asagr
Acta Scientiarum. Agronomy
Acta Sci., Agron.
1807-8621
Editora da Universidade Estadual de Maringá - EDUEM
Este trabalho teve por objetivo caracterizar numérica e morfologicamente os
cariótipos de acessos de Capsicum annum, Capsicum
chinense, Capsicum frutencens e Capsicum
baccatum pertencentes à coleção do Banco ativo de Germoplasma de
Capsicum sp. da Universidade Federal do Piauí (BGC-UFPI). Estas
espécies têm grande importância econômica em todo mundo, e a caracterização
citogenética fornece informações importantes para estudos de taxonomia bem como para
programas de melhoramento genético do gênero na qual estão inseridas. Os cariótipos
foram obtidos pelo método de esmagamento e coloração com Giemsa de células dos
meristemas das radículas dos acessos estudados. A partir dos resultados verificou-se
número cromossômico 2n = 2x = 24 para todas as quatro espécies. Foi observado
polimorfismo cromossômico para o acesso BGC 37 da espécie C.
frutencens, que apresentou 12 pares de cromossomos metacêntricos,
diferindo dos outros que apresentaram 11 pares de cromossomos metacêntricos e 1 par
de cromossomo sub-metacêntrico. Visualizou-se nos acessos BGC 01 e BGC 37 desta
espécie constrições secundárias nos homólogos 1 e 12, e 6 e 11, respectivamente. Os
cariótipos das espécies estudadas foram assimétricos entre si. Os resultados obtidos
neste estudo corroboram com a grande diversidade genética descrita na literatura para
o gênero Capsicum.
Introduction
The Capsicum sp. peppers of the Solanaceae family, which are found in
tropical and temperate regions worldwide, are valued as spices or vegetables by many
different cultures. The genus has significant economic importance for the national and
international condiment, seasoning and canning markets, and it is cultivated at scales
ranging from family production to industrial systems (FONSECA et al., 2008). These peppers are also employed in phytotherapeutic
medicine, primarily in South and Latin American countries. The genus contains high
concentrations of vitamins A and C, β-carotene and capsaicins, which have been shown to
provide antioxidant, antimicrobial, anti-inflammatory and hypocholesterolemic action
among other benefits (COSTA et al., 2008; ZENI; BOSIO, 2011).
Four domesticated species of Capsicum are widely grown and consumed in
Brazil: C. annuum L. (bell pepper, sweet pepper), C.
chinense Jaqc. (Yellow Lantern Chili), C. frutescens L.
(Malagueta Pepper) and C. baccatum L. (Bishop's Crown) (LANNES et al., 2007). These species are highly
adapted to tropical climate conditions and contain high biological diversity, which is
presented by the variety of fruit sizes, forms and coloration (HAVERROTH; NEGREIROS, 2011; ZENI;
BOSIO, 2011).
Brazil is considered a natural habitat of these peppers, and the main pepper-producing
states are Minas Gerais, São Paulo, Rio de Janeiro, Ceará and Bahia (ZENI; BOSIO, 2011). However, knowledge about the
genetic diversity of these plants in Brazil is still rudimentary despite a significant
research commitment to biochemical, molecular and cytogenetic studies of the species
over the past two decades (HAVERROTH; NEGREIROS,
2011).
Studies of pepper chromosome number and morphology generate important data for
Capsicum taxonomy (SOUZA et al.,
2011), contribute to the understanding of the genetic variations involved in
the evolution of the genus (MOSCONE et al.,
2007), aid in the delineation of the cultivated, semi-cultivated and wild species
(CARVALHO; BIANCHETTI, 2008; PEREIRA et al., 2006) and further
plant diversity conservation by supplying information to aid genetic improvement
programs for this genus (SOUZA et al., 2011).
Rohani et al. (2010) mentioned that
cytogenetic studies of different Capsicum genebank accessions comprise
an important data source for breeders, which allows for better gene pool administration
and a more efficient selection of genetic resources.
Because of the economic relevance and genetic variability described in the literature
for C. annuum, C. chinense, C.
frutescens and C. baccatum along with the relative lack of
data for these species, this study aimed to characterize and analyze the karyotypes of
accessions from the collection of the active Capsicum sp. genebank of
the Federal University of Piauí (BGC-UFPI). In addition, the data on the agricultural
production of peppers in the state of Píauí are imprecise and irregular as small
producers dominate production in the region. Commercialization of this product involves
small homemade or artisanal operations for sauces, preserves, jellies and powdered
pepper, as well as small companies that directly sell their products to street markets
and small supermarkets. However, Píauí possesses environmental conditions, such as
temperature and soil type, that are quite favorable for the large-scale production of
these four Capsicum species. Cytogenetic studies of these species may
aid in the genetic enhancement and expansion of production of this genus in Piauí
through better characterizing their variability.
