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ABSTRACT. Experimental statistics are a key element for innovation in the agricultural sector. Commonly 

used statistical methods in experimentation are relatively simple, reliable, and widely used. However, the 

many problems in the quality of statistical analyses reported in the agricultural science literature highlight 

a need for continuing discussion on and updating of this topic. This article reviews critical points about 

classic linear models procedures commonly used in agricultural statistics, frequent procedures in 

publications in the agricultural sciences. Due to the evolution of statistical science some common 

recommendations from the past should no longer be followed. 
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Introduction 

Analysis of variance (ANOVA) completes its first centenary with no signs of aging. The genius and 

simplicity of this analysis has allowed it to become the basic reference for analyzing data from experiments, 

which is important in the agricultural sciences. Even though it was developed long before the popularization 

of simulation studies, the ANOVA F-test has repeatedly demonstrated its good qualities. 

The quality of statistical analysis methods can be assessed using many dimensions, but three deserve to 

be highlighted: i) type I error rates (at least family-wise) can be accurately set, ii) good power, the ability to 

detect real differences, even if of small magnitude, and iii) simplicity. We have included this last dimension 

pragmatically, although it is difficult to define (Chater & Vitanyi, 2003). Considering that most scientists use 

statistical methods only as tools, without simplicity a method of analysis is unlikely to be widely adopted and 

understood by non-statisticians unless there is no other option. Furthermore, scientific “negationism” opens 

up the need to popularize science and demystify its methods, corroborating the appeal of simplicity (Little, 

2013). Finally, for most of the scientific community, a simple, with widely recognized reasoning research has 

more value than something complex and of dubious validity (Volpato, 2010). Of course, these arguments 

should not be used to justify the non-adoption of new methods of analysis. After all, statistical science is also 

dynamic and is continuously offering new alternatives and methods for analysis. 

In addition to ANOVA, means tests and regression analyses comprise the majority of statistical tests most 

used in agronomic experimentation (Tavares, Carvalho, & Machado, 2016; Kramer, Paparozzi, & Stroup, 

2016; Possatto Júnior et al., 2019). Among statistical models, the vast majority of research in the agricultural 

sciences uses only simple models in a completely randomized design (CRD), randomized blocks (RBD), and 

split-plots, usually structured on just three or fewer factors (Lúcio et al., 2003; Tavares et al., 2016; Possatto 

Júnior et al., 2019). Note that, except for a CRD, these designs build on a simple all fixed effects ANOVA by 

including one or more additional random effects (so now in the framework of mixed models, see below). 

Despite the apparent simplicity of these experimental designs, is it possible to advance the quality and 

efficiency of the analysis of our experiments? Furthermore, in addition to the main textbooks on the topic, 

what is new in the discussion of these procedures? This brief review discusses these issues. 

ANOVA requirements 

First, remember that ANOVA is an analytical procedure that has prerequisites. While data do not need to 

come from experimental studies to be suitable for ANOVA, ANOVA was developed to analyze experiments 
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where the researcher has control over all experimental conditions. This means that one must be careful using 

ANOVA in other frameworks, for example, for observational studies, which are common in the biological 

sciences and in the area of soil management, although some of these can be analyzed using ANOVA. As in a 

correlation analysis, the basic problems using ANOVA for observational studies are bias (systematic error) 

and confounding (when the outcome is affected by variables ignored by the model). In an observational study 

there will always be a lower level of confidence in establishing cause and effect relationships between 

predictors and response variables than in an experimental study because one can always hypothesize that the 

dependent variable was affected by unmeasured underlying variables whose effects were not removed through 

randomization. 

Nevertheless, observational studies can usually be drawn from far larger sample sizes than is practical in 

an experimental study and are informative if bias and confounding can be adequately controlled. They allow 

for data collection in real situations, allowing for greater participation by companies, farmers, and agriculture 

extension personnel in research. Basic precautions for validity in these studies are given in Casler (2015) and 

Tavares et al. (2016), and for conditions satisfying ANOVA, see Ferreira, Cargnelutti Filho, and Lúcio (2012). 

For geo-based data, hierarchical models (with nested random effects, e.g. sites within regions within states) 

will likely yield more appropriate results than those from a classic fixed model. 

There are four general prerequisites of ANOVA (assuming the design has removed biases and confounding, 

and the model includes all important independent variables, appropriately scaled, and their interactions): 

error (residual) normality, error homogeneity, model additivity, and error independence (Montgomery, 2019).  

