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ABSTRACT. Genotype-by-environment interaction refers to the differential response of different 
genotypes across different environments. This is a general phenomenon in all living organisms and always 
has been one of the main challenges for biologists and plant breeders. The nonparametric methods based 
on the rank of original data have been suggested as the alternative methods after parametric methods to 
analyze data without perquisite assumptions needed for common analysis of variance. But, the lack of 
statistical software or package, especially for analysis of two-way data, is one of the main reasons that plant 
breeders have not greatly used the nonparametric methods. Here, we have explained the nonparametric 
methods and presented a comprehensive two-parts SAS program for calculation of four nonparametric 
statistical tests (Bredenkamp, Hildebrand, Kubinger and van der Laan-de Kroon) and all of the valid 
stability statistics including Hühn’s parameters (Si

(1), Si
(2), Si

(3), Si
(6)), Thennarasu’s parameters (NPi

(1), 
NPi

(2), NPi
(3), NPi

(4)), Fox's ranking technique and Kang’s rank-sum. 
Keywords: rank, multienvironment trials, nonparametric tests, two-way data, SAS code. 

Rotina SAS com testes estatísticos para uma tabela de dupla entrada e métodos não-
paramétricos de índices de estabilidade para o estudo da interação genótipos-por-
ambientes 

RESUMO. A interação genótipos-por-ambientes refere-se à resposta diferencial dos diferentes genótipos 
através dos ambientes. É um fenômeno que ocorre em todos os organismos vivos e tem sido sempre um 
desafio para biólogos e melhoristas de plantas. Sugerem-se os métodos não-paramétricos baseados numa 
escala de dados originais como métodos alternativos para métodos paramétricos a fim de analisar dados sem 
atender os pressupostos básicos para a análise de variância clássica. Apresentam-se os métodos não-
paramétricos e uma rotina SAS de dupla entrada para calcular quatro testes estatísticos não-paramétricos 
(Bredenkamp, Hildebrand, Kubinger e van der Laan-de Kroon), inclusive os parâmetros de Hühn (Si

(1), 
Si

(2), Si
(3), Si

(6)), os parâmetros de Thennarasu (NPi
(1), NPi

(2), NPi
(3), NPi

(4)), a técnica de classificação de Fox 
e a soma de classificação de Kang. 
Palavras-chave: classificação, experimentos multi-ambientais, testes não-paramétricos, dados de duas vias, código SAS. 

Introduction 

The genotype-by-environment interaction (GEI) is 
a universal issue that relates to all living organisms, 
from bacteria to plants to humans (Kang, 2004). This 
problem is important in agricultural, genetic, 
evolutionary and statistical research. The GEI is 
defined as a change in the relative performance of a 
trait of two or more genotypes measured in two or 
more diverse environments (Kang, 1988; 2004). 
Annually, around the world the output of breeding 
programs during consecutive years is evaluated in 
multienvironment trials (METs) to determine  
the adaptability of genotypes for  later  release  and  

recommendation to farmers. Depending on the type of 
GEI (crossover or non-crossover), the type of 
interpretations and then recommendations of results 
will be different. If GEI is crossover type, then 
selection and recommendation of genotypes should 
be done with cautions, although in some cases 
introducing a genotype across all environments is 
not possible. Many statistic measurements, 
including parametric, nonparametric and 
multivariate, have been proposed for investigating 
GEI (Flores, Moreno, & Cubero, 1998). These 
statistics can be used for a range of different data 
with two-way classification and are not only suitable 
for plant breeding but also for crop production 
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(Kang & Gauch, 1996). The computations and 
analyses of phenotypic yield stability have been 
extensively studied in METs for decades by 
investigators from the disciplines of plant and 
animal sciences and statistics (Kang, 1988). In 
METs, decisions are regularly based on two-way 
(genotype – environment) data. There are a few 
fields exist that two-way analyses such as GEI in 
plant breeding to be challengeable. 

Because of the importance of GEI in the field of 
medicine and in plant breeding, many statistical tests 
have been proposed for testing two-way interaction 
effects (Azzalini & Cox, 1984; Baker, 1988; Gail & 
Simon, 1985). Most of the proposed statistical tests, 
for instance F-test, are based on some assumptions, 
such as normality of data, homogeneity of variances, 
and additivity (linearity) of effects (Hühn, 1996). In 
the real world, these assumptions may not always be 
met (Magari; Kang, 1993; Shah, Shah, Khan, Ahmed, 
& Hussain, 2009), especially, interpretation of 
multiple trait data using common stability methods 
is difficult since traits are frequently correlated and 
non-normally distributed (Eskridge, Peterson, & 
Grombacher, 1994; Lin, Binns, & Lefkovitch, 1986). 
Therefore, the nonparametric methods based on the 
ranks of original data have been suggested as 
alternative methods to analyzing the data without 
perquisite assumptions relative to ANOVA (Nassar 
& Hühn, 1987). Nonparametric methods have 
additional advantages, such as simple calculations 
and interpretations, reducing the bias caused by 
outliers; also addition or deletion of one or a few 
genotypes is not likely to cause large variations in the 
estimates (Nassar & Hühn, 1987). If the sample size 
in data is small or if assumptions for the 
corresponding parametric method (e.g. Normality 
of the data) hold,  

Nonparametric methods may lack power as 
compared with more traditional approaches (Siegel 
& Castellan, 1988). Nonparametric methods are 
geared toward hypothesis testing rather than 
estimation of effects. It is often possible to obtain 
nonparametric estimates and associated confidence 
intervals, but this is not generally straightforward. 
Tied values can be problematic when these are 
common, and adjustments to the test statistic may 
be necessary (Whitley & Ball, 2002). However, SAS 
software can be considered High, Low and Mean 
rank for tied values of a right-continuous 
observation (Statistical Analysis Software [SAS], 
2008). 

The Use of nonparametric methods is not 
limited to recent years; they have traditionally been 
applied for analyzing data from one-way layouts 
from different fields and experimental designs  
(e.g. Wilcoxon Signed-Rank Test, Mann-Whitney 
Test and Kruskal-Wallis Test). The available 

nonparametric tests can be grouped into three broad 
categories based on how the data are organized;  
e.g., one-sample tests, related-samples tests, and 
independent-samples tests (Sheskin, 2003). These 
statistical tests are not used for two-way layouts, 
such as G×E data. 

There is limited literature available on the rank 
statistics that address the valid statistical tests for 
two-way data. Hühn and Léon (1995) and Truberg 
and Hühn (2000) have reviewed four nonparametric 
methods, including (Bredenkamp, 1974), 
(Hildebrand, 1980), (Kubinger, 1986) and (De 
Kroon & Van Der Laan, 1981) tests for many data 
sets obtained from METs from German official 
registration trials for faba bean, fodder beet, oat, 
sugar beet, and winter oilseed rape from 1985 to 
1989. They suggested that if the assumption for 
parametric methods cannot be accepted, some of 
these tests are robust to be recommended for data 
with crossover interaction. On the other hand, 
several heuristic rank-based methods have been 
proposed for phenotypic stability of cultivars 
performance (Fox, Skovmand, Thompson, & Braun, 
1990; Hühn, 1979; Kang, 1988; Nassar; Hühn, 
1987; Thennarasu, 1995). These methods have been 
used to identify superior genotype(s) in METs data 
(Segherloo, Sabaghpour, & Dehghani, 2008). 

