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ABSTRACT. Nonlinear regression models represent an alternative way to describe plant growth. In this 

study, we aimed to model the growth of linseed using four methods for data collection (longitudinal, mean, 

random, and cross-sectional) and fitting the logistic and Von Bertalanffy nonlinear regression models. The 

data came from experiments conducted between 2014 and 2020 in the municipality of Curitibanos, Santa 

Catarina, Brazil. The study had a randomized block design, with experimental units consisting of six lines, 

5.0 m long and 3.0 m wide, containing the varieties and cultivars of linseed with four replicates. We 

performed weekly assessments of the number of secondary stems and plant height and measured total dry 

mass fortnightly. After tabulation, the data were analyzed using the four methods, and the logistic and Von 

Bertalanffy models were fitted. The logistic model for the plant height variable exhibited the best 

performance using the longitudinal, mean, and cross-sectional methods. It was an alternative approach 

that reduced the time and labor required to conduct the experiment. 
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Introduction 

Linseed (Linum usitatissimum L.) is important in the economic, nutritional, and social context but has 

received little scientific attention in regions with productive potential in South America. Thus, studies aligned 

with basic science, such as those assessing the growth and development patterns of linseed plants, have been 

limited and not performed recently; the research must be renewed. Growth can be described using nonlinear 

models. However, for the culture under study, analyses were conducted using only linear regression models 

for density characteristics (Tomassoni et al., 2013; Rossi et al., 2014).  

Growth curve adjustments are usually performed by adopting the longitudinal method of variable 

observation and measurement. In this method, measurements of the same individuals are obtained over time, 

which improves the data's accuracy and, consequently, the results obtained. However, this methodology 

requires a large amount of time for analysis since many samples are evaluated concurrently. There are also 

cross-sectional and random methods in which only one individual is evaluated over time or different 

individuals are evaluated at a single time, respectively. Cross-sectional and random methodologies were used 

in the fields of health, to evaluate child growth curves, and animal husbandry, to study Mangalarga Marchador 

horses (Souza et al., 2017; 2019). 

The use of cross-sectional and random data collection methods has not been explored for the study of 

plant growth. Despite the previously highlighted benefits, the use of these methods may lead to a reduction 

in the quality of the experiment and loss of self-correction due sampling of a smaller number of individuals. 

Thus, these methods should be used only due to limitations of time, financial resources, and labor and/or 

when experimental plots are lost. In addition, the sampled plant must be representative of the other plants 

in the experimental unit (Steel, Torrie, & Dickey, 1997). 

Knowledge of the growth variables of agricultural crops is fundamental since it generates information that 

assists in planning, management, adaptability, product quality, and final productivity (Stanck, Becker, & 

Bosco, 2017). The growth of linseed, like that of other agricultural species, is characterized by a slow initial 
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growth followed by an acceleration until reaching a maximum point, later tending to stabilize, thus exhibiting 

a sigmoidal growth response (Mischan & Pinho, 2014). Thus, the adjustment of nonlinear regression models can 

be essential for describing plant growth, given that they are parsimonious and include parameters with biological 

and practical interpretation (Sousa et al., 2014; Archontoulis & Miguez, 2015) Estimates of the parameters and 

critical points of the function also allow us to explain the similarity between the methods of data collection in both 

models and to make inference about the species under study (Carini et al., 2020; Silva et al., 2021). 

Several nonlinear regression models best describe the growth curves of agricultural crops: Brody, 

Gompertz, logistic, Richards, and Von Bertallanfy (Archontoulis & Miguez, 2015). Among these, the logistic 

model is widely used to represent the growth of living organisms due to the ease in adjusting the parameters 

and interpreting their estimates (Seber & Wild, 1989); the Von Bertalanffy model (Von Bertalanffy, 1957) has 

been used to describe animal growth and, more recently, in studies of plants (Lúcio et al., 2015a). 