Material and methods
Material
The accessions of the studied species were obtained from the active
Capsicum sp. genebank at the Federal University of Piauí, which
is located in the city of Teresina. Four accessions of the species
C.
annum (BGC 34, BGC 36, BGC 39 and BGC 59), two accessions of the
species C. chinense (BGC 07 and BGC 49), two accessions of the
species C. frutencens (BGC 01 and BGC 37) and four accessions of
the species C. baccatum (BGC 21, BGC 26, BGC 27 and BGC 54) were
cytogenetically characterized.
The geographical distances between the species were also taken into consideration.
The accessions BGC 39, BGC 36, BGC 01, BGC 37, BGC 21 and BGC 26 were collected in
Teresina, Piauí State; the accessions BGC 34, BGC 54 and BGC 07 were acquired in São
Raimundo Nonato, Piauí State, Pedro II, Piauí State and Piripiri, respectively; the
accession BGC 49 was collected in the city of São Paulo (SP); and the accessions BGC
59 and BGC 27 were collected in São Luís do Maranhão, Maranhão State and São
Francisco, Maranhão State, respectively.
Seeds of these accessions were germinated in the Biochemical Genetics and DNA
Sequencing laboratory (LGBS) of the Biology Department of the Pernambuco Rural
Federal University (UFRPE) in January 2011. The seeds were placed in a growth chamber
under room temperature and controlled lighting (12-hour days) in Petri dishes covered
with filter paper and moistened daily with distilled water for five days.
Cytogenetic evaluation
The cytogenetic analyses were conducted in the same laboratory in the first semester
(January-July) of 2011. The rootlets (approximately 0.5 cm) of the different
accessions were collected and pre-treated with 8-hydroxyquinoline (2 mM) for four
hours at room temperature. The rootlets were washed in distilled water, fixed in a
solution of Carnoy-absolute ethanol and glacial acetic acid (3:1) for 24 hours and
preserved at -20ºC. For the preparation of the slides, the fixed rootlets were washed
in distilled water and hydrolyzed in 1 N HCl at room temperature for 10 minutes.
After hydrolysis, the rootlets were washed again in distilled water and slides for
each accession were prepared. For the preparation of each sheet, a rootlet tip was
removed with a scalpel, macerated in a drop of 45% glacial acetic acid and covered
with a coverslip. The coverslips were removed with nitrogen, and the slides were
air-dried and stained with 2% Giemsa stain for 10 to 15 minutes and mounted with
Entellan (Merck(r)).
Karyotypic analysis
The slides were analyzed at 100X magnification using a Leica DM 2500
microscope equipped with a DC 345 FX digital microcamera coupled to
a microcomputer for direct capture of the images of interest. The images were
obtained using the Image-Pro Plus program (version 5.1).
Five cells in metaphase from each accession, each corresponding to one repetition,
were used for the chromosome measurements, which were conducted with the aid of the
MicroMeasure 3.3 Program (REEVES; TEAR, 2000).
The following average values were obtained: a) length of the long arm (LA); b) length
of the short arm (SL); c) total length of the chromosome (TCL = LA + SA); d) total
length of the haploid batch (TLHB = ∑ TCL); and e) relative length (r = (TCL/TLHB) x
100).
The identification of the homologs was conducted using the selected parameters
described above. The chromosomes were classified as metacentric, submetacentric,
acrocentric or telocentric based on the ratio between the arms (r) and centromere
index (ic), which was proposed by Guerra
(1986). The accessions were also analyzed using the Asymmetry Index (AI)
according to Romero-Zarco (1986).
Data analysis
The accessions were compared for two parameters: TLHB and TCL. Analysis was conducted
as a randomized design with five repetitions using the following model:
Variance analysis was conducted using Tukey's test
for the comparison of averages (1949) at a 5% level of significance. All
analyses were calculated using the Genes software (CRUZ, 2006).
Results and discussion
Giemsa staining of the C. annum, C. chinense,
C. frutencens and C. baccatum accessions allowed
for accurate descriptions of the number, morphology and size of the chromosomes, type of
interphase nucleus and chromosomal condensation pattern. The majority of the chromosomes
did not display differentiated areas along their length aside from the centromeric
region and visualization of secondary constrictions in the accessions of one species.
For each of the 12 accessions, a chromosome number of 2n = 2x = 24 was confirmed (Figure 1); this ploidy level is widely described in
the literature for a number of Capsicum species (GUERRA, 2001; MOSCONE et al.,
2007; PICKERSGILL, 1997; POZZOBON, WITTMANN, 2006; SOUZA et al., 2011; TEODORO-PARDO et
al., 2007;) and is also common in the Solanaceae family (PICKERSGILL, 2007). However, in some wild Capsicum,
such as C. buforum, C. capylopodiume and C.
cornutum, a ploidy level of 2n = 2x = 26 has been reported (POZZOBON; WITTMANN, 2006). Pozzobon and Wittmann (2006) suggest that two different evolutionary
lines emerged in the diversification of this genus, which is shown by a clear separation
between the wild species (base number x = 13) and domesticated species (x = 12). These
authors also hypothesized that the x = 13 lines are ancestral to the x = 12 plants.