Normality 

The normality of the residuals refers to the distribution pattern of the deviations of each observation from 

its respective average (typically the cell mean). However, when the model is not a simple CRD, the deviations 

must be calculated according to the model, and not just by the difference between the observation and the 

treatment mean. Otherwise, a large effect for a particular block may be misinterpreted as a heavy tail in a 

non-normal distribution. Note that the Gaussian distribution is a continuous distribution (as opposed to a 

discrete one, like counts; see above). Although the concept of a continuous variable is relative (Gotelli & 

Ellison, 2011; Mann, 2015) due to the limited sensitivity of instruments, it may not make sense to assume one 

is sampling from a continuous distribution. 

The Gaussian pattern of error distribution is very common in nature, at least approximately (Eidous & Al-

Salman, 2016). This condition was used by statisticians to create familiar tests (t-tests, F-tests) that can 

determine, with great sensitivity, whether one population differs from another. In statistical language, 

sensitivity to detect a difference is synonymous with the “power” of the test. This means that the non-

parametric Kruskal–Wallis, Friedman, Mann–Whitney, Wilcoxon, and Nemenyi tests, among others, are in 

general less able to perceive real differences between the two treatments than the corresponding parametric 

ones (Thorpe & Holland, 2000). Since we want experiments with efficiency to detect differences, we choose 

parametric tests first, but only if their assumptions are met. 

Before discussing classic ANOVA in more detail, we need to mention that the linear models framework 

(which includes ANOVA and regression) can be considered a subset of a larger group of models, generalized 

linear mixed-effect models (often abbreviated as GLMM’s). In these models effects can be considered fixed 

(under the experimenter's control or chosen by the experimenter, such as which varieties to plant) or random 

(where the levels of the factor are a representative sample of all possible levels, e.g. plots in a field). The 

inference space differs, for fixed effects the inference space is only to those levels used in the experiment, for 

random effects it is to the population that the levels were drawn from. Because of the additional uncertainty 

arising from sampling a population of levels, estimates of standard errors of means will be larger for a model 

with random effects, other things being equal. Our discussion does include models with random effects, as 

these are common in experimental designs used in agriculture and natural resources, but is not exhaustive. 

The ‘generalized’ part of GLMM’s refers to the allowed distributions for data (basically, they have to be 

members of the exponential family of distributions; the Gaussian distribution is one). Count data often do 

not follow a normal distribution, but rather a Poisson-like distribution, where the variance of the data 

increases as the mean increases. So, theoretically, data like these would not satisfy the assumption given 

above, error homogeneity. That is, residuals tend to increase in absolute value if they are associated with 

larger means. Percent data, or binomial data, such as the number of positives per total count, will also not 

satisfy the assumptions for normally distributed data given above. Often, data like these were transformed, 
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e.g. taking logs, square roots, square root of the arcsine, so that residuals would better satisfy the ANOVA 

assumptions necessary for valid p-value calculations. While these (mostly) work, and are useful as a check, a 

better approach for data that clearly match a known distribution (e.g. Poisson) and clearly are not Gaussian 

might be to use software that can directly estimate GLMM’s with the appropriate underlying distribution. We 

do not cover GLMM’s in this paper, but recommend Stroup (2013). Agricultural examples can also be found 

in Gbur et al. (2012). 

Another important statistical framework that is becoming increasingly popular is Bayesian analysis. Like 

GLMM’s, one can construct models based on many statistical distributions, and one can identify factors as 

fixed or random. Modeling is done in a somewhat different way, and results are also interpreted differently. 

For the same data set, results are usually similar to what one obtains using the ‘frequentist’ framework 

(traditional statistical methods), though confidence intervals on estimates tend to be a bit larger, especially 

for smaller data sets. Despite this, Bayesian approaches can increase the sensitivity of the tests in some cases 

by allowing the incorporation of a priori information. While we expect to see more analyses done in this 

framework in coming years, most statistical analyses in agriculture will likely continue to be done in the 

‘frequentist’ framework, and we do not discuss Bayesian methods further, other than to note that it would be 

wise to monitor developments in this field and to use it when it is advantageous to do so (typically when there 

is good prior information that bears directly on the current experiment). For more details, we suggest Besag 

and Higdon (1999) and Ghosh, Delampady, and Samanta (2006). 

Returning to classic ANOVA, how can we determine if the data have residuals with a Gaussian distribution? 