Based on the hypothesis that both nonlinear regression models can estimate the growth of linseed and 

that the cross-sectional and random data collection methods lead to responses similar to those observed with 

the longitudinal method, in this study, we aimed to model the growth of linseed using four methods of data 

collection (longitudinal, mean, random, and cross-sectional), making adjustments using the logistic and Von 

Bertalanffy nonlinear regression models. This modeling approach has the potential to assist in the 

interpretation of data generated with current linseed genotypes from coherently fitted methods. 

Material and methods 

The data come from experiments with linseed conducted in seven agricultural years, from 2014 to 2020, at 

the Federal University of Santa Catarina (27°16'25" S, 50°30'12" W, and 993 m altitude) in the municipality of 

Curitibanos, state of Santa Catarina, Brazil. The region's climate type is humid subtropical Cfb, with rainfall 

well distributed throughout the year, and subtropical from the thermal perspective, with an average annual 

rainfall of approximately 1,480 mm and an average maximum and minimum temperature of 22.0 and 12.4°C, 

respectively (Wrege, Steinmetz, Reisser, & Almeida, 2012). The soil is classified as Clayey Humic Cambisol, 

according to Embrapa (2013), originating from basalt, with a very clayey texture. 

The study had a random block experimental design, with treatments varying over the years, composed of 

local varieties (brown and golden) and Argentine cultivars of brown color (Aguará INTA and Caburé INTA) 

with four replicates (Table 1). The experimental units consisted of six lines, 5.0 m long and 3.0 m wide, 

considering an 8 m² central floor area. Seeding was performed manually, with a spacing of 2 cm between 

plants and 50 cm between lines (in 2014), and a spacing of 2 cm between plants and 35 cm between lines was 

later adopted. The management of linseed was conducted according to guidelines for agroecological 

cultivation of plants. 

Table 1. Experiment features: crops, sowing dates, linseed varieties (brown and golden) and cultivars (Aguará INTA and Caburé INTA), 

variables evaluated in the 2014/2015 to 2020/2021 crops. 

Crops Seeding Harvest Genotypes Variables 

2014 August 14th, 2014 
January 05th,2015 (Golden) 

December 17th, 2014 (Brown) 
Golden var. Brown var. Plant height and total dry mass 

2015 July 23rd, 2015 December 9th, 2015 Golden var. Brown var. Plant height and total dry mass 

2016 

April 26th, 2016 November 9th, 2016 
Aguará INTA cv. Caburé INTA 

cv. Golden var. 

Plant height and secondary stems 

May 20th, 2016 December 6th, 2016 
Plant height, secondary stems, and total 

dry mass 

2018 

April 13th, 2018 
November 20th, 2018 

October 22nd, 2018 (Golden) Aguará INTA cv. Caburé INTA 

cv. Golden var. Brown var. 

Plant height and number of secondary 

stems 

May 24th, 2018 November 24th, 2018 
Plant height and number of secondary 

stems 

2019 May 27th, 2019 December 22nd, 2019 Brown var. Total dry mass 

2020 September 6th, 2020 December 30th, 2020 Brown var. 
Plant height and number of secondary 

stems 

 

The meteorological data were obtained from INMET's automatic meteorological station located at 

Curitibanos airport, 5 km away from the experimental area. The daily thermal sum data were calculated 

according to Equation 1: 

STd1= (Tmed-Tb)           (1) 
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where STd1 is the daily thermal sum, Tmed is the average daily temperature calculated by the arithmetic mean 

between the maximum and minimum temperatures, and Tb is the base cardinal temperature. The base 

temperature adopted was Tb= 5.3°C (Bert, 2013) from emergence (Equation 2): 

STa =∑1
𝑛STd            (2) 

where n is the duration in days of the development phase. 

The growth of the linseed plants was determined using five plants per replicate marked with colored wire 

in the useful area, totaling 20 plants per variety or cultivar, and evaluated weekly by counting the number of 

secondary stems and measuring plant height (cm) using a ruler. Total dry mass (g) was determined by collecting 

three plants per replicate, 12 plants per treatment, fortnightly and randomly, in the useful area, excluding the 

marked plants, and subsequently drying them in an air oven at 65°C until a constant weight was reached. 