The nonparametric tests can be used by 
researchers in different disciplines, but the lack of 
statistical software or package, especially for two-way 
data, is one of the main reasons that these tests are 
not used by scientists, particularly plant breeders. A 
literature review indicated that there was no 
comprehensive macro, code, software or package for 
aforementioned nonparametric tests. However, a 
basic computer program has been written for 
computing Kang’s yield-stability statistic (YSi) (Kang 
& Magari, 1995); a SAS program exists for 
computing two of Hühn’s nonparametric measures 
(Si

(1) and Si
(2)) (Lu, 1995). Also, Hussein, Bjornstad 

and Aastveit (2000) developed SAS codes for various 
parametric stability statistics, but those are not 
calculated all of nonparametric statistics. In this 
paper, we present a comprehensive macro written in 
SAS (SAS, 2008) and consisting of two different 
parts which is given in the Appendix A. The first 
part applies to calculation of the four nonparametric 
interaction tests and the second part aims to assess 
all of nonparametric measurements of stability. The 
yield trials were used as an example (Appendix B) 
here had twenty promising barely varieties grown in 
fourteen environments for two years during the 
2006-2008. All of the research stations are located in 
the cold region of Iran under the management of the 
seed and plant improvement (SPII).institute, Karaj, 
Iran. To get more details regarding data see 
Akbarpour, Dehghani, Sorkhi and Gauch (2014)  
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Statistical description 

Statistical nonparametric tests on the basis of 
rank are the alternative approach instead of 
parametric methods such as analysis of variance 
when the analysis of data strongly depends on 
several assumptions, including normal distribution, 
independence, and variance homogeneity of METs 
data (Hühn & Léon, 1995). The tests of 
Bredenkamp (1974), Hildebrand (1980), and 
Kubinger (1986) are based on the usual linear model 
for noncrossover interactions; interactions are 
defined as deviations from additivity of main effects. 
The method of De Kroon and Van Der Laan (1981) 
defines interactions according to the crossover 
interaction model (Hühn & Léon, 1995; Truberg & 
Hühn, 2000). In this paper, the computational 
formulas are presented as described by Hühn and 
Léon (1995) and Hühn (1996). For all methods, the 
value of genotype i in environment j and replication 
k is denoted by Xijk (i = 1, 2, …, l; j = 1, 2, ..., m; k 
= 1, 2, ..., n). The first letter for each method is 
considered for parameters index. 

Bredenkamp method 

All Xijk are transformed into Rijk based on one 
single rank order. The test statistics for G, E and E 
× G differences (designated as GB, EB and EGB, 
respectively) are calculated as Equations 1, 2 and 3: 
 

 
 

where: 
S is equal to l × m × n and GB,  
EB and EGB are approximately distributed as χ2, with 
(l-1), (m-1) and (l-1) × (m-1) degrees of freedom, 
respectively. 

Hildebrand method 

To use the Hildebrand method, the original data 
are corrected for G, E and G × E as Equations 4, 5 
and 6: 

 

 
 
where: 

The corrected data (X*
ijk) are transformed into 

Rijk based on one single rank order. The statistics 
GH, EH and EGH are as calculated the Equations 7, 8 
and 9: 
 

 
 

where: 
The GH, EH and EGH are approximately 

distributed as χ2, with (l-1), (m-1) and (l-1) × (m-1) 
degrees of freedom, respectively. 

Kubinger method 

In this method, the original data (Xijk) are 
transformed into Rijk based on one single rank order, 
and then the ranked data are adjusted (Rijk → R'

ijk) 
and ranked again (R'

ijk → R*
ijk). For G, E and EG,  

R'
ijk  are calculated, respectively, as Equations 10, 11 

and 12: 
 

 
 

where: 
R*

ijk are used for calculation of Kubinger statistics 
as Equations 13, 14 and 15: 

 

 
 

where: 
The GK, EK and EGK are approximately 

distributed as χ2, with (l-1), (m-1) and (l-1) × (m-1) 
degrees of freedom, respectively. 

Van Der Laan-De Kroon method 

In this method, the original data (Xijk) are 
transformed into ranks Rijk for each environment 
separately. The Gv, Ev an EGv are calculated via as 
Equations 16, 17 and 18: 
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where: 
The GV, EV an EGv are approximately distributed 

as χ2, with (l-1), (m-1) and (l-1) × (m-1) degrees of 
freedom, respectively. 

Statistical description for phenotypic stability 

Consider a two-way table with l rows (genotypes) 
and m columns (environments). Phenotypic values xij 
(i = 1, 2, . . . , l; ; j = 1, 2, ..., m) for some statistics are 
corrected ( ) (Nassar & Hühn, 1987); the rank of 1 is 
given to the genotype with the highest value and the 
rank of l is given for the lowest value. Let rij be the 
rank of genotype i in environment j. We provide below 
the formulas used for computing the nonparametric 
stability statistics. The formulas for the four rank-
stability measures of Hühn (1979) and Nassar and 
Hühn (1987) are as Equations 19, 20, 21 and 22: 
 

 
 

where: 
rij and r*

ij denote the rank of uncorrected  
(Table 2) and corrected (Table 3) values of the ith 
genotype in the jth environment, respectively ( .ir  and 
r*

ij as the mean ranks of corrected and uncorrected 
values across all environments for the ith genotype). 
Significance tests for Si

(1) and Si
(2) were conducted 

according to Nassar and Hühn (1987). First, the null 
hypothesis that all genotypes have similar stability 
(e.g., equal Si

t values) was tested by summation of 
the standardized Si

t values across genotypes as 

Equation 23 ( , where t = 1, 2 and): 

 
 
This test statistic has an approximate  

χ2 distribution with degrees of freedom (df) equal 
to the number of genotypes (Hühn, 1996). The 
rejection of the null hypothesis provides evidence 
for the existence of differential stability among 
genotypes. The alternative hypothesis tests for the 
stability of individual genotypes examined by 
testing the Zi

t statistic, which also has an 
appropriate χ2 distribution with 1 df under the 
null hypothesis. Nassar and Hühn (1987) defined 
the null hypothesis Zi

t = 0 versus the alternative 
hypothesis for stability of genotype i as stable and 
unstable, respectively. The alternative hypothesis 
may be restated, such that a genotype with 
significantly large Si

t (relative to the null 
hypothesis expectation) is unstable relative to 
others; a significantly small Si

t  indicates that the 
genotype is more stable relative to others. Nassar 
and Hühn (1987), however, warned against 
overestimation of significant effects for specific 
genotypes, or committing a Type I error with 
higher probability than the usual α = 0.05. They 
indicated that the expected comparison wise error 
rate would approximately equal (l) (0.05) (0.95)g-1, 
which is much greater than the chosen 
significance level of 0.05. In general, Nassar and 
Hühn (1987) have suggested a significance level 
of ~ 0.05 l-1. The null hypothesis is rejected if  
Zi

t > χ2
(0.05/l, 1) (Krenzer, Thompson, & Carver, 

1992). Nassar and Hühn (1987) also stated that 
the global test is more reliable than specific test 
for handling of significant genotypic differences 
in stability. 