After the 1980s, with the advancement of simulation studies (Dambolena, 1986), it became evident that some 

tests for normality, such as the Kolmogorov–Smirnov test, do not have good sensitivity to detect non-

normality in many situations (Razali & Wah, 2011; Torman, Coster, & Riboldi, 2012; Pino, 2014). However, 

we should not assume the existence of normality without verifying it, either formally by testing (preferable 

for less subjectivity) or using visual aids, such as Q-Q plots (Razali & Wah, 2011). While the F-test is 

considered to be relatively robust to slight violations of normality, it should be remembered that tests for 

normality are also not as powerful for detecting non-normality when the n is small (perhaps one should 

consider testing at 10% significance). If assumptions of normality are violated because they were not 

investigated, the conclusions from any subsequent t or F tests may be false (Lucena, Lopez, Pulgar, Abalos, & 

Valderrama, 2013) and the study may be discredited in the future. According to Ferreira (2014), the Tukey 

mean test, for example, can yield a Type I error rate (family-wise) of more than 50% (rather than the nominal 

5%) when residuals are clearly not normal and with a large number of pairs of means being compared. 

The most recommended tests for normality appear to be the Shapiro–Wilk, Anderson–Darling, and 

Jarque–Bera tests (Yazici & Yolacan, 2007; Torman et al., 2012). There may be other good tests, but these 

have been properly examined for their ability to detect non-normality in small samples. Unfortunately, all 

seem to have limited power when the total number of samples is less than 30 (Razali & Wah, 2011; Torman 

et al., 2012). A total n less than 15 is prohibitive to perform these tests, since they will not detect non-

normality in most cases. For this reason, one should consider performing non-parametric analyses not only 

when non-normality is detected, but also when the total number of experimental/sample units is below 15 

(Torman et al., 2012). Unfortunately, small data sets are exactly where one needs the most power to 

discriminate among groups. Razali and Wah (2011) argue that histograms and Q-Q plots can be subjective for 

assessing the distribution of residuals. We do not advocate any particular methodology for small data sets, 

but do insist that normality assumptions be checked as well as possible, and ANOVA not used for residues 

that have significant non-normality or non-homoscedasticity. 

Homoscedasticity 

The homogeneity of errors is the second basic requirement of ANOVA. Sometimes referred to as 

homoscedasticity or homogeneity of variances, it is important to be able to obtain a single, safe, and 

representative estimate of the experimental error as a whole (Casler, 2015). If homoscedasticity does not hold, 

the mean square of the ANOVA residuals will not be valid for some, or even most, comparisons. If this occurs, 

the results of some tests will have incorrect p-values attached, leading to erroneous conclusions.  

This is a good place to bring up the problem of zeros in a data set, which can often lead to treatment 

combinations which have a very small or zero variance.  This may happen if most plants die (so measures are 

zero) or don’t grow well (perhaps given a disease without an effective treatment). Not only are tests involving 

these groups invalid because the homogeneity of variances assumption has been violated, tests on all the other 
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combinations are also affected because the small variance groups lower the average residual variance (and 

recall that outliers have an outsize effect on averages).  If there are only a few treatment combinations with 

small variances and the rest would satisfy the homogeneity of variances assumption, we recommend deleting 

those combinations from the formal analysis (note that this will affect tests of interactions, etc.) so that the 

p-values that are reported are correct. The justification for removal, when applicable in a scientific paper, can 

be mentioned in the Methods section.  If one needs to compare one of these groups with another used in the 

formal analysis, one can use a non-parametric test or not test at all (if all values are zero, there is no variance, 

and that group will differ from any group whose observations are most or all non-zero values). 

If it is clear that the homogeneity of variances assumption has been violated, the p-values from an ANOVA 

will not be correct, and an alternative analysis is needed. The mixed-effect models can do variance groupings, 

which may help. Some transformation, defined a priori or not, may help. A non-parametric analysis may help, 

especially if the cell variances on ranked data are not too dissimilar. 

Among tests for homoscedasticity, there is no consensus on which is the most suitable. Some very popular 

ones like the Levene test modified by Brown and Forsythe (1974) are, in fact, very liberal in some situations 

(Hines & O’Hara-Hines, 2000). This could be linked to the structural zeros that appear in the residuals column 

when calculating the deviations from the medians of a simple CRD experiment with an odd number of 

repetitions. On the other hand, Levene’s original test is considered excessively conservative, detecting 

heteroscedasticity very easily (Sharma & Kibria, 2013). The Hartley or “F-max” test can be very permissive in 

some cases, in addition to not being developed for situations with more than 12 treatments or with treatments 

with variance equal to zero. As well as being very sensitive to the violation of normality (Sharma & Kibria, 

2013), the Bartlett test is less suitable for split-plots and split-block designs because of the complexity of 

estimating the various variance estimates and correctly partitioning them for a valid Bartlett test, so that they 

consider only the residual error and ignore the uncertainty due to other random effects (plots/blocks).  