The data obtained were organized to allow for the occurrence of four data collection methods: 

longitudinal, mean, random, and cross-sectional. For the longitudinal method, values of 20 plants of each 

treatment were used, marked, and evaluated throughout the experiment. For the other methods, three other 

possibilities for data collection were simulated. The mean method referred to the mean of each treatment 

derived from the longitudinal method. The random method simulated randomness in each evaluation, using 

only one plant selected at random in each evaluation. For the transversal method, a single plant was 

evaluated, which was marked and evaluated throughout the experiment (at each measurement time). 

The collected variables were fitted to nonlinear logistic models for each treatment (Seber & Wild 1989) 

and Von Bertalanffy (Von Bertalanffy, 1957) (Equations 3 and 4): 

Y𝑖 =
𝛽1

1+exp(𝛽2−𝛽3∗𝑥𝑖) + 𝜀           (3) 

Y𝑖 =  𝛽1(1 − 𝛽2exp(−𝛽3∗𝑥𝑖))3 + 𝜀          (4) 

where Y𝑖 is the measured variable; 𝑥𝑖 time (STa, after emergence); 𝛽1 is the horizontal asymptote, 𝛽2 reflects 

the distance between the initial value (observation) and the asymptote; 𝛽3 is associated with the growth rate; 

and 𝜀 is the experimental error. The adopted allometric coefficient for the Von Bertalanffy model, which is 

directly linked to the development standard, was 3/4. 

Parameter estimates were obtained by the least squares method using the Gauss‒Newton iterative method 

(Bard, 1974). This procedure was performed using the nls function in R software. After choosing and adjusting 

the model, the assumptions were tested by applying the Shapiro-Wilk, Breusch-Pagan, and Durbin-Watson 

tests to verify the residual normality, homoscedasticity, and independence, respectively. The lmtest and car 

functions in R software were used to test the homoscedasticity of variances and residue independence, 

respectively. However, due to the violation of the assumptions, bootstrap resampling estimation was 

implemented using the nlsboot function from the nlstools package in R software. 

Five adjustment quality evaluators were used: the Akaike information criterion (AIC) (Akaike, 1974), 

Bayesian information criterion (BIC) (Schwarz, 1978), fitted coefficient of determination (R²aj), fitted standard 

error (ASE), and residual standard deviation (RSD). The closest linear approximation of the model was 

obtained with values below 0.3 for intrinsic nonlinearity (cI) and below 1.0 for parametric nonlinearity (cθ) 

(Fernandes, Muniz, Pereira, Muniz, & Muianga, 2015). The statistical significance of cI and cθ comparing their 

values with/2√F were evaluated, where F is the critical value. We used the rms.curv function in the MASS 

package of R software to perform this test. 

The critical points of the growth function were obtained using the derivatives in relation to time (Mischan 

& Pinho, 2014). The inflection point (IP): d2y(t)/dt2=0; maximum acceleration point (MAP) and maximum 

deceleration point (MDP): d3y(t)/dt3= 0; asymptotic deceleration point (ADP): d4y(t)/dt4=0 (Mischan & Pinho, 

2014), and concentration (MDP-MAP) (Sari et al., 2018). 

Results and discussion 

When adjusting the logistic and Von Bertalanffy nonlinear regression models, considering the four data 

collection methods, the same response pattern was observed for the variables plant height, number of 

secondary stems, and dry mass, regardless of the planned treatments (cultivars) and growing years (2014-

2020). Thus, only a part of the results will be presented since the interpretations must be carried out similarly 

for the other variables. 
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The data collection methods resulted in different numbers of samples. Therefore, some results were 

directly influenced, such as the indication adjustment quality AIC, BIC, and R 2
aj criteria (Akaike, 1974; 

Schwarz, 1978). The longitudinal and cross-sectional methods evaluated over time were found to be 

dependent on previous evaluations. Thus, there was a violation of the assumptions of heteroscedasticity 

and residue dependence (Table 2). Normality was not met in 75% of the methods when working with the 

logistic model and in 50% with the Von Bertalanffy model. Regardless of the adjusted model, the 

longitudinal and random methods exhibited nonnormality, and the cross-sectional method met this 

assumption. 