Figure 1:
(1) Metaphasic chromosomes of C. annuum (BGC 39) (2)
Metaphasic chromosome of C. chinense (BGC 49), (3) Metaphasic
chromosomes of C. frutescens (BGC 01), and (4) Metaphasic
chromosomes of C. baccatum (BGC 21). Bar = 10 mm.
Of the studied accessions, 11 presented the karyotypic formula 11M + 1SM (Figure 2), in which chromosome 12 was classified as
submetacentric. The C. frutescens accession BGC 37 presented the
karyotypic formula 12M (Table 1, Figure 3), which demonstrates chromosomal
polymorphisms in relation to the other accessions.
However, the karyotypic formulas reported in the literature conflict with those observed
in the present study. Guerra (2001) reported the
karyotypic formula 11M + 1A for a number of Venezuelan accessions of C.
chinense using Giemsa stain.
Souza et al. (2011) also observed the formula 11M
+ 1A through conventional cytogenetics in C. chinense
accessions from different states of Brazil. Sousa et al.
(2011) and Moscone et al. (1996)
analyzed the evolutionary patterns across species of Capsicum by
chromosome banding and observed the karyotypic formulas of 11M + 1SM + 1A and 11M + 1A
for C. frutescens, respectively.
Figure 2:
Diploid karyogram representative of the Capsicum
frutescens (BGC 01) karyotype with karyotypic formula 12M. (bar =
10 μm).
Teodoro-Pardo et al. (2007) explained how
different karyotypic formulas in a single species canoccur due to genetic variations
among populations, which are generated from the genomic response to different
environments. The same authors discuss how the appearance of polymorphisms at the
chromosomal level in individuals of the same population can alter the karyotypic pattern
of those specimens and originate distinct chromosomal races.
Figure 3:
Diploid karyogram representative of the Capsicum frutescens
(BGC 37) karyotype with the karyotypic formula 12M. (bar = 10
μm).
According to Moscone et al. (2007), differences
in the morphology, size and number of chromosomes are common in populations of the same
species or in interspecific taxa, and these differences are grouped into cytotypes or
chromosomal races. These authors affirmed that such differences are frequent in the
genus Capsicum, in which cytotypes differ mainly in karyotypic formula
and chromosome size. For the C. frutescens accessions
BGC 01 and BGC 37, secondary constrictions were observed in the
homologous pairs 1 and 12 and 6 and 11, respectively (Figures 2 and 3).
Moscone et al. (1996) reported the presence of
secondary constrictions in every Capsicum species, which ranged from 1
to 4 per karyotype.
Table 1:
Average values, in micrometers, of CSI, CI, r, AI, and KF of four
accessions of the species C. annum (BGC 34, BGC 36, BGC 39,
BGC 59), two accessions of the species C. chinense (BGC 07,
BGC 49), two accessions of the species C. frutencens (BGC 01,
BGC 37) and four accessions of the species C. baccatum (BGC
21, BGC 26, BGC 27, BGC 54).
Species /Accession
2n
CSI
CI
r
AI (%)
KF
C. annuum - BGC 34
24
6.92 - 3.64
45.34
1.22
45.61
11M+1SM
C. annuum - BGC 39
24
6.49 - 3.59
45.64
1.20
45.81
11M+1SM
C. annuum - BGC 36
24
7.05 - 3.69
45.53
1.21
45.77
11M+1SM
C. annuum - BGC 59
24
7.42 - 4.42
44.63
1.25
44.68
11M+1SM
C. chinense - BGC 07
24
6.60 - 4.56
45.80
1.19
45.97
11M+1SM
C. chinense - BGC 49
24
5.82 - 3.29
45.88
1.07
46.05
11M+1SM
C. frutescens - BGC 01
24
7.17 - 4.21
45.19
1.12
45.46
11M+1SM
C. frutescens - BGC 37
24
5.73 - 3.60
46.55
1.06
46.54
12M
C. baccatum - BGC 21
24
7.00 - 4.45
47.45
1.18
47.64
11M+1SM
C. baccatum - BGC 54
24
7.48 - 4.31
44.90
1.22
45.08
11M+1SM
C. baccatum - BGC 26
24
6.92 - 3.49
47.60
1.22
45.51
11M+1SM
C. baccatum - BGC 27
24
6.56 - 3.75
45.70
1.19
46.02
11M+1SM
CSI: chromosome size interval, CI: centromere index, r: chromosome arm
ratio, AI: asymmetry index and KF: karyotypic formula.
The average size of the chromosomes observed in the present work varied from 3.29 (BAC
49) to 7.48 µm (BGC 54) (Table 1). This result
diverges from the data found in the literature: Souza et
al. (2011) reported an average chromosome size of 2.59 to 4.12 µm in four
Brazilian C. chinense accessions, and Teodoro-Pardo et al. (2007) reported values of 1.6 to 8.4 µm, 2.4 to 2.9 µm
and 2.1 to 5.2 µm for C. annum karyotypes from three Mexican
states.