Additivity 

The additivity of the model is an important basic requirement since the effects need to be separated into 

a sum of parts to be properly compared to the magnitude of the error. Although the model can have several 

components, the most worrying violation of additivity is the non-additive effect between blocks and 

treatments since other interactions can usually be estimated in the models. If the effect of each block cannot 

be separated from the effect of each treatment in an additive way (that is, the treatment effect is the same in 

each block), there is an interaction between blocks and treatments. When this occurs, there is no way to 

distinguish the block effect from the treatment effect, compromising the entire analysis. In addition, lost unit 

estimates (for unbalanced data in RBD, split-plots, split-blocks and other) can be wrong when additivity is 

violated. Thus, in experiments with a random block effect, it is essential to estimate non-additivity.  

Tukey’s non-additivity test is the best-known procedure for the common situation of only one replication 

per block (Karabatsos, 2005; Alin & Kurt, 2006). It is of great concern that this requirement has been 

systematically ignored in agricultural research and in many other fields, such as cross-over trials in the 

pharmaceuticals industry. The analysis problem can also be solved with an experiment in which some (or all) 

of the treatments are replicated at least twice in each block, so the treatment by block interaction can be 

calculated in the usual way. 

Independence 

The fourth and final requirement, independence of errors, is the most complex requirement to be assessed. To 

date, there is no general test recommendation for widespread use that addresses all possible forms or patterns of 

violation of independence (Gotelli & Ellison, 2011). For this reason, this is the only ANOVA requirement that can 

be assumed without being formally tested. It can be assumed based on a theoretical assessment of randomization 

and “physical independence” of experimental/observational units, but this should be verified by investigating the 

common forms of non-independence, such as those based on geography (spatial correlation) or time (time-series 

dependencies). In observational studies, important missing independent variables (whether measured or not 

measured) can also create residuals that are not independent. Some software can relatively easily estimate and test 

models with many kinds of simple correlated residual error structures, and those could be used to determine if the 

independence assumption is violated. 

Not infrequently in agricultural experimentation, independence between experimental units is not 

respected when there are excessively small and geographically close experimental units. Since the result of 
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an experimental unit, in these cases, does influence the results of the neighboring units, the analysis should 

be done using a model that allows for spatially correlated errors (Ferreira, 2019) or that allows a partial 

correction of this interference (Papadakis method for ANCOVA). Another relatively common situation of 

violation of independence is when there are no distinct experimental units (physically or geographically 

distinct) (Kramer et al., 2016), for example, in incubation experiments when comparing contents from the 

same flask incubated in several successive times. This is a kind of repeated measures design and needs to be 

analyzed in that framework, not in one where the successive times are considered levels of a factor. The result 

observed in the first measurement is likely to affect that of the second measurement, with no guarantee of 

independence between measurements (Alvarez V. & Alvarez, 2013). 

The same reasoning may apply to evaluations in successive agricultural years or successive harvests. It 

also applies to successive soil layer assessments (Ferreira, 2019). For example, if the residual effect of a given 

fertilizer on the soil is to be evaluated, the result observed in layers 0 - 10 cm is not independent of those 

observed in layers 10 - 20 cm in the same experimental unit. Therefore, if there is not an independent 

experimental unit for each layer to be evaluated, these layers will have to be considered only as different 

response variables or the model should account for this dependency structure. Otherwise, the model 

artificially inflates the degrees of freedom (DF) of the residual and increases the type I error rates of the tests 

that will be applied to these data (Kramer et al., 2016). The confusion about the adequacy of these 

experiments, exemplified above, may be in part related to the misinterpretation of what split-plot and split-

block experiments are, which we address below. 

If any of the requirements for ANOVA are violated, what are the available paths for analyzing the data? 

Data with a distribution other than Gaussian, that are heteroscedastic, or with non-additive effects should 

not be synonymized with experiments that are “poorly conducted” or “with problems”. The most 

recommended procedure in these cases is to assess whether a transformation in the scale can adequately 

transform the data to satisfy ANOVA requirements (Piepho, 2009; Ribeiro-Oliveira, Santana, Pereira, & 

Santos, 2018), alternatively to consider a GLMM model (Kramer, Paparozzi, & Stroup, 2019). There is not an 

established rule between the nature or source of the data and the ideal transformation (O’Hara & Kotze, 2010). 

