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ABSTRACT. The objective of this study was to determine the silicon concentration that would provide 
good growth in passion fruit plants. Passion fruit seeds were sown in polystyrene. After 60 days, when they 
were approximately 15 cm tall, the plants were transplanted into polyethylene pots containing 1.1 kg 
Tropstrato® substrate. Treatments consisted of four concentrations (0, 0.28, 0.55, and 0.83 g pot-1) of 
silicon applied as a silicic acid solution 1%. This solution was applied around the stem of the plants 
(drenched), with the first application being administered 15 days after transplanting. In total, three 
applications were made at intervals of 15 days. After the last application, the plants were subjected to 
chemical analysis to determine the silicon concentration and to X-ray microanalysis and flow cytometry. 
Phytotechnical analyses were performed during the applications. The use of silicon in concentrations of 
0.28 and 0.55 g pot-1 provides better growth of the passion fruit, and the absorption and deposition of the 
silicon in the passion fruit leaves are proportional to the availability of this element in the plant. The roots 
of the passion fruit plant are silicon accumulators, and the DNA stability and amount are preserved in the 
silicon-treated passion fruit plants. 
Keywords: flow cytometry, silicic acid, Passiflora edulis. 

Silício no crescimento e estabilidade genética de plantas de maracujazeiro 

RESUMO. O objetivo foi determinar uma concentração de silício que proporcionasse um bom 
crescimento de plantas de maracujá. Sementes de maracujazeiro foram semeadas em bandejas de 
poliestireno, após 60 dias, as plantas com aproximadamente 15 cm de altura, foram transplantadas para 
vasos de polietileno contendo 1,1 kg de substrato Tropstrato®. Os tratamentos consistiram de quatro 
concentrações (0; 0,28; 0,55 e 0,83 g vaso-1) de silício, na forma de solução de ácido silícico a 1%. Esta 
solução foi aplicada ao redor do caule das plantas (drench), sendo a primeira aplicação realizada 15 dias após 
o transplantio das plantas. No total, foram realizadas três aplicações, em intervalos de 15 dias. Após a última 
aplicação, as plantas foram submetidas à análise química de concentração de silício, microanálise de raios-X 
e citometria de fluxo. As análises fitotécnicas foram realizadas no decorrer das aplicações. O uso do silício 
nas concentrações 0,28 e 0,55 g vaso-1, proporciona melhor crescimento das plantas de maracujazeiro, a 
absorção de silício e sua deposição nas folhas de maracujazeiro são proporcionais à disponibilidade desse 
elemento para a planta, o maracujazeiro é uma planta acumuladora de silício nas raízes e a estabilidade da 
quantidade de DNA é preservada nas plantas de maracujazeiro tratadas com silício. 
Palavras-chave: citometria de fluxo, ácido silícico, Passiflora edulis. 

Introduction 

The genus Passiflora is economically important 
to Brazil, which has 129 known native species from 
the genus, 83 of which are endemic; these plants can 
be used as food, medicine and ornaments (Cervi, 
Azevedo, & Bernacci, 2010). 

Brazil is the main producer and consumer of 
passion fruit, with a planted area in 2011 of 61,631 
hectares and an average yield of approximately 
923,035 tons (Agrianual, 2014). 

Fertilization often increases crop yields due to 
increased   plant   vigor   (Espindula, Rocha, Souza, 

Grossi, & Souza, 2010). However, the practice of 
fertilization should be based on knowledge of the 
morphological and physiological characteristics of 
the plant in addition to factors such as the 
availability of nutrients in the soil and the behavior 
of these nutrients in the plant (Almeida, Damatto 
Junior, & Leonel, 2007). 

Although silicon (Si) is not considered an essential 
element for most plants, the benefits of silicate 
fertilization have been studied and recognized in 
cultivated species (Epstein, & Bloom, 2006; Ma, & 
Yamaji, 2008; Richmond, & Sussman, 2003). 
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The beneficial effect of Si on biomass formation 
in cultivated plants is associated with alterations in 
the plant structure, allowing, for example, better 
solar energy collection and reducing lodging. 
Although the role of Si in plant metabolism is still 
unknown (Epstein, & Bloom, 2006), this element is 
postulated to be solubilized in the plant and to play a 
role in the synthesis of plant defense molecules (Ma, 
& Yamaji, 2008; Rodrigues et al., 2004). Thus, 
silicon can indirectly promote plant growth and 
production, causing an increase in the chlorophyll 
content of the leaf tissue, altering the plant 
architecture, making the plants more upright, 
preventing excessive auto shading, delaying 
senescence, increasing the structural tissue rigidity 
and protecting the plants from abiotic and biotic 
agents (Epstein, & Bloom, 2006; Ma, & Yamaji, 
2008; Marschner, 1995).  