A high frequency of metacentric chromosomes was observed in the complements of the 12
accessions, which is indicated by the average values of the centromere indices (CI) and
ratios obtained between the arms of the chromosomes (r) (Table 1). The results indicate symmetrical karyotypes in the studied
accessions, especially in the C. frutescens accession
BGC 37, which presented only metacentric chromosomes. According to
Stebbins (1958), plants with higher karyotypic
symmetry than others of the same genus are evolutionarily ancestral to those that
possess lower symmetry.
Wadt et al. (2004) reported that although most of
Capsicum species are 2n = 24 and present high similarity in
chromosome morphology, the genus possesses high intra- and interspecific karyotypic
variability. This observation is supported by the results of the asymmetry index (AI%)
among the karyotypes of the species studied in this work (Table 1), which varied from 44.68 (BGC 59) to 47.64% (BGC 21). These
values are under 50% and demonstrate that the karyotypes are asymmetrical amongst
themselves according to Romero-Zarco (1986).
According to Moscone et al. (2007), a higher
asymmetry index among karyotypes of species in the same genus is correlated to higher
genetic variability among them. In the species studied here, the various fruit shapes
and sizes can be cited as examples of variability: the fruit of C.
annuum is a small berry with a smooth texture (MOSCONE et al., 2007); the fruits of C.
chinense are elongated, which measure approximately 1.0 to 1.5 cm in
diameter and possess a smooth texture (NUEZ-VIÑALS et
al., 2003); the fruit of C. frutencens is a smooth fusiform
berry (BENTO et al., 2007); and the fruits of
C. baccatum are smooth and round but variable in
size and shape and average 0.6 cm in diameter and 10 cm in length (CARVALHO et al., 2009).
According to Carvalho and Bianchetti (2008), the
flowers of Capsicum can also be used to observe the genetic variability
of the genus because there is significant diversity in the number of flowers per node,
flower and peduncle position, corolla and anther color, presence or absence of spots on
the petal lobes and cup edge.
The studied accessions were grouped using Tukey's test at an error rate of 5% (Table 2), and the results showed that significant
differences do not exist among the accessions BGC 07, BGC 21, BGC 54, BGC 36, BGC 34 and
BGC 27 in terms of the TCL and TLHB parameters.
Table 2:
Average TCL and TLHB values, expressed in micrometers (µm), for the
accessions of the species C. annum (BGC 34, BGC 39, BGC 36,
BGC 59), C. chinense (BGC 07, BGC 49), C.
frutescens (BGC 01, BGC 37) and C. baccatum (BGC
21, BGC 54, BGC 26, BGC 27).
Accession
Species
TCL
Group
TLHB
Group
BGC 01
C. frutescens
6.02
a
72.22
a
BGC 59
C. annuum
5.82
ab
69.89
ab
BGC 07
C. chinense
5.78
abc
69.35
abc
BGC 21
C. baccatum
5.69
abc
68.26
abc
BGC 54
C. baccatum
5.63
abc
67.51
abc
BGC 36
C. annuum
5.42
abc
65.01
abc
BGC 34
C. annuum
5.34
abc
64.11
abc
BGC 26
C. baccatum
5.28
c
63.38
c
BGC 27
C. baccatum
5.24
abc
62.84
abc
BGC 39
C. annuum
4.89
bc
58.65
bc
BGC 49
C. chinense
4.65
ab
55.86
ab
BGC 37
C. frutescens
4.41
ab
52.96
ab
TCL: Total chromosome length;
TLHB: Total Length of Haploid Batch. Accessions followed by the same
letter were grouped by Tukey test at 5%.
The accession BGC 01 differs significantly from the accessions BGC 39 and BGC 26, which
were all collected in Piauí, the accession BGC 26, which was from Piauí, and differs
significantly from the accessions BGC 37 and BGC 49, which were collected in Piauí and
São Paulo, respectively, in relation to these parameters (Table 2). Davide et al. (2007)
claim that the presence of karyotypic asymmetry that is associated with significant
differences of TLHB and TCL among individuals of the same or closely related species may
be the result of chromosomal alterations, such as Robertsonian translocations,
inversions, unequal translocations, deletions and duplications. The same authors explain
that these alterations can occur because of the environmental conditions, including
climate, soil, temperature and moisture, that the individuals are subjected. According
to Livingstone et al. (1999) chromosomal
alterations, such as translocations, duplications and deletions, have been observed in a
large number of plants in the species C. annuum
and C. chinense.
The results obtained in this work demonstrate variation among the studied species, which
is in agreement with the scientific literature; however, the species presented
symmetrical karyotypes and identical chromosomal numbers. Thus, wider sampling and more
detailed characterization of the chromosomes, through heterochromatin distribution and
identification of sequences by in situ hybridization, will be necessary
to determine if the differences among the species characterize intra- and/or
interspecific differentiation. Such approaches will be able discriminate among species
with the same karyotypic formula.