Table 2. P value for the tests of normality (Shapiro-Wilk - SW), heteroscedasticity (Breusch Pagan - BP), and error independence 

(Durbin Watson - DW) for the nonlinear logistic and Von Bertalanffy models for the four data collection methods. 

  Logistic Von Bertalanffy 

Method SW BP DW SW BP DW 

Longitudinal 2.36 x 10-5 1.42 x 10-3 0.596 6.97 x 10-5 0.002807 0 

Mean 0.049479 0.587301 0.054 0.499341 0.928462 0 

Random 0.002611 0.389177 0.886 0.020393 0.492409 0.164 

Cross-sectional 0.885824 0.075044 0.412 0.988261 0.431512 0.004 

 

The reliability of the tests was affected due to the assumptions of the model not being met for most of the 

evaluated situations, regardless of the model and method used since they induce estimates with low accuracy 

and the degree of adjustment of the model is lower (Muniz, Nascimento, & Fernandes, 2017). Data 

transformation did not efficiently overcome the problems related to noncompliance with assumptions; 

therefore, the confidence intervals of the parameters were estimated by bootstrap resampling by the empirical 

methodology (Diel et al., 2019). Therefore, the reliability of the statistical model and the practicability of its 

use are only valid when the assumptions are met (Souza et al., 2017). 

The quality of the evaluator adjustments should be considered when choosing the most appropriate model 

(Muianga, Muniz, Nascimento, Fernandes, & Savian, 2016; Sari et al., 2018; Sari et al., 2019a). In general, the 

values of R2aj were high, close to 1, indicating that the data provided good adjustment quality for both 

nonlinear models (Table 3). Higher values of R2aj and lower values of RSE, RSD, AIC, and BIC indicate better 

adjustments (Morais, Ribeiro, Veloso, & Veloso, 2020). These results were similar for both the logistic and 

Von Bertalanffy nonlinear regression models. 

The low variability in the adjustment quality indices (Table 3) may cause doubt when choosing the model 

that best represents the effect and response obtained. This result was also observed by Lúcio, Nunes, and Rego 

(2016) when estimating the production of pod beans. Using the same models as the present study, the authors 

obtained similar adjustment quality. Sari et al. (2019a) concluded that these criteria alone cannot assess 

parameter bias and may select incorrect models to describe biological growth. 

Table 3. Adjustment quality indices: fitted coefficient of determination (R2
aj), random standard error (RSE), adjustment standard 

deviation (ASD), Akaike information criterion (AIC), and Bayesian information criterion (BIC) for the nonlinear logistic and Von 

Bertalanffy models for the four data collection methods for linseed plant height of cultivar Aguará INTA, 2016 (April 26th, 2016). 

  Logistic 

Method R2
aj RSE RSD AIC BIC 

Longitudinal 0.945126 6.849924 3.954806 1743.434 1757.677 

Mean 0.998158 1.384269 0.799208 49.93614 52.19594 

Random 0.945314 9.216176 5.320962 99.22663 100.0864 

Cross-sectional 0.994246 2.439279 1.408318 64.66593 66.92573 

  Von Bertalanffy 

Method R2
aj RSE RSD AIC BIC 

Longitudinal 0.938026 7.27964 4.202902 1775.073 1789.316 

Mean 0.990659 3.117422 1.799845 71.04384 73.30363 

Random 0.932642 8.75237 5.053183 97.8841 100.1439 

Cross-sectional 0.988687 3.420312 1.974718 73.45469 75.71449 

 

The model will represent plant growth when it is close to linear, given by intrinsic (cI) and parametric (cθ) 

nonlinearity, obtained with lower values below 0.3 and 1.0, respectively (Fernandes et al., 2015). Sari, Lúcio, 

Santana, and Savian (2019b) described the importance of nonlinearity measures to evaluate model adjustment 
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quality to describe tomato growth. Different adjustments were implemented based on the nonlinearity 

measures. The percentages of acceptance are presented in Table 4. The logistic model exhibited the highest 

percentages of adjustment for the variables plant height, number of secondary stems, and total dry mass in 

the different treatments, indicating that the model has a good linear approximation and that its parameters 

are reliable. 