Under the null hypothesis that all genotypes 
are equally stable, the expected value of means 
E(Si

t) and variances V(Si
t) can be computed from 

the discrete uniform distribution (1, 2, ..., l) as 
equations 24, 25, 26 and 27 (Nassar & Hühn, 
1987): 
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Thennarasu (1995) proposed the following 
four nonparametric stability measures using the 
adjusted rank values as Equations 28, 29, 30 and 
31: 
 

 
 

where: 
rij* is the rank of xij*;  

and Mdi* are the mean and median ranks for 
adjusted values, respectively; whereas and Mdi are 
the same statistics computed from the original 
(unadjusted) values. NPi(1) means absolute 
deviation and is calculated in a similar manner as 
variance of ranks, except here the median is 
subtracted from each data point, producing 
deviations from the median. The genotype with the 
lowest NPi(1) is regarded as the most stable. The 
genotypes with the lowest NPi(2), NPi(3), NPi(4) 
and highest average yields are regarded as most 
desirable. 

Other nonparametric techniques, including 
rank-sum (Kang, 1988) and Fox’s method (Fox, 
Skovmand, Thompson, & Braun, 1990) can be 
used for determining stability of genotypes. 
Kang’s rank-sum (Kang, 1988) uses ranks of mean 
performance of genotypes across environments 
plus the rank of Shukla (1972) stability variance, 
in which the genotype with the highest mean 
yield and the lowest stability variance receives the 
rank 1 plus 1. Upon summation of the two ranks 
for each genotype (rank-sum), a genotype with 
the lowest rank-sum is regarded as most desirable. 
The computation of the Fox’s statistic (Fox, 
Skovmand, Thompson, & Braun, 1990) is based 

on scoring of genotypes as ‘Top’, ‘Mid’ or ‘Low’ 
within each environment. The genotypes that are 
frequently occurred in the ‘Top’ third are 
considered to be stable. 

In general, to realize the obvious effect of GEI, 
the METs are conducted around the world, 
annually. Because of the natural heterogeneity of 
these experiments, some assumptions regarding 
parametric analysis of the data may not be 
fulfilled. So, the alternative approaches, such as 
nonparametric analysis, can be used by 
researchers. Recently, the uses of nonparametric 
methods have been increased in plant breeding, 
but the most of calculations are done manually or 
performed by uncertain softwares. The presented 
SAS macro in the Appendix A simplifies the 
calculation of important nonparametric statistics 
relative to GEI and can be especially utilized by 
plant breeders. Users only need to know how to 
open the program file, provide the data, introduce 
the data to SAS, invoke the macro and print the 
output. This paper is intended for all levels of 
SAS users. 

Result and discussion 

The results of statistical tests for data are 
shown in Table 1. The simple effect of genotype 
by one of the methods (Hildebrand), 
environment by all of the methods and interaction 
effect (G×E) by all of methods except for 
Kubinger method were significant at 0.01 
probability level. These results demonstrated that 
the responses of genotypes across environments 
are complex and the selection of a stable genotype 
needs to more precision and attention  
(Mut, Aydin, Bayramoğlu, & Özcan, 2009). 
Truberg and Hühn (2000) applied these statistical 
tests for their data and showed that the 
Hildebrand, Kubinger methods are approximately 
equivalent to analysis of variance (ANOVA). 
Because the assumptions for the parametric 
methods may be not valid, the nonparametric test 
can be applied for analyzing METs data (Hühn & 
Léon, 1995; Mut, Aydin, Bayramoğlu, &  
Özcan, 2009). 

Table 1. Result of statistics tests for significant of effects. 

Test Genotype Prob Genotype Environment Prob Environment Genotype × EnvironmentProb Genotype × Environment 
Bredenkamp 12.09 0.88 573.20 0.00 5424.24 0.00 
Hildebrand 47.49 0.00 496.05 0.00 837.46 0.00 
Kubinger 22.34 0.27 507.84 0.00 267.09 0.18 

Van der lan de Kroon19.66 0.42 2612.09 0.00 399.86 0.00 
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Table 2. Uncorrected yield ranks for each environment. 

GenotypeE1 E2 E3 E4 E5 E6E7 E8 E9 E10 E11 E12 E13 E14 
1 10 12 3 16 2 4.013.5 13.0 15 13 1.0 7 2 20 
2 3 15 8 9 11 20.0 1.0 14.0 13 14 11.0 9 15 19 
3 15 11 1 19 19 11.0 10.0 8.0 2 15 2.0 14 20 16 
4 14 20 11 20 10 12.0 19.0 2.0 3 2 6.0 13 16 17 
5 2 19 7 12 17 7.015.0 15.0 16 1 3.0 19 14 2 
6 12 18 15 18 9 18.0 12.0 5.0 9 4 4.0 20 11 15 
7 7 8 13 15 20 2.520.0 17.0 12 5 18.0 6 18 3 
8 4 3 16 10 4 1.08.0 1.0 14 18 13.0 12 19 9 
9 5 2 9 3 16 17.0 18.0 6.5 4 7 16.5 2 13 14 

10 18 16 2 5 15 16.0 16.0 6.5 17 11 20.0 16 10 7 
11 6 13 14 4 14 13.0 2.0 11.0 7 10 14.0 4 4 4 
12 11 7 19 14 8 5.013.5 16.0 20 19 9.0 18 9 5 
13 20 6 18 1 5 6.011.0 3.0 10 16 15.0 5 17 13 
14 16 5 6 6 3 10.0 7.0 20.0 1 6 19.0 11 6 1 
15 19 9 5 8 1 14.0 3.0 10.0 18 3 7.0 15 3 6 
16 13 14 12 11 7 15.0 9.0 18.0 11 9 12.0 17 5 11 
17 17 1 20 2 6 9.04.0 19.0 6 12 16.5 3 1 8 
18 8 4 10 7 13 8.05.0 12.0 19 8 8.0 1 7 12 
19 1 10 17 13 12 19.0 17.0 4.0 8 20 5.0 8 8 18 
20 9 17 4 17 18 2.56.0 9.0 5 17 10.0 10 12 10 

 

Table 3. Corrected yield ranks for each environment. 