Conclusion
The results of the present study, when combined with future cytogenetic studies using
the BGC - UFPI accessions, will be of significant value to genetic enhancement programs
for Capsicum in the state of Piauí. This research will aid in the
development of higher quality and more productive varieties that are more resistant to
pests and diseases, which will encourage farmers to produce more of these vegetables.
Increased production will generate economic benefits by employing more labor during
planting and meet the market demands of the state.
BENTO, C. S.; SUDRÉ, C. P.; RODRIGUES, R.; RIVA, E. M.; PEREIRA, M. G.
Descritores qualitativos e multicategóricos na estimativa da variabilidade fenotípica
entre acessos de pimentas. Scientia Agraria, v. 8, n. 2, p. 664-679,
2007.
BENTO
C. S.
SUDRÉ
C. P.
RODRIGUES
R.
RIVA
E. M.
PEREIRA
M. G.
Descritores qualitativos e multicategóricos na estimativa da
variabilidade fenotípica entre acessos de pimentas
Scientia Agraria
8
2
664
679
2007
CARVALHO, S. I. C.; BIANCHETTI, L. B.; REISFSCHENEIDER, J. B. Registro e
proteção de cultivares pelo setor público: a experiência do programa de melhoramento
de Capsicum da Embrapa. Horticultura Brasileira, v. 27, n. 2, p. 135-138,
2009.
CARVALHO
S. I. C.
BIANCHETTI
L. B.
REISFSCHENEIDER
J. B.
Registro e proteção de cultivares pelo setor público: a experiência do
programa de melhoramento de Capsicum da Embrapa
Horticultura Brasileira
27
2
135
138
2009
CARVALHO, S. I. C.; BIANCHETTI, L. B.Botânica e recursos genéticos.
Pimentas Capsicum. Brasília: Embrapa Hortaliças, 2008.
CARVALHO
S. I. C.
BIANCHETTI
L. B.
Botânica e recursos genéticos. Pimentas Capsicum
Brasília
Embrapa Hortaliças
2008
CRUZ, C. D. Programa GENES: análise multivariada e simulação. Viçosa:
UFV, 2006.
CRUZ
C. D.
Programa GENES: análise multivariada e simulação.
Viçosa
UFV
2006
COSTA, L. V.; LOPES, T. G.; LOPES, R.; ALVES S. R. M.; GAMA, A. S.
Efeito das polinizações no vingamento de frutos de Capsicum chinense Jacq.,
Horticultura Brasileira v. 26, n. 2, p. 1685-1689, 2008.
COSTA
L. V.
LOPES
T. G.
LOPES
R.
ALVES
S. R. M.
GAMA
A. S.
Efeito das polinizações no vingamento de frutos de Capsicum chinense
Jacq.
Horticultura Brasileira
26
2
1685
1689
2008
DAVIDE, L. C.; TECHIO, V. H.; NENUES, J. D.; PEREIRA, A. V. Variação
cromossômica numérica em Pennisetum. Ciência e Agrotecnologia, v. 31, n. 2, p.
398-405, 2007.
DAVIDE
L. C.
TECHIO
V. H.
NENUES
J. D.
PEREIRA
A. V.
Variação cromossômica numérica em Pennisetum
Ciência e Agrotecnologia
31
2
398
405
2007
GUERRA, N. Estudios cromossómicos de cuatro seleciones de Capsicum
chinense Jacq. Revista Científica UDO Agrícola, v. 1, n. 1, p. 34-41,
2001.
GUERRA
N.
Estudios cromossómicos de cuatro seleciones de Capsicum chinense
Jacq.
Revista Científica UDO Agrícola
1
1
34
41
2001
FONSECA, R. M.;; LOPES, R. BARROS, W. S.; LOPES, M. T. G.; FERREIRA, F.
M. Morphologic characterization and genetic diversity of Capsicum chinese Jacq.
Accessions along the upper Rio Negro - Amazonas. Crop Breending and Applied
Biotechnology, v. 81, n. 3, p. 187-197, 2008.
FONSECA
R. M.
LOPES
R.
BARROS
W. S.
LOPES
M. T. G.
FERREIRA
F. M.
Morphologic characterization and genetic diversity of Capsicum chinese
Jacq. Accessions along the upper Rio Negro - Amazonas
Crop Breending and Applied Biotechnology
81
3
187
197
2008
HAVERROTH, M.; NEGREIROS, P. R. M. Calendário agrícola,
agrobiodiversidade e distribuição espacial de roçados Kulina (Madeja), Alto Rio
Envira, Acre, Brasil. Sitientibus série Ciências Biológicas, v. 11, n. 2, p. 299-308,
2011.
HAVERROTH
M.
NEGREIROS
P. R. M.
Calendário agrícola, agrobiodiversidade e distribuição espacial de
roçados Kulina (Madeja), Alto Rio Envira, Acre, Brasil
Sitientibus série Ciências Biológicas
11
2
299
308
2011
LANNES, S. D.; FINGER, F. L.; SCHUELTER, A. R.; CASALI, V. W. D. Growth
and quality of Brazilian accessions of Capsicum chinense fruits. Scientia
Horticulturae, v. 112, n. 3, p. 266-270, 2007.