The logistic nonlinear regression model showed adequate adjustment for the variable plant height in all 

data collection methods, years, varieties and cultivars, with some exceptions only for the random and cross-

sectional methods (Table 4). The cross-sectional method obtained similar results to the longitudinal and 

mean methods; that is, the use of the same plant evaluated throughout the experiment can be an alternative 

since it presents parameter estimates and similar adjustment quality indices.  

The variable total dry mass for the Caburé INTA and golden varieties presented adjustments for the 

longitudinal and mean methods, while the Aguará INTA cultivar presented adjustment in all methods, and 

the brown variety did not obtain adjustment (Table 4). For the variable number of secondary stems, there were 

good adjustments for the longitudinal and mean methods in the cultivars Aguará INTA (50%) and Caburé 

INTA (50%) and golden variety (100%), while the brown variety showed 100% adjustment in the four data 

collection methods. This divergence between the adjusted methods for each variety is associated with 

differences in data variability. For a model to be fitted, it is essential that the mathematical expression 

faithfully represents the reality of the dataset. In the brown variety, variability between observations is high, 

a feature that makes adjusting models difficult, especially for conditions that enhance variability in the 

collection of observations, which is the case with the random method. 

When applied to the variable plant height, the Von Bertalanffy nonlinear regression model obtained 

variable adjustments between the data collection methods and fitted 100% in the longitudinal method for the 

cultivars Aguará INTA and Caburé INTA and golden variety and in the mean method for the cultivar Aguará 

INTA (Table 4). There was no adjustment in any of the data collection methods for the total dry mass, and for 

the number of secondary stems, there was adjustment only in the cultivar Caburé INTA in the mean collection 

method (33.33%). Thus, this model is not suitable for describing the growth of oilseed flax since it indicates 

that the results of the parameters have no approximation to the linear one. These results were also obtained 

by Diel et al. (2019), who used the Von Bertalanffy model and obtained high nonlinearity values, indicating 

low efficiency and accuracy in the description of strawberry production data. 

Table 4. Percentage of adjustments for intrinsic (cI) and parametric (cθ) nonlinearity in the nonlinear logistic and Von Bertalanffy 

models in the cultivars Aguará INTA and Caburé INTA and golden and brown varieties for the four data collection methods concerning 

the variables plant height, number of secondary stems, and total dry mass for linseed. 

Plant height 

  Logistic Von Bertalanffy 

Method Aguara Cabure Golden Brown Aguara Cabure Golden Brown 

Longitudinal 100% 100% 100% 100% 100% 100% 100% 60% 

Mean 100% 100% 100% 100% 100% 40% 50% 40% 

Random 100% 80% 100% 20% 20% 0% 0% 0% 

Cross-sectional 60% 80% 100% 100% 80% 40% 16.67% 0% 

Total dry mass Number of secondary stems 

  Logistic Logistic 

Method Aguara Cabure Golden Brown Aguara Cabure Golden Brown 

Longitudinal 50% 33.33% 50% 0% 50% 50% 100% 100% 

Mean 100% 66.67% 25% 0% 50% 50%* 100% 100% 

Random 50% 0% 0% 0% 0% 0% 0% 100% 

Cross-sectional 50% 0% 0% 0% 0% 0% 0% 100% 

*Von Bertalanffy model with 33.33%. 

There was a difference between the longitudinal and mean methods and the cross-sectional methods in 

the logistic nonlinear regression model in the Aguará INTA cultivar for plant height (Figure 1) since the 

confidence intervals did not cross for parameter1 and critical points IP, MDP, and ADP. In addition, the 

random method did not present reliability due to greater variability in estimates and greater confidence 

intervals. However, the cross-sectional method can be applied to model the growth curves of the variables 

plant height and total dry mass of linseed using the nonlinear logistic model. 
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Figure 1. Confidence intervals for parameters and critical points of the logistic nonlinear model for the variable plant height (cm) for 

data collection methods: longitudinal (L), mean (M), random (R), and cross-sectional (C) for linseed in the cultivar Aguará INTA, 2016 

(April 26th, 2016). β1 (represents the height), β2 (represents the time of growth), β3 (represents the growth rate), XMAP (maximum 

acceleration point), XIP (inflection point), XMDP (maximum deceleration point), XADP (asymptotic deceleration point), and 

concentration (XMDP-XMAP). 