Genotype E1 E2 E3 E4 E5 E6E7 E8 E9 E10 E11 E12 E13 E14 
1 121431726141316142 7 2 20
2 2136911201101313119 1319
3 1510120198971151 132017
4 14209199918132 6 101616
5 3197141771717171 4 20153
6 11171416101512595 3 191112
7 5612152012014104 154 171
8 421713638214181312198
9 63104161819857 193 1415
10 1715231314156159 16158 6
11 8161651516215811176 5 5
12 75191032111219197 177 4
13 197181451041216145 1813
14 16886512132028 20149 2
15 201258117411183 9 184 7
16 13111111713718116 12163 10
17 181202811319612182 1 11
18 10413714106162010101 1014
19 19151212191637205 8 6 18
20 918418184594178 11129

 

The results of statistical tests showed the crossover 
and noncrossover interactions were existed for the data, 
so the stability of the genotypes was evaluated based on 
nonparametric measurements. The statistics of Z1 and 
Z2 for each individual genotype are shown in Table 4. 
To avoid overestimation of the specific stability of 
genotypes, the expected comparisonwise error for Z1 
and Z2 and also χ2

 were calculated (Table 4) and the 
critical value for χ2 with one degree freedom was 9.14. 
Comparison of Z1 and Z2 values with the critical χ2 

value showed that all genotypes were not significant for 
specific stability at the given probability level. Also the 
sums of Z1 and Z2 over all genotypes (24.64 and 
23.65) were less than critical value for Chi-Square 
statistic for sum of Z1, Z2 (31.4) (Table 4). So neither 
specific stability nor general stability were not 
significant at given probability level (Table 4). 
However, by changing the level of probability to 0.1 or 
0.2, the specific and general stabilities may be 
significant, and subsequently the parameters of Si

1 and 
Si

2 would be interpreted. But the lack of significant of 
those parameters showed that variation of Si

1 and Si
2 are 

not interpreted. 
The result of Si

3, Si
6, NPi

(1), NPi
(2), NPi

(3) and 
)4(

iNP are given in Table 4. The minimum value 
for each of these statistics indicates maximum 
stability for each genotype. Based on both 
parameters, G16 and G17 had lowest and highest 
values and correspondingly those detected as 
stable and unstable genotypes. Si

3 and Si
6had a 

closely results and the rank of genotypes based on 
these parameters were almost similar. Sabaghnia, 
Dehghani and Sabaghpour (2006) resulted a 
highly correlated rank for Si

6, NPi
(1), NPi

(2), NPi
(3) 

and NPi
(4) parameters. 

Table 4. Nonparametric measurements of (Nassar, & Hühn, 1987), (Thennarasu, 1995) and Rank-Sum (Kang, 1988). 

Genotype Mean 
Yield 

Mean Corrected  
Yield Ranks SI1 Z1 SI2 Z2 SI3 SI6 NP1 NP2 NP3 NP4 Rank-Sum 

Kang 
1 5919.52 10.14 7.30 0.508ns 39.36 0.499ns 52.50 7.95 5.29 0.48 0.64 0.78 28 
2 5754.05 10.71 6.09 0.384ns 28.84 0.260ns 32.44 5.01 3.86 0.32 0.45 0.53 19 
3 5765.71 11.14 8.18 2.827ns 48.29 3.020ns 46.48 6.27 5.86 0.47 0.58 0.70 25 
4 5657.86 10.86 7.58 1.056ns 41.21 0.846ns 46.19 6.23 5.29 0.42 0.52 0.64 33 
5 5981.19 11.50 7.92 1.968ns 47.65 2.772ns 55.17 7.87 5.93 0.46 0.63 0.74 25 
6 5734.05 11.36 5.55 1.471ns 22.40 1.572ns 31.76 5.13 3.64 0.30 0.38 0.46 32 
7 5674.76 10.29 7.98 2.141ns 45.60 2.039ns 45.22 6.64 5.86 0.47 0.55 0.68 21 
8 5874.05 9.93 7.11 0.257ns 36.07 0.106ns 52.33 7.64 5.21 0.55 0.61 0.75 27 
9 5981.90 10.50 7.20 0.364ns 37.50 0.241ns 49.79 7.89 5.36 0.67 0.62 0.76 7 

10 5691.19 11.00 5.89 0.701ns 26.62 0.588ns 32.17 5.38 4.29 0.28 0.40 0.47 27 
11 6040.48 10.36 6.16 0.286ns 28.40 0.314ns 31.67 6.77 4.79 0.56 0.60 0.72 18 
12 5625.00 10.14 7.21 0.379ns 38.29 0.339ns 30.35 5.29 5.14 0.42 0.48 0.58 28 
13 5811.67 10.43 7.21 0.379ns 37.19 0.207ns 47.32 7.10 5.29 0.50 0.56 0.69 16 
14 6086.67 10.21 6.87 0.058ns 34.34 0.016ns 58.54 8.19 4.64 0.77 0.68 0.82 8 
15 6020.71 9.79 7.44 0.757ns 40.18 0.642ns 51.28 7.67 5.21 0.70 0.71 0.86 4 
16 5733.33 10.64 4.52 5.527ns 15.63 4.147ns 14.41 3.24 2.79 0.24 0.33 0.39 20 
17 5965.48 9.43 8.40 3.700ns 51.49 4.447ns 68.27 9.03 6.14 0.88 0.78 0.94 19 
18 6017.38 10.36 5.66 1.192ns 24.40 1.046ns 28.79 5.15 3.50 0.44 0.55 0.65 13 
19 5737.14 10.79 7.31 0.525ns 37.72 0.267ns 42.13 6.30 5.21 0.47 0.52 0.64 25 
20 5862.86 10.43 6.29 0.161ns 29.49 0.188ns 33.18 5.48 4.29 0.43 0.50 0.60 25 

Grand 
Mean E(S1) E(S2) VAR(S1)VAR(S2)Chi-Square Statistic for Z1, Z2Chi-Square Statistic for Sum of Z1, Z2Prob.

5846.75 6.65 33.250.8274.849.1431.4 0.05
ns and *mean non-significant and significant at level of 0.05 probability, respectively. 
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The result of rank-sum of (Kang, 1988) in  
Table 4 showed that G4 with lowest value and G15 
with highest value were the desirable and undesirable 
genotypes, respectively. By the Fox, Skovmand, 
Thompson, and Braun, (1990)’s method, G18 with 
7.14% and G10 with 57.14% frequently occurred in the 
Low third category were the best and undesirable 
genotype (Table 5). In addition, G18 and G16 with 
71.43 and 64.29% as well as G14, G17, G9, G13, G5 
and G10 with 21.43% frequently occurred in the Mid 
third category were the stable and unstable genotypes, 
respectively. Finally, G14 and G16 were the best and 
worst genotypes with 57.14 and 7.14% frequently 
occurred in the Top third category, respectively. 
Highly occurring percent in the Top third category 
indicates the high yield in conjunction with stability for 
genotypes. 

Table 5. The ranking technique of (Fox, Skovmand, 
Thompson, & Braun, 1990) parameters.  

Genotype 
Fox Parameters 

Low Mid Top 
1 21.43 42.86 35.71 
2 42.86 42.86 14.29 
3 50.00 28.57 21.43 
4 42.86 28.57 28.57 
5 50.00 21.43 28.57 
6 42.86 35.71 21.43 
7 42.86 28.57 28.57 
8 28.57 35.71 35.71 
9 35.71 21.43 42.86 

10 57.14 21.43 21.43 
11 21.43 35.71 42.86 
12 42.86 42.86 14.29 
13 35.71 21.43 42.86 
14 21.43 21.43 57.14 
15 28.57 28.57 42.86 
16 28.57 64.29 7.14 
17 28.57 21.43 50.00 
18 7.14 71.43 21.43 
19 35.71 42.86 21.43 
20 28.57 42.86 28.57 

Total 97 98 85 
 

In general, the results of this research from the 
aspect of relationship among parameters  were in 
agreement with other researches (Segherloo, 
Sabaghpour, & Dehghani, 2008; Sabaghnia, Dehghani, 
& Sabaghpour, 2006). There are many parametric and 
nonparametric methods for detecting stability of 
genotypes across environments (Flores et al., 1998). 
But the basis idea is that the genotype with more yield 
and low variance across environment is stable genotype 
(Baker, 1988). The similarity of results derived from 
parametric and nonparametric methods have been 
reported by many researches (Adugna & Labuschagne, 
2003; Pham & Kang, 1988). (Piepho & Lotito, 1992) 
reported high rank correlations between parametric 
and nonparametric measures. Nonparametric stability 
measurements could be useful as alternative approach 
for METs data (Yue, Roozeboom, & Schapaugh, 

1997), although they may lose some of information 
about genotype and data. 