Few studies exist on the effects of silicon on 
plant growth, with the majority of publications 
dealing with the nutritional aspects and beneficial 
role of this element in biotic stress resistance, with 
possible evaluations of final productivity of the crop 
(Laviola, Martinez, Souza, & Alvarez, 2007; Pozza  
et al., 2009; Reis, Figueiredo, Guimarães, Botrel, & 
Rodrigues, 2008). Ma and Yamaji (2008) stated that 
the beneficial effects of Si on plant growth are 
commonly observed in plants under stress 
conditions. From a physiological point of view, for 
the growth and development of plants, silicon has 
demonstrated beneficial effects on the growth and 
development of plants in the increased production 
of various crops (Gomes, Moraes, & Assis, 2008). 

A lack of silicon adversely affects DNA synthesis 
and chlorophyll in diatoms (Werner, 1977; Raven, 
1983). However, no reports exist of excess silicon 
altering the DNA content of plants. In this sense, 
the flow cytometry technique has gained particular 
attention because it allows the relative amount of 
nuclear DNA of plant cells to be estimated rapidly and 
with high accuracy (Jin et al., 2008; Bairu, Aremu, & 
Van staden, 2011; Smulders, & Klerk, 2011). 

This work was carried out to evaluate the effect of 
the addition of silicon on the growth, morphology and 
genetic stability of passion fruit plants.  

Material and methods 

Passion fruit (Passiflora edulis Sims f. flavicarpa 
Deg.) were sown in polystyrene trays and allowed to 
grow until they reached a size appropriate for 
transplantation into pots. 

After 60 days, the plants, which were 
approximately 15 cm in height, were transplanted to 
polyethylene pots that contained 1.1 kg of 

Tropstrato® substrate. The plants were randomly 
arranged on a bench in the greenhouse and irrigated 
daily to meet their water needs. 

Treatments consisted of four concentrations (0, 
0.28, 0.55, and 0.83 g pot-1) of silicon in the form of 
1% silicic acid solution (SiO2.XH2O) (Pereira, 
Moraes, Prado, & Dacosta, 2010). This solution was 
applied around the stems of the plants (drenched), 
with the first application being administered 15 days 
after transplanting. All three applications were done 
at intervals of 15 days with the same concentrations. 
The control pots received water in the same 
amount. After the last application, the plants were 
subjected to chemical analysis to determine the 
concentration of silicon and to X-ray microanalysis 
and flow cytometry. The phytotechnical analyses 
were performed in the course of the applications. 

Phytotechnical analyses  

All experimental plants were evaluated for the 
number of leaves, plant height (cm), stem diameter 
(mm), leaf length (mm), web width (mm), aerial 
part fresh and dry weight (g) and root fresh and dry 
weight (g). The dry weight of the plant material was 
obtained after drying in an oven at 60°C for 72 
hours to a constant weight.  

Silicon concentration  

To determine the silicon concentrations, 
analyses were carried out in the Fertilizer Laboratory 
of the Federal University of Uberlândia, Institute of 
Agricultural Sciences. The leaves, stems and roots of 
12 plants were collected. The materials were dried in 
a forced circulation oven at 60°C for 72 hours to a 
constant weight and ground separately. For the 
determination of silicon, we used the methodology 
proposed by Korndörfer, Pereira, and Nolla (2004). 

X-ray microanalysis 

This analysis was conducted in the Electron 
Microscopy Laboratory, Department of Plant 
Pathology, UFLA. Samples from the middle third of 
2 leaves from 3 plants were mounted on "stubs" and 
maintained in a silica gel desiccator for 72 hours for 
evaporation of all water. Later, the samples were 
coated with carbon CED 020 Baltec and analyzed in 
an LEO-EVO scanning electron microscope, 
following the protocol of Alves (2004). 

Flow cytometry  

Flow cytometry was performed at the Plant 
Tissue Culture Laboratory of the Agriculture 
Department of UFLA. Approximately 30 mg of leaf 
samples was collected, along with the same amount 
of tomato leaf biomass (Solanum lycopersicon) 
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(reference standard with a quantity of 1.96 
pictograms (pg) of DNA), with the samples being 
crushed in a petri dish containing 1 mL Marie nuclei 
extraction buffer (Dolezel, Binarova, & Lucretti, 
1989). The extract containing the nuclei was 
subsequently stained with 25 μL mL-1 of propidium 
iodide and placed in the equipment; 5,000 nuclei 
analyses were performed on each sample. 
Histograms were obtained on a FacsCalibur® 
cytometer (Becton Dickinson) with the Cell Quest 
program (Dickinson, 1998). The DNA content (pg) 
of the plants was obtained with the following 
equation: DNA content (pg) = the G1 peak position 
the sample position/G1 peak of the standard x pg. 
Three repetitions were conducted, and statistical 
analysis was performed using the WinMDI 2.8 
program (Trotter, 2000). 