LANNES
S. D.
FINGER
F. L.
SCHUELTER
A. R.
CASALI
V. W. D.
Growth and quality of Brazilian accessions of Capsicum chinense
fruits
Scientia Horticulturae
112
3
266
270
2007
LIVINGSTONE, K. D.; LACKNEY, V. K., BLAUTH, J. R.; VANWIJK, R. I. K.;
JAHN, M. K. Genome mapping in Capsicum and the evolution og genome structure in the
Solanaceae. Genetics, v. 152, n. 3, p. 1183-1202, 1999.
LIVINGSTONE
K. D.
LACKNEY
V. K.
BLAUTH
J. R.
VANWIJK
R. I. K.
JAHN
M. K.
Genome mapping in Capsicum and the evolution og genome structure in
the Solanaceae
Genetics
152
3
1183
1202
1999
MOSCONE, E. A.; SCALDAFERRO, M. A.; GABRIELE, M.; CECCHINNI, N. M.;
EHRENDORFER, F. The evolution of chili peppers (Capsicum - Solanaceae): a cytogenetic
perspective. Acta Horticulturae, v. 745, n. 2, p. 137-169, 2007.
MOSCONE
E. A.
SCALDAFERRO
M. A.
GABRIELE
M.
CECCHINNI
N. M.
EHRENDORFER
F.
The evolution of chili peppers (Capsicum - Solanaceae): a cytogenetic
perspective
Acta Horticulturae
745
2
137
169
2007
MOSCONE, E. A.; LAMBROU, M.; EHRENDORFER, F.Fluorescent chromosome
banding in the cultivated species of Capsicum (Solanaceae). Plant Systematics and
Evolution, v. 202, n. 1-2, p. 37-63, 1996.
MOSCONE
E. A.
LAMBROU
M.
EHRENDORFER
F.
Fluorescent chromosome banding in the cultivated species of Capsicum
(Solanaceae)
Plant Systematics and Evolution
202
1-2
37
63
1996
NUEZ-VIÑALS, F. N.; ORTEGA, R. G.; COSTA, J. C. El cultivo de pimientos,
chiles y ajies. Madri: Mundi-Prensa, 2003.
NUEZ-VIÑALS
F. N.
ORTEGA
R. G.
COSTA
J. C.
El cultivo de pimientos, chiles y ajies
Madri
Mundi-Prensa
2003
PEREIRA, L. P.; LUZ, L. P.; TEDESCO, S. B.; SILVA, A. C. F. Número de
cromossomos em populações de Achyrocline satureioides Lam. Ciência Rural, v. 36, n.
2, p. 678-681, 2006.
PEREIRA
L. P.
LUZ
L. P.
TEDESCO
S. B.
SILVA
A. C. F.
Número de cromossomos em populações de Achyrocline satureioides
Lam
Ciência Rural
36
2
678
681
2006
PICKERSGILL, B. Domestication of plants in the Americas: insights
medelian and molecular genetics. Annals of Botany, v. 100, n. 5, p. 925-940,
2007.
PICKERSGILL
B.
Domestication of plants in the Americas: insights medelian and
molecular genetics
Annals of Botany
100
5
925
940
2007
PICKERSGILL, B. Genetic resources and breeding of Capsicum spp.
Euphytica, v. 96, n. 1, p. 129-133, 1997.
PICKERSGILL
B.
Genetic resources and breeding of Capsicum spp
Euphytica
96
1
129
133
1997
POZZOBON, M. T.; WITTMANN, M. T. A meiotic study of the wild and
semi-domesticated Brazilian species of genus Capsicum L. (Solanaceae). Cytologia, v.
71, n. 3, p. 275-287, 2006.
POZZOBON
M. T.
WITTMANN
M. T.
A meiotic study of the wild and semi-domesticated Brazilian species of
genus Capsicum L. (Solanaceae)
Cytologia
71
3
275
287
2006
REEVES, A.; TEAR, J. MicroMeasurefor windows version 3.3. Free program
distributed by the authors over the internet. 2000. Available from:
<http://www.colostate. edu/depts/biology/micromeasure>. Access on: Set 10,
2013.
REEVES
A.
TEAR
J.
MicroMeasurefor windows version 3.3. Free program distributed by the authors
over the internet
2000
http://www.colostate. edu/depts/biology/micromeasure
Access on: Set 10, 2013
ROHANI, M.; MOHAMMADI, A.; KHOSRO-SHAHLI, M.; AHMADI, H.; DARANDEH, N.
Karyotype analysis of several ecotypes of Capsicum annuum L. in Iran. Notulae
Botanicae Horticultu and Agrobotanica Cluj, v. 38, n. 1, p. 177-180,
2010.
ROHANI
M.
MOHAMMADI
A.
KHOSRO-SHAHLI
M.
AHMADI
H.