In summary, by all of the parameters, G16 was 
detected as stable genotype across environment except 
by Top parameter. Due to the no significantly general 
and specific Z1 and Z2 for genotypes, the Si

1 and Si
2 

parameters were not interpreted. Also, the presented 
macro program in SAS (2008) is calculated the 
statistical tests for genotype, environment G×E 
interaction and given stability parameters based on rank 
of data and simplified the use of nonparametrical 
methods in plant breeding. 

Conclusion 

The use of nonparametric methods are preferred 
for analyzing METs data when some of assumptions 
such as normality are violated. Our study were 
founded in two parts by rank approach; the first part 
was related to theoretical explanation of two-way data 
such as G × E structure as well as focusing on the 
stability of METs data; the second part presented a 
macro SAS program for calculating nonparametric 
statistical tests and also stability indices in plant 
breeding. The results showed significant G×E based 
on all testes except for Kubinger method. Moreover, 
G16 had a maximum stability across environments 
using the presented nonparametric stability indices. 

References 

Adugna, W., & Labuschagne, M. (2003). Parametric and 
nonparametric measures of phenotypic stability in 
linseed (Linum usitatissimum L.). Euphytica, 129(2),  
211-218.  

Akbarpour, O., Dehghani, H., Sorkhi, B., & Gauch Jr., H. 
G. (2014). Evaluation of genotype × environment 
interaction in Barley (Hordeum Vulgare L.) based on 
AMMI model using developed SAS program. Journal of 
Agricultural Science and Technology, 16(4), 909-920.  

Azzalini, A., & Cox, D. (1984). Two new tests associated 
with analysis of variance. Journal of the royal statistical 
society. Series B (Methodological), 46(2), 335-343.  

Baker, R. (1988). Tests for crossover genotype-
environmental interactions. Canadian Journal of Plant 
Science, 68(2), 405-410.  

Bredenkamp, J. (1974). Nonparametrische Prüfung von 
Wechselwirkungen. Psychologische Beiträge, 16, 398-416.  

De Kroon, J., & Van Der Laan, P. (1981). Distribution‐free 
test procedures in two‐way layouts; a concept of 
rank‐interaction. Statistica Neerlandica, 35(4), 189-213.  

Segherloo, A. E., Sabaghpour, S. H., & Dehghani, H., 
(2008). Non-parametric measures of phenotypic 
stability in chickpea genotypes (Cicer arietinum L.). 
Euphytica, 162(2), 221-229.  

Eskridge, K., Peterson, C., & Grombacher, A. (1994). 
Probability of wheat quality traits falling within 
acceptable limits. Crop Science, 34(4), 866-869.  



Akbarpour et al. 42 

Acta Scientiarum. Agronomy Maringá, v. 38, n. 1, p. 35-50, Jan.-Mar., 2016 

Flores, F., Moreno, M., & Cubero, J. (1998). A 
comparison of univariate and multivariate methods to 
analyze G × E interaction. Field Crops Research, 56(3), 
271-286.  

Fox, P. N., Skovmand, B., Thompson, B. K., & Braun, H. 
J. (1990). Yield and adaptation of hexaploid spring 
triticale. Euphytica, 47(1), 57-64.  

Gail, M., & Simon, R. (1985). Testing for qualitative 
interactions between treatment effects and patient 
subsets. Biometrics, 41(2), 361-372.  

Hildebrand, H. (1980). Asymptotisch verteilungsfreie 
rangtests in linearen modellen. Medizinische Informatik 
und Statistik, 17, 344-349.  

Hühn, M. (1979). Beiträge zur erfassung der 
pha¨notypischen stabilitat. EDV in Medizin und 
Biologie, 10, 112-117.  

Hühn, M. (1996). Nonparametric analysis of genotype 
environment interactions by ranks. In M. S. A. G. H. 
Kang (Ed.). Genotype-by-environment interaction  
(p. 235-271). Boca Raton, FL: CRC Press.  

Hühn, M., & Léon, J. (1995). Nonparametric analysis of 
cultivar performance trials: experimental results and 
comparison of different procedures based on ranks. 
Agronomy Journal, 87(4), 627-632.  

Hussein, M. A., Bjornstad, A., & Aastveit, A. (2000). 
SASG× ESTAB: A SAS program for computing 
genotype × environment stability statistics. Agronomy 
Journal, 92(3), 454-459.  

Kang, M. (1988). A rank-sum method for selecting high-
yielding, stable corn genotypes. Cereal Research 
Communication, 16(1/2), 113-115.  

Kang, M.S. (2004). Breeding: Genotype-by-environment 
interaction. In R. M. Goodman (Ed.). Encyclopedia of 
Plant and Crop Science. (pp. 218-221). New York: 
Marcel Decker. 

Kang, M. S., & Gauch, H. G. (1996). Genotype-by-
environment interaction. Boca Raton, FL: CRC Press. 

Kang, M. S., & Magari, R. (1995). STABLE: A basic 
program for calculating stability and yield-stability 
statistics. Agronomy Journal, 87(2), 276-277.  

Krenzer, E. G., Thompson, J. D., & Carver, B. F. (1992). 
Partitioning of genotype× environment interactions 
of winter wheat forage yield. Crop Science, 32(5),  
1143-1147.  

Kubinger, K. D. (1986). A note on non‐parametric tests 
for the interaction in two‐way layouts. Biometrical 
Journal, 28(1), 67-72.  

Lin, C.-S., Binns, M. R., & Lefkovitch, L. P. (1986). 
Stability analysis: where do we stand? Crop Science, 
26(5), 894-900.  

Lu, H. Y. (1995). PC-SAS program for estimating 
Huehn's nonparametric stability statistics. Agronomy 
Journal, 87(5), 888-891.  

Magari, R., & Kang, M. S. (1993). Genotype selection via a 
new yield stability statistic in maize yield trials. 
Euphytica, 70(1), 105-111.  

Mut, Z., Aydin, N., Bayramoğlu, H. O., & Özcan, H, 
(2009). Interpreting genotype × environment 

interaction in bread wheat (Triticum aestivum L.) 
genotypes using nonparametric measures. Turkish 
Journal of Agriculture and Forestry, 33(2), 127-137.  

Nassar, R., & Hühn, M. (1987). Studies on estimation of 
phenotypic stability: Tests of significance for 
nonparametric measures of phenotypic stability. 
Biometrics, 43(1), 45-53.  

Pham, H., & Kang, M. (1988). Interrelationships among 
and repeatability of several stability statistics estimated 
from international maize trials. Crop Science, 28(6),  
925-928.  

Piepho, H. P., & Lotito, S. (1992). Rank correlation 
among parametric and nonparameric measure of 
phenotypic stability. Euphytica, 64(3), 221-225.  