In general, the confidence intervals of the logistic model were tighter than those of Von Bertalanffy in all 

conditions evaluated (exemplified in Figures 1 and 2). Thus, the Von Bertalanffy model was inadequate for 

describing the growth of the variables plant height, number of secondary stems, and total dry mass, 

corroborating studies already conducted with other crops with multiple harvests (Sari et al., 2018; 2019a; 

2019b). 

Intervals of confidence were constructed to compare data collection methods using parameter estimates 

and critical points obtained by bootstrap resampling, which were used to verify the equivalence of random 

and cross-sectional methods with longitudinal ones. Figures 1 and 2 show these intervals for only one 

condition, representing the other results obtained in the different measured variables, years of 

experimentation, varieties, and cultivars evaluated. 

The results of this study indicated that the height description curves of linseed plants were very similar 

for the logistic and Von Bertalanffy nonlinear regression models (Figure 3). Therefore, the quality of 

adjustment of the models should be considered when using or recommending a model that represents the real 

response of the variables over time. Thus, the logistic nonlinear regression model had high descriptive 

capacity for the evaluated variables and works in several cultures, such as Italian zucchini, peppers, cherry 

tomatoes (Lúcio et al., 2015a; Lúcio, Nunes, & Rego, 2015b), strawberry (Diel et al., 2019; 2020b), tomato (Sari 

et al., 2019a; 2019b), and biquinho pepper (Diel et al., 2020a). 
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Figure 2. Confidence intervals for parameters and critical points of the Von Bertalanffy nonlinear model for the variable plant height 

(cm) for data collection methods: longitudinal (L), mean (M), random (R), and cross-sectional (C) for linseed in the cultivar Aguará 

INTA, 2016 (April 26th, 2016). β1 (represents the height), β2 (represents the time of growth), β3 (represents the growth rate), XMAP 

(maximum acceleration point), XIP (inflection point), XMDP (maximum deceleration point), XADP (asymptotic deceleration point), 

and concentration (XMDP-XMAP). 

There was an increase in asymptotic growth in both models in the estimates of the parameter β1. However, 

the logistic model presented values closer to reality (Figure 3). Low values were found regarding the growth 

rate estimates (β3), especially when fitted to the Von Bertalanffy model due to the model reaching the 

inflection point slightly earlier than the logistic model. Thus, the estimates of the parameter β2 were always 

lower in this model. 

The longitudinal data collection method is characterized by a large sample size, which tends to lead to 

high experimental accuracy. However, it requires more time and resources for variable measurements. This 

method is considered a standard. Any method that is equivalent to this would be an advantage in terms of 

resource savings, precision and quality of adjustment, without losing the ability to interpret and discuss 

practical estimates of the parameters of the models and their critical points. According to (Fernandes et al., 

2015), these benefits are the same for describing the growth of crossbred rabbits and can be recommended 

when rapid measurement is needed. 

The logistic nonlinear regression model presented the highest values of R2
aj and lower values of RSA, RSD, 

AIC, and BIC, and intrinsic and parametric nonlinearity since the closer the nonlinear model is to the linear 

model, the greater the accuracy for the longitudinal, mean, and cross-sectional data collection methods. 
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Figure 3. Growth curves for the variable plant height (cm) for linseed in the cultivar Aguará INTA, logistic nonlinear regression Model 

(A) and its critical points (C), Von Bertalanffy nonlinear regression Model (B), and its critical points (D), 2016 (April 26th, 2016).  

Conclusion 

For oilseed flax, the nonlinear logistic regression model showed better fit-quality indices compared to Von 

Bertalanffy for the variables plant height, number of secondary stems, and total dry mass. The quality of fit 

of the models by the cross-sectional data collection method was similar to that of the longitudinal method, 

thus standing out as an applicable alternative for tests with loss of experimental units and reduced availability 

of manpower, space, time, and/or financial resources. 
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