DARANDEH
N.
Karyotype analysis of several ecotypes of Capsicum annuum L. in
Iran
Notulae Botanicae Horticultu and Agrobotanica Cluj
38
1
177
180
2010
SOUZA, S. A. M.; MARTINS, K. C.; PEREIRA, T. N. S. Polimorfismo
cromossômico em Capsicum chinense Jacq. Ciência Rural, v. 41, n. 10, p. 1777-1783,
2011.
SOUZA
S. A. M.
MARTINS
K. C.
PEREIRA
T. N. S.
Polimorfismo cromossômico em Capsicum chinense Jacq
Ciência Rural
41
10
1777
1783
2011
ROMERO-ZARCO, C. A. A new method for estimating karyotype. Taxon, v. 35,
n. 3, p. 526-530, 1986.
ROMERO-ZARCO
C. A.
A new method for estimating karyotype
Taxon
35
3
526
530
1986
STEBBINS, G. L. Longevity, habitat and release of genetic variability in
the higher plants. Cold Spring Harbor Symposia Quantitative Biology, v. 23, n. 1, p.
365-378, 1958.
STEBBINS
G. L.
Longevity, habitat and release of genetic variability in the higher
plants
Cold Spring Harbor Symposia Quantitative Biology
23
1
365
378
1958
TEODORO-PARDO, C. V.; GARCÍA-VELÁZQUEZ, A.; CORONA-TORRES, T.
Polimorfismo cromossômico en Capsicum annuum L.(Solanaceae) em recolectas de Puebla,
Morelos y Quartenário, México. Agrociencia, v. 41, n. 10, p. 873-881,
2007.
TEODORO-PARDO
C. V.
GARCÍA-VELÁZQUEZ
A.
CORONA-TORRES
T.
Polimorfismo cromossômico en Capsicum annuum L.(Solanaceae) em
recolectas de Puebla, Morelos y Quartenário, México
Agrociencia
41
10
873
881
2007
TUKEY, J. W. One degree of freedon for non additivy. Biometrics, v. 5,
n. 3, p. 232-242, 1949.
TUKEY
J. W.
One degree of freedon for non additivy
Biometrics
5
3
232
242
1949
ZENI, A. L.; BOSIO, F. O uso de plantas medicinais em uma comunidade
rural de Mata Atlântica - Nova Rússia, SC. Neotropical Biology and Conservation, v.
6, n. 1, p. 55-63, 2011.
ZENI
A. L.
BOSIO
F.
O uso de plantas medicinais em uma comunidade rural de Mata Atlântica
- Nova Rússia, SC
Neotropical Biology and Conservation
6
1
55
63
2011
WADT, L. H. O.; EHRINGHAUS, C.; KAGEYAMA, P. Y. Genetic diversity of
Pimenta Longa' genotypes (Piper spp., Piperaceae) of Embrapa Acre germplasm
collection. Genetics and Molecular Biology, v. 27, n. 1, p. 74-82, 2004.
WADT
L. H. O.
EHRINGHAUS
C.
KAGEYAMA
P. Y.
Genetic diversity of Pimenta Longa' genotypes (Piper spp., Piperaceae)
of Embrapa Acre germplasm collection
Genetics and Molecular Biology
27
1
74
82
2004
Autoria
Willame Rodrigues do Nascimento Sousa
Programa de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil. Universidade Federal do PiauíBrazilTeresina, Piauí, BrazilPrograma de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil.
Angela Celis de Almeida Lopes
Departamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil. Universidade Federal Rural de
PernambucoBrazilRecife, Pernambuco, BrazilDepartamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil.
Reginaldo de Carvalho
Departamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil. Universidade Federal Rural de
PernambucoBrazilRecife, Pernambuco, BrazilDepartamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil.
Regina Lúcia Ferreira Gomes
Departamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil. Universidade Federal Rural de
PernambucoBrazilRecife, Pernambuco, BrazilDepartamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil.
Ana Paula Peron **Author for correspondence. E-mail:
anpapegenpes@yahoo.com.br
Programa de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil. Universidade Federal do PiauíBrazilTeresina, Piauí, BrazilPrograma de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil.
Programa de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil. Universidade Federal do PiauíBrazilTeresina, Piauí, BrazilPrograma de Pós-graduação em Genética e
Melhoramento, Centro de Ciências Agrárias, Universidade Federal do Piauí, 64049-550,
Bairro Iningá, Teresina, Piauí, Brazil.
Departamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil. Universidade Federal Rural de
PernambucoBrazilRecife, Pernambuco, BrazilDepartamento de Biologia, Universidade Federal
Rural de Pernambuco, Recife, Pernambuco, Brazil.
Figure 1:
(1) Metaphasic chromosomes of C. annuum (BGC 39) (2)
Metaphasic chromosome of C. chinense (BGC 49), (3) Metaphasic
chromosomes of C. frutescens (BGC 01), and (4) Metaphasic
chromosomes of C. baccatum (BGC 21). Bar = 10 mm.