Sabaghnia, N., Dehghani, H., & Sabaghpour, S. H. (2006). 
Nonparametric methods for interpreting genotype× 
environment interaction of lentil genotypes. Crop 
Science, 46(3), 1100-1106.  

Statistical Analysis Software (SAS). (2008). SAS/STAT® 
9.2 User’s guide. Cary, NC: SAS. 

Shah, S. H., Shah, S. M., Khan, M. I., Ahmed, M., & 
Hussain, I. (2009). Nonparametric methods in 
combined heteroscedastic experiments for assessing 
stability of wheat genotypes in Pakistan. Pakistan 
Journal of Botany, 41(2), 711-730.  

Sheskin, D. J. (2003). Handbook of parametric and 
nonparametric statistical procedures (4th ed.). Florida, 
USA: CRC Press; Chapman & Hall. 

Shukla, G. (1972). Some statistical aspects of partitioning 
genotype environmental components of variability. 
Heredity, 29(2), 237-245.  

Siegel, S., & Castellan, N. (1988). Non-parametric 
statistics for the behavioural sciences. New York, NY: 
McGraw-Hill. 

Thennarasu, K. (1995). On certain non–parametric procedures 
for studying genotype–environment interactions and yield 
stability. New Dehli, IN: PJ School; Iari. 

Truberg, B., & Hühn, M. (2000). Contributions to the 
analysis of genotype X environment interactions: 
comparison of different parametric and 
non‐parametric tests for interactions with emphasis on 
crossover interactions. Journal of Agronomy and Crop 
Science, 185(4), 267-274.  

Whitley, E., & Ball, J. (2002). Statistics review 6: 
Nonparametric methods. Critical Care, 6(6), 509-513.  

Yue, G. L., Roozeboom, K. L., & Schapaugh, W. T, 
(1997). Evaluation of soybean cultivars using 
parametric and nonparametric stability estimates. Plant 
Breeding, 116(3), 271-275. 

 
 
Received on January 25, 2015. 
Accepted on March 31, 2015. 

 
 
License information: This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original work is properly cited. 



43 A SAS macro for computing statistical tests  

Acta Scientiarum. Agronomy Maringá, v. 38, n. 1, p. 35-50, Jan.-Mar., 2016 

Appendix A. Nonparametric program (%NPSTAB). 