Experimental design and statistical analysis - The 
design was completely randomized with 4 
treatments and 20 repetitions/treatment. All data 
were submitted to an analysis of variance using the 
statistical program SISVAR (Ferreira, 2011), 
followed by data regression or the Scott-Knott test. 

Results and discussion 

Analysis phytotechnical 

No interaction was observed between the 
treatments and the three application times; 
therefore, the factors were studied separately. For 
the regression analysis results, no model fit the 
curve, and we used the statistical tests to better 
explain the results. 

An increase was observed in the stem diameter 
with increasing silicon concentrations, with the 
largest diameter, 2.33 mm, being attained with 0.21 
g silicon pot-1 and a reduction occurring at higher 
concentrations (Figure 1a). Similar results were 
obtained for the plant height, with the maximum 
height, 9.82 cm, being attained at a concentration of 
0.28 g silicon pot-1 (Figure 1b). 

These results agree with those of Prado and 
Natale (2005), whose work with calcium silicate and 
passion fruit also showed that the application of 
silicon increased the height and stem diameter 
quadratically. 

Similar results were obtained by Prado and 
Natale (2004), who observed while working with 
the application of chrome iron slag to passion fruit 
that a silicon application of rate of 333.4 g kg-1 
increased the stem diameter and plant height 
quadratically. 

This positive relation between height and stem 
diameter was also observed by Ferri (1985) and 
indicates the great morphophysiological importance 

of vegetative characteristics, as reflected in a practical 
way in the growth and differentiation of the plant. 
In addition, several studies have shown that 
fertilization with silicon can have a positive 
influence on the plant growth and productivity 
(Sávio, Silva, Teixeira, & Borém, 2011). 

Increasing silicon concentrations resulted in a 
proportional increase in the fresh and dry leaf 
biomass and fresh stem biomass (Figure 1c, d and 
g), reaching a fresh leaf biomass of 12.09 g at levels 
of 0.66 g silicon pot-1, a dry weight of 2.08 g with 
0.57 g pot-1 and a fresh stem biomass of 5.29 g at a 
concentration of 0.60 g silicon pot-1. At higher 
concentrations, a downward trend in values was 
recorded for these three variables. 

A linear decrease for root fresh and dry biomass 
was observed with the increasing silicon 
concentrations (Figure 1e and f). These results agree 
with those obtained by Ribeiro et al. (2011), who 
applied calcium silicate to coffee plants and found 
that the highest calcium silicate dose (6 mg ha-1) 
provided a reduction in coffee plant root systems 
without compromising the functionality and 
development of the plant aerial parts. 

Among the benefits related to silicon fertilization 
are the shoot and root dry matter increase and the 
importance of silicon for the growth and 
development of plants (Epstein, 1994). Prado and 
Natale (2005) observed a quadratic increase in 
passion fruit plant shoot and roots dry matter in 
response to increased calcium silicate 
concentrations. 

The same authors, while assessing steel slag in 
passion fruit plants, observed a quadratic increase in 
the shoot and root dry matter (Prado & Natale, 
2004). Similar data were obtained in the present 
experiment with respect to the dry and fresh weight 
of the leaves and stems, thereby showing the 
positive effect of silicon on plant growth. However, 
a decrease was observed in the fresh and dry biomass 
of the root, which may be due to the production of 
photoassimilates being directed to vegetative 
production, thus expressing the higher plant growth. 
Therefore, the production of assimilates for the root 
was lower, which resulted in lower fresh and dry 
biomass. 

Table 1 presents the significant difference 
observed for the dry biomass of the stem, and the 
length and width of the leaf. Concentrations of 0.28, 
0.55, and 0.83 g silicon pot-1 provided higher dry 
stem biomass with respect to the control, which 
reflects the results found for the fresh stem biomass. 
The silicon accumulates in the stem support and 
sustaining tissues, substantially strengthening the 
plant structure (Plucknett, 1971). 
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Silicon concentration 

As shown in Table 2, no significant difference was 
observed among treatments for the silicon content in 
the stem; however, a significant difference did exist in 
the leaf and root. The concentration of 0.83 g silicon 
pot-1 represents a higher silicon content in the leaf 
compared to other treatments, and the concentrations 
of 0.28 and 0.55 g silicon pot-1 did not differ but 
showed higher silicon content in the leaf compared to 
the control. The concentrations of 0.55 and 0.83 g 
silicon pot-1 resulted in a higher silicon content in the 
root compared to the other treatments, and the 0.28 g 
silicon pot-1 treatment showed silicon content higher 
than observed in the control. 