Table 1:
Average values, in micrometers, of CSI, CI, r, AI, and KF of four
accessions of the species C. annum (BGC 34, BGC 36, BGC 39,
BGC 59), two accessions of the species C. chinense (BGC 07,
BGC 49), two accessions of the species C. frutencens (BGC 01,
BGC 37) and four accessions of the species C. baccatum (BGC
21, BGC 26, BGC 27, BGC 54).
Table 2:
Average TCL and TLHB values, expressed in micrometers (µm), for the
accessions of the species C. annum (BGC 34, BGC 39, BGC 36,
BGC 59), C. chinense (BGC 07, BGC 49), C.
frutescens (BGC 01, BGC 37) and C. baccatum (BGC
21, BGC 54, BGC 26, BGC 27).
imageFigure 1:
(1) Metaphasic chromosomes of C. annuum (BGC 39) (2)
Metaphasic chromosome of C. chinense (BGC 49), (3) Metaphasic
chromosomes of C. frutescens (BGC 01), and (4) Metaphasic
chromosomes of C. baccatum (BGC 21). Bar = 10 mm.
open_in_new
imageFigure 2:
Diploid karyogram representative of the Capsicum
frutescens (BGC 01) karyotype with karyotypic formula 12M. (bar =
10 μm).
open_in_new
imageFigure 3:
Diploid karyogram representative of the Capsicum frutescens
(BGC 37) karyotype with the karyotypic formula 12M. (bar = 10
μm).
open_in_new
table_chartTable 1:
Average values, in micrometers, of CSI, CI, r, AI, and KF of four
accessions of the species C. annum (BGC 34, BGC 36, BGC 39,
BGC 59), two accessions of the species C. chinense (BGC 07,
BGC 49), two accessions of the species C. frutencens (BGC 01,
BGC 37) and four accessions of the species C. baccatum (BGC
21, BGC 26, BGC 27, BGC 54).
Species /Accession
2n
CSI
CI
r
AI (%)
KF
C. annuum - BGC 34
24
6.92 - 3.64
45.34
1.22
45.61
11M+1SM
C. annuum - BGC 39
24
6.49 - 3.59
45.64
1.20
45.81
11M+1SM
C. annuum - BGC 36
24
7.05 - 3.69
45.53
1.21
45.77
11M+1SM
C. annuum - BGC 59
24
7.42 - 4.42
44.63
1.25
44.68
11M+1SM
C. chinense - BGC 07
24
6.60 - 4.56
45.80
1.19
45.97
11M+1SM
C. chinense - BGC 49
24
5.82 - 3.29
45.88
1.07
46.05
11M+1SM
C. frutescens - BGC 01
24
7.17 - 4.21
45.19
1.12
45.46
11M+1SM
C. frutescens - BGC 37
24
5.73 - 3.60
46.55
1.06
46.54
12M
C. baccatum - BGC 21
24
7.00 - 4.45
47.45
1.18
47.64
11M+1SM
C. baccatum - BGC 54
24
7.48 - 4.31
44.90
1.22
45.08
11M+1SM
C. baccatum - BGC 26
24
6.92 - 3.49
47.60
1.22
45.51
11M+1SM
C. baccatum - BGC 27
24
6.56 - 3.75
45.70
1.19
46.02
11M+1SM
table_chartTable 2:
Average TCL and TLHB values, expressed in micrometers (µm), for the
accessions of the species C. annum (BGC 34, BGC 39, BGC 36,
BGC 59), C. chinense (BGC 07, BGC 49), C.
frutescens (BGC 01, BGC 37) and C. baccatum (BGC
21, BGC 54, BGC 26, BGC 27).
Accession
Species
TCL
Group
TLHB
Group
BGC 01
C. frutescens
6.02
a
72.22
a
BGC 59
C. annuum
5.82
ab
69.89
ab
BGC 07
C. chinense
5.78
abc
69.35
abc
BGC 21
C. baccatum
5.69
abc
68.26
abc
BGC 54
C. baccatum
5.63
abc
67.51
abc
BGC 36
C. annuum
5.42
abc
65.01
abc
BGC 34
C. annuum
5.34
abc
64.11
abc
BGC 26
C. baccatum
5.28
c
63.38
c
BGC 27
C. baccatum
5.24
abc
62.84
abc
BGC 39
C. annuum
4.89
bc
58.65
bc
BGC 49
C. chinense
4.65
ab
55.86
ab
BGC 37
C. frutescens
4.41
ab
52.96
ab
Como citar
Sousa, Willame Rodrigues do Nascimento et al. Caracterização cariotípica de acessos de Capsicum sp.. Acta Scientiarum. Agronomy [online]. 2015, v. 37, n. 2 [Acessado 3 Abril 2025], pp. 147-153. Disponível em: <https://doi.org/10.4025/actasciagron.v37i2.19485>. Epub Apr-Jun 2015. ISSN 1807-8621. https://doi.org/10.4025/actasciagron.v37i2.19485.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.