 
************************************************************************; 
***********************Nonparametric Tests*****************************; 
/*This program have designed for doing the nonparametric tests of two-way data table such as multi-
environment trials data. This kind of data is related to the characteristics of many genotypes which are 
evaluated in many environments. The newly developed macro are called %NPSTAB. This macro contains 
two computational parts. One part is covered the computational steps for statistical assumptions rank-based 
including Bredenkamp (1974), Hildebrand (1980), Kubinger (1986) and de Kroon and Van Der Laan 
(1981)tests which each of those are used for testing the genotype, environment and genotype × environment. 
The second part is calculated the parameters of genotypic stability including S1, S2, S3, S6 , Np1, NP2, Np3, 
Np4, Fox's ranking technique of Fox, Skovmand, Thompson, & Braun, (1990) - and Kang’s rank-sum (Kang, 
1988) for each genotype. 
To run the SAS macro program, data should be structured in a two way table format with L columns 
(genotypes) and M × N rows (environments × replication) as shown here. If the data has a different format, 
to correctly read the data by the data step, should be changed according to the objective. The external file is 
fed into SAS with an INFILE statement. The provided data must be introduced to SAS by a readable format 
such as *.TXT or *.DAT format. 
************************************************************************/ 
option nodate nonumber; 
%Macro NPSTAB(L,M,N, ALPHA); 
/*********************************************************************** 
L= Number of Genotypes 
M= Number of Environments 
N= Number of Replications 
Alpha= Probability level for testing the Chi-square statistics of Z1 and Z2 in nonparametric stability 
measurements. This macro variable is not used for tow-way tests. 
************************************************************************/  
DATA ORI; 
INFILE 'E:\path of data\filename.TXT'; 
/******* The path of data file must be entered*************************/ 
DO ENV=1 TO &M; 
DO REP=1 TO &N; 
DO Genotype=1 TO &L; 
INPUT Y @@; 
OUTPUT; 
END; 
END; 
END; 
RUN; 
/********************************************************************** 
*ASEMB macro is calculated the sum and mean of each introduced variable to macro program by each factor 
such as Genotype, ENV, combination of Genotype × Environment and also total sum and mean and put all 
of generated data with their variables in a final data. 
DATA= name of data that is used for averaging and summing 
Var= The variable that is used from the DATA 
suffix = The letter or word for different variable which is generated by each run to prevent the replacement of 
previous variables 
************************************************************************/ 
%MACRO ASEMB(DATA,VAR,suffix); 
PROC SORT DATA=&DATA; 
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BY ENV Genotype; 
PROC MEANS DATA=&DATA NOPRINT; 
BY ENV Genotype; 
VAR &VAR; 
OUTPUT OUT=GE_&DATA MEAN=YM_GE&suffix SUM=YS_GE&suffix; 
PROC MEANS DATA=&DATA NOPRINT; 
BY ENV; 
VAR &VAR; 
OUTPUT OUT=E_&DATA MEAN=YM_E&suffix SUM=YS_E&suffix; 
PROC MEANS DATA=&DATA NOPRINT; 
VAR &VAR; 
OUTPUT OUT=T_&DATA MEAN=YM_T&suffix SUM=YS_T&suffix; 
DATA &DATA; 
IF _N_=1 THEN SET T_&DATA; MERGE E_&DATA GE_&DATA &DATA; 
BY ENV; 
PROC SORT DATA=&DATA; 
BY Genotype ENV; 
PROC MEANS DATA=&DATA NOPRINT; 
BY Genotype; 
VAR &VAR; 
OUTPUT OUT=G_&DATA MEAN=YM_G&suffix SUM=YS_G&suffix; 
DATA &DATA; 
MERGE G_&DATA &DATA; 
BY Genotype; 
RUN; 
%MEND; 
%MACRO PROB; 
 PROB_G=1-PROBCHI(G,(&L-1)); 
 PROB_E=1-PROBCHI(E,(&M-1)); 
 PROB_GE=1-PROBCHI(GE,(&L-1)*(&M-1)); 
%MEND; 
%ASEMB (ORI,Y,F); 
DATA ORI; 
SET ORI; 
 G_ADJ = Y - YM_GEF + YM_GF; 
 E_ADJ = Y- YM_GEF + YM_EF; 
 GE_ADJ = Y- YM_GF - YM_EF + (2 * YM_TF); 
RUN; 
PROC SORT DATA=ORI; 
BY ENV Genotype; 
RUN; 
PROC RANK DATA=ORI OUT=R_ORI TIES=MEAN; 
BY ENV; 
VAR Y; 
RANKS VD_Y; 
RUN; 
PROC RANK DATA=R_ORI OUT= R_ORI1 TIES=MEAN; 
VAR Y G_ADJ E_ADJ GE_ADJ; 
RANKS RY H_G H_E H_GE; 
%ASEMB(R_ORI1,RY,K); 
DATA R_ORI1; 
SET R_ORI1; 
 K_G=RY - YM_GEK + YM_GK; 
 K_E =RY- YM_GEK + YM_EK; 
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 K_GE =RY- YM_GK - YM_EK; 
RUN; 
PROC RANK DATA=R_ORI1 TIES=MEAN; 
VAR K_G K_E K_GE; 
RANKS K_G K_E K_GE; 
RUN; 
DATA BERD; 
MERGE G_R_ORI1 E_R_ORI1 GE_R_ORI1; 
 YS_GK=YS_GK**2; 
 YS_EK=YS_EK**2; 
 YS_GEK=YS_GEK**2; 
PROC MEANS NOPRINT DATA=BERD; 
VAR YS_GK YS_EK YS_GEK; 
OUTPUT OUT=BER SUM=G_B E_B GE_B; 
DATA BREDENKAMP; 
SET BER; 
TEST="BREDENKAMP";/*calculation of statistics for Bredenkamp method*/ 
DROP _FREQ_ _TYPE_; 
 GE=((12*&M*&L)/(((&L*&N*&M)**2)*(&L*&N*&M -1))) *(GE_B - (G_B/(&M**2)) - 
(E_B/(&L**2)))+(3*(&L*&N*&M +1)); 
 G=((12*&L)/(((&L*&N*&M)**2)*(&L*&N*&M -1))) * G_B-(3*(&L*&N*&M +1)); 
 E=((12*&M)/(((&L*&N*&M)**2)*(&L*&N*&M -1)))* E_B-(3*(&L*&N*&M +1)); 
%PROB; 
 RUN; 
%ASEMB(R_ORI1,H_G,HG); 
%ASEMB(R_ORI1,H_E,HE); 
%ASEMB(R_ORI1,H_GE,HGE); 
%MACRO HK(DATA,V,METHOD); 
DATA R_ORI1; 
SET R_ORI1; 
 G_&DATA= (YM_G&V.G- YM_T&V.G)**2; 
 E_&DATA= (YM_E&V.E- YM_T&V.E)**2; 
 GE_&DATA= (&V._GE - YM_G&V.GE - YM_E&V.GE +YM_T&V.GE)**2; 
RUN; 
PROC MEANS DATA=R_ORI1 NOPRINT; 
VAR G_&DATA E_&DATA GE_&DATA; 
OUTPUT OUT=&DATA MEAN=G_&DATA E_&DATA GE_&DATA; 
RUN; 
DATA &DATA; 
SET &DATA; 
DROP _FREQ_ _TYPE_; 
 TEST="&METHOD";  
 G=(12/(&M*&L*&N+1))*G_&DATA; 
 E=(12/(&M*&L*&N+1))*E_&DATA; 
 GE=(12/(&M*&L*&N+1))*GE_&DATA; 
 %PROB; 
%MEND; 
%HK(HIL,H,HILDEBRAND);/*calculation of statistics for Hildebrand method*/ 
%ASEMB(R_ORI1,K_G,KG); 
%ASEMB(R_ORI1,K_E,KE); 
%ASEMB(R_ORI1,K_GE,KGE); 
%HK(KUB,K,KUBINGER); /*calculation of statistics for Kubinger method*/ 
%ASEMB(R_ORI1,VD_Y,V); 
DATA VAN_DE; 
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MERGE G_R_ORI1 E_R_ORI1 GE_R_ORI1; 
 YS_GV=YS_GV**2; 
 YS_EV=YS_EV**2; 
 YS_GEV=YS_GEV**2; 
PROC MEANS NOPRINT DATA=VAN_DE; 
 VAR YS_GV YS_EV YS_GEV; 
 OUTPUT OUT=VAN_DER SUM=G_V E_V GE_V; 
DATA VAN_DER; 
SET VAN_DER;/*calculation of statistics for Van Der Laan-De Kroon method*/ 
DROP _FREQ_ _TYPE_; 
 TEST="VAN DER LAAN-DE KROON";  
 GE=((12/((&L*(&N**2))*((&L*&N)+1)))*(GE_V - G_V/&M)); 
 G=((12/((&L*&M*(&N**2))*((&L*&N)+1)))*G_V)-(3*&M*((&L*&N)+1)); 
 E=((12/((&L*&M*(&N**2))*((&M*&N)+1)))*E_V)-(3*&L*((&M*&N)+1)); 