Tabela 2. Chemical analysis of silicon percentage in leaf, stem 
and root of passion fruit (Passiflora edults Sims f. flavicarpa Deg.) 
submitted to different silicon concentrations. 

Silicon concentrations 
(g pot-1) 

Leaf (%) Stem (%) Root (%) 

Control 0.27 c 0.08 a 0.51 c 
0.28 0.30 b 0.05 a 0.61 b 
0.55 0.31 b 0.06 a 0.73 a 
0.83 0.36 a 0.05 a 0.77 a 
CV 8.60 38.60 10.18 
*Means followed by the same lowercase letters in the same column belong to the same 
group, by Scott-Knott test (p ≤ 0.05). 

The presence of silicon in the control can be 
explained by the abundance of silicon in nature, 
where it is ubiquitous and is found even in water 
(Luz et al., 2006). 

These results agree with those obtained by 
Ferreira, Botelho and Faria (2013), who studied the 
development of plum trees treated with silicon and 
found a positive linear effect for the leaf content due 
to the application of silicon doses. 

Silicon accumulates in the leaf, so a lower amount 
of this element was found in the plant stem. However, 
higher levels were found in the root compared to the 
leaf, which has not been verified yet in other 
experiments of the application of silicon to passion 
fruit. According to Oliveira and Castro (2002), the 
average silicon content of the roots is lower compared 
with the stem and leaves, but in some cases, for 
example, in soybean, the silicon content in the root is 
greater than in the leaves. Fawe, Menzies, Cherif, and 
Belanger (2001) suggested that root silicon plays a role 
in the signaling network and can induce systemic 
resistance in other organs. 

In the present study, the passion fruit was observed 
to be an intermediate accumulator of silicon in the 
roots and not an accumulator in the leaf and stem 
because, according to Ma, Miyake and Takahashi 
(2001), at relations above 1.0, plants are considered 
accumulators; between 1.0 and 0.5, they are considered 
intermediate; and under 0.5, they are nonaccumulators. 

Flow cytometry 

For a further elucidation of the effects of Si on this 
species, flow cytometry analysis was also performed. 

These analyses have advantages over 
conventional genomics methods such as 
chromosome counts and other cytogenetic analysis 
because of the technical ease and speed (Chen, Hou, 
Zhang, Wang, & Tian, 2011; Nguyen et al., 2003). 

No significant difference was observed in the DNA 
content among the treatments (Table 3); therefore, the 
application of the silicon did not modify the DNA 
content, which is important because the silicon 
maintains the genetic stability of the plants. 

Tabela 3. Quantifications of DNA in passion fruit leaves (Passiflora 
edults Sims f. flavicarpa Deg.) analyzed by flow cytometry. 

Silicon concentrations 
(g pot-1) 

Leaf (%) Stem (%) Root (%) 

Control 0.27 c 0.08 a 0.51 c 
0.28 0.30 b 0.05 a 0.61 b 
0.55 0.31 b 0.06 a 0.73 a 
0.83 0.36 a 0.05 a 0.77 a 
CV 8.60 38.60 10.18 
*Means followed by the same lowercase letters in the same column belong to the same 
group, by Scott-Knott test (p ≤ 0.05). 

The flow cytometry technique is useful for 
distinguishing differences in the DNA content of 
plants maintained under stressful conditions, such as 
during micropropagation or when being subjected to 
chemical treatments. Many economically important 
species, such as Vitis vinifera (Yang et al., 2008; Prado  
et al., 2010), Gossypium hirsutum, (Jin et al., 2008), Musa 
spp. (Msogoya, Grout, & Roberts, 2011; Escobedo-
GraciaMedrano, Maldonado-Borges, Burgos-Tan, 
Valadez-González, Ku-Cauich, 2014), Passiflora spp. 
(Silva et al., 2011), Elaeis guineensis (Madon, Heslop-
Harrison, Schwarzacher, & Hashim, 2012), Coffea 
arabica (Clarindo, Carvalho, & Mendonça, 2012), 
Prunus cerasus (Vujović, Cerović, Ružić, 2012) and 
Saccharum spp (Nogueira, Pasqual, & Scherwinski-
Pereira, 2013), have had alterations to their DNA 
content evaluated by flow cytometry. 

The plants treated with silicon in this study showed 
no alteration in DNA content. This result is important 
because fertilization with silicon can occur at 
concentrations as high as 0.83 g per pot, which causes 
no harmful effect on the plant genome. However, due 
to the lack of studies on cytogenetics and silicon, more 
research in the area is needed. 

In this work, the tomato (Lycopersicon esculentum) 
was used as the internal standard, having DNA content 
of 1.96 pg (Figure 4). This standard was chosen 
because it formed a peak in a channel near that of the 
sample, without overlapping that of the sample. The 
closer the two peaks, the lower the experimental error. 
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