et al., 2020; Kozlov, 2022). This progress has opened avenues 
for novel alternatives, such as exotransplants using human stem cells for organ production 
through human–animal chimeras and blastocyst complementation (Wu et al., 2016). 

Conclusions 

The advancements made in gene-editing present promising and safer avenues for the 
production and improvement of livestock animals in agriculture, addressing global 
requirements for enhanced production, sustainability, and animal welfare. Furthermore, these 
innovations provide valuable biomedical models for human research, drug development, and, 
notably, the potential for xenotransplantation of human cells, tissues, and organs. 
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