 %PROB; 
DATA STATISTIC; 
SET BREDENKAMP HIL KUB VAN_DER; 
KEEP TEST G E GE PROB_G PROB_E PROB_GE; 
PROC PRINT DATA=STATISTIC label noobs; 
TITLE "Result of Statistics Tests"; 
LABEL 
G='Genotype'  
E='Environment' 
GE='Genotype × Environment' 
PROB_G ='prob Genotype' 
PROB_E ='prob Environment' 
PROB_GE ='prob Genotype × Environment'; 
var TEST G PROB_G E PROB_E GE PROB_GE; 
footnote; 
RUN; 
/*Following cods calculate the parameters of nonparametric satiability*/  
*The measurements of stability are calculated based on means genotype × environment table over 
replications; 
DATA NPSTAB; 
SET GE_ORI; 
RENAME YM_GEF=YIELD; 
DROP _TYPE_ _FREQ_ YS_GEF; 
RUN; 
%ASEMB(NPSTAB,YIELD,); 
%MACRO UNI2 (DATA,VAR); 
PROC SORT DATA=&DATA; 
BY &VAR; 
%MEND; 
RUN; 
DATA LD; 
Set NPSTAB ; 
 GE=(Yield - YM_G - YM_E +YM_T); 
 LDEV=YM_G-YM_T; 
 CYLD=YIELD-LDEV;/*Calculation Corrected yield*/ 
%ASEMB(LD,CYLD,C); 
%ASEMB(LD,GE,INT); 
%UNI2 (LD,ENV); 
PROC RANK DATA=G_NPSTAB DESCENDING OUT=RY; 
VAR YM_G; 
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RANKS RYLD;/*Rank of genotype means*/ 
PROC RANK DATA=LD DESCENDING OUT=R; 
BY ENV; 
VAR CYLD YIELD; 
RANKS RCYLD RUCY; /* Rank of yield and corrected yield*/ 
%UNI2 (LD,Genotype); 
%UNI2 (R,Genotype); 
PROC MEANS NOPRINT MEAN MEDIAN VAR DATA=R; 
BY Genotype; 
VAR RCYLD RUCY; 
OUTPUT OUT=M_RANK MEAN=M_RCY M_RUCY  
MEDIAN=MD_RCY MD_RUCY VAR=SI2 VAR_RUCD; 
DATA RANK ; 
MERGE LD R M_RANK RY ; 
BY Genotype; 
DATA RANKS; 
IF _N_=1 THEN SET T_LD; 
SET RANK; /*Early calculation for stability measurements*/ 
 SI3=(VAR_RUCD*(&M-1))/M_RUCY; 
 SI6=ABS(RUCY-M_RUCY)/M_RUCY; 
 NP1=ABS(RCYLD-MD_RCY); 
 NP2=NP1/MD_RUCY; 
 NP3=(((SI2*(&M-1))/(&M))**.5)/M_RUCY; 
 PER=(&L)/((&L-2)*(&M-1)); 
 SUF= (&L-1)*(&L-2)*(&M-1); 
 SIGMA= (PER*GE); 
 RS=YS_TINT/SUF; 
 SIGMA=SIGMA-RS; 
 T=ROUNDE(&L/3); 
L=ROUNDE(2*T); 
IF RUCY<T THEN FOX='Top'; 
IF T<=RUCY<L THEN FOX='Mid'; 
IF L<=RUCY THEN FOX='Low'; 
PROC MEANS DATA=RANKS MEAN SUM NOPRINT; 
BY Genotype; 
VAR SIGMA SI2 SI3 SI6 NP1 NP2 NP3; 
OUTPUT OUT=NONP MEAN=L_SIGMA SI2 SI3 SSI6 NP1 NP2 NP3 
SUM=S_SIGMA SSI2 SSI3 SI6 SNP1 SNP2 SNP3; 
RUN; 
%MACRO RANK (D=, VAR=); 
DATA &D; 
ARRAY E{&M} ; 
DO J=1 TO &M; 
SET RANKS; 
BY Genotype; 
 E{J}=&VAR; 
END; 
IF LAST.Genotype THEN RETURN; 
%MEND; 
%RANK (D=DATA3, VAR=RUCY); 
%RANK (D=DATA1, VAR=RCYLD); 
PROC PRINT DATA=DATA3 NOOBS; 
VAR Genotype E1-E&M ; 
TITLE 'Uncorrected Yield Ranks'; 
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footnote; 
run; 
PROC PRINT DATA=DATA1 NOOBS; 
VAR Genotype E1-E&M; 
TITLE 'Corrected Yield Ranks'; 
footnote; 
run; 
*The corrected data have employed for S1 and S2 and uncorrected data for S3 and S6 measures, because the 
first two methods are mostly associated with yield level and shown a little or no correlation with stability 
parameters, whereas in the latter two methods, both yield level and stability of performance are considered 
simultaneously (Hühn, 1996); 
PROC RANK DATA=NONP OUT=R_SIGMA; 
VAR L_SIGMA; 
RANKS R_SIG; /*Rank for Shukla parameter, the second step of RS_KANG*/ 
Run; 
DATA DATA2; 
ARRAY E{&M}; /*Array statement for calculation of S1 and NP4*/ 
SET DATA1; 
BY Genotype; 
SUMQ=0; 
DO J=1 TO &M-1; 
DO JJ=J+1 TO &M; 
 AD=ABS(E{J}-E{JJ}Kang, 2004); 
 SUMQ+AD; 
END; 
END; 
 NN=&M*(&M-1)/2; 
 SI1=SUMQ/NN; 
 PRE=2/(&M*(&M-1)); 
KEEP Genotype PRE SUMQ SI1; 
DATA STAT; 
 K2=&L**2; 
 ES1=(K2-1)/(3*&L); ES2=(K2-1)/12; 
 VS1=(K2-1)*((K2-4)*(&M+3)+30)/(45*(K2)*&M*(&M-1)); 
 VS2=(K2-1)*(2*(K2-4)*(&M-1)+5*(K2-1))/(360*&M*(&M-1)); 
 ALPHAS=1-(&ALPHA/&l);/*The new level of probability is calculated to reduce the 
comparisonwise error rate in specific stability test for each genotype*/  
 PCHIS=CINV (ALPHAS,1); 
 PCHI=CINV (1-&ALPHA,&L); 
 PROB=1-PROBCHI(PCHI,&L); 
 run; 
 /*Expected mean, variance, Chi-square for Z1 and Z2, sum of Chi-square for Z1 and Z2 and level of 
probability are estimated. The rank-corrected and rank-uncorrected data are applied together to estimate NP1, 
NP2, Np3 and NP4 parameters. Also the original data (uncorrected data) are used for calculation of Fox's rank 
and Kang’s rank-sum. The Kang’s rank-sum values shown in output are summation of ranks*/ 
DATA ALL; 
IF _N_=1 THEN SET STAT; 
SET DATA2;  
SET NONP;  
SET R_SIGMA; 
SET M_RANK; 
SET RY; 
SET G_NPSTAB; 
 SIG_Z1="ns"; 
 SIG_Z2="ns"; 
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 ZI1=(SI1-ES1)**2/VS1;  
 ZI2=(SI2-ES2)**2/VS2; 
 IF ZI1>PCHIS THEN SIG_Z1="*"; 
 IF ZI2 >PCHIS THEN SIG_Z2="*"; 
  NP4=SUMQ/M_RUCY; 
NP4=PRE*NP4; 
 RS_KANG=(R_SIG + RYLD); 
 Z1=compress(put(ZI1,6.3)||SIG_Z1); 
 Z2=compress(put(ZI2,6.3)||SIG_Z2); 
KEEP Genotype YM_G M_RCY SI1 Z1 SI2 Z2 SI3 SI6 NP1 NP2 NP3 NP4 RS_KANG; 
PROC PRINT DATA=ALL LABEL NOOBS; 
TITLE 'Nonparametric Measurements of NASSAR and Huhn (1987), Thennarasu (1995) and Rank-Sum 
(1988)' ; 
 LABEL YM_G='Mean Yield' 
 M_RCY='Mean Corrected Yield Ranks' 
 SI2='SI2'; 
 footnote"ns and * mean non-significant and significant at level of &alpha probability, respectively"; 
 VAR Genotype YM_G M_RCY SI1 Z1 SI2 Z2 SI3 SI6 NP1 NP2 NP3 NP4 RS_KANG; 
RUN; 
DATA LIST; 
SET STAT; 
SET LD; 
PROC PRINT DATA=LIST NOOBS LABEL; 
TITLE 'Nonparametric Tests of NASSAR and Huhn (1987)' ; 
LABEL YM_T='Grand Mean' 
ES1='E(S1)' ES2='E(S2)' VS1='VAR(S1)' VS2='VAR(S2)' 
PCHIS='Chi-Square Statistic for Z1, Z2' 
PCHI = 'Chi-Square Statistic for Sum of Z1, Z2' 
Prob ='prob'; 
VAR YM_T ES1 ES2 VS1 VS2 PCHIS PCHI prob; 
PROC FREQ DATA=RANKS; 
TABLE Genotype*FOX/ NOPERCENT NOCOL NOFREQ; 
TITLE 'The Ranking Technique of Fox et al. (1990)'; 
footnote; 
RUN; 
%MEND; 
%NPSTAB(20, 14, 3, 0.05);
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Appendix B. Example. 

 

To illustrate the calculation of nonparametric measurements, we used the author’s data (Akbarpour, 
Dehghani, Sorkhi, & Gauch, 2014) from yield trials of 20 barley cultivars evaluated in 14 environments (2007–
2008). 

The macro %NPSTAB invoked is as follows: 
 

%NPSTAB(L,M,N,Alpha); 
%NPSTAB(20,14,3,05); 
 
where: 
L=Number of Genotypes,  
M=Number of Envrionments,  
N=Number of Replications and  
Alpha = Probabiity level for testing the Chi-square statistics of 1

iZ  and 2
iZ  in nonparametric stability 

measurements. This macro variable is not used for tow-way tests. 
The output of analysis is shown in table 2. 