In addition to the classic log, root, and angular transformations, the Box–Cox transformation family (Box 

& Cox, 1964) can be useful. If it is still not possible to meet the requirements of ANOVA using transformation 

or a GLMM approach, non-parametric methods can be tried. In many cases, the simple ranking of data (rank 

transformation) will allow an ANOVA on ranks and subsequent tests that are adequately sensitive and safe to 

carry out the comparisons of interest of the research (Conover & Iman, 1981; Zimmermann, 2004; 

Zimmerman, 2012; Conover, 2012). In addition, the problem of estimating the interaction in factorials under 

rank transformation can be overcome using aligned rank transformation (ART) (Wobbrock, Findlater, Gergle, 

& Higgins, 2011). In some situations, there are specific non-parametric tests that are more powerful. 

Bootstrap versions of mean tests can also be more powerful than the same tests under ranked data.  Note that 

inferences on ranked data are on median values, not means.  Also, there is no way to back-transform results 

to the original scale.  So, while one may want to give results of statistical testing on ranked transformed data, 

figures showing data should be on the original scale. 

Tests for comparisons of means 

Most agricultural research uses a posteriori Tukey test to compare means almost indiscriminately. 

Although this test has good control of real type I error rates (family-wise), there are better options. What are 

the “real type I error rates”? Type I error (α) is the probability that a test indicates that a difference is 

significant when, in reality, it is not. The frequency of error α can be estimated each time the test is applied 

individually (comparison-wise), for the set of times it is applied within each response variable (family-wise), 

or other ways. We will not go into details here about the distinction between error rates by comparison, family, 

or experiment (Keselman, 2015). In experimentation, there is no reason to trust tests that do not control error 

rates (family-wise) since we almost always perform several comparisons for each response variable and many 

false positives can represent a considerable waste of time and money. For example, in an experiment with 

eight treatments, a multiple comparison test like the Tukey test is applied 28 times (C8;2). With so many 

comparisons, it is easy to understand that the risk of at least one of them resulting in a false positive is large 

(Keselman, 2015). Not coincidentally, the Tukey test statistic considers higher tabulated q values as the 

number of treatments that are compared increases. 
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The first basic dilemma of statistical tests is that they were developed to control type I or type II error rates 

(false negatives). We usually choose to control what is considered to be the most serious, which is the type I 

error. In other words, our usual averaging tests are almost always accompanied by larger type II errors. When 

one treatment does not differ statistically from another, we should state that “there was not enough evidence 

to say that they are different”. Note that this is not the same as saying that “the averages are equal”, which 

might be the null hypothesis in words. After all, absence of evidence is not synonymous with evidence of an 

absence of an effect. If all one can say is “means do not differ statistically,” it may also lead to difficulty 

publishing results, since results are “inconclusive,” especially in the face of a low n and a high coefficient of 

variation (Onofri, Carbonell, Piepho, Mortimers, & Cousens, 2010; Loureiro & Gameiro, 2011). 

The second basic dilemma of the tests is that to better control type I error, power or sensitivity is lost 

(Gelman, Hill, & Yajima, 2012). In most cases, we design experiments so that they are sensitive to detect real 

differences between treatments, even if they are small differences. It is not a function of the statistical test to 

judge the importance of the difference (Loureiro & Gameiro, 2011; Kramer et al., 2019) because in some cases, 

a 2% increase can be important, and up to a 20% increase can be considered irrelevant in others. Effect-size 

statistics, like the d-Cohen statistics, can help in this regard (Loureiro & Gameiro, 2011). To get an idea of 

the severity of this dilemma, some power estimates of the Tukey test applied with a nominal α of 5% can be 

consulted. Even in experiments with a coefficient of variation of only 10%, Conagin, Ambrosano, and Nagai 

(1997) and Conagin and Pimentel-Gomes (2004) observed that the test was able to detect real differences of 

20% between means only 30% of the time. However, if a Holm-test was applied only to a few comparisons 

defined a priori, the power could reach 70%. 

Among the most well-known tests that adequately control the real type I error rates per family, simulation 

studies show that Holm, Tukey, Student–Newman–Keuls (SNK), Bonferroni, and Dunnett satisfy this criterion 

(Perecin & Barbosa, 1988; Borges & Ferreira, 2003; Conagin, Barbin, & Demétrio, 2008; Girardi, Cargnelutti 

Filho, & Storck, 2009; Sousa, Lira Júnior, & Ferreira, 2012; Gonçalves, Ramos, & Avelar, 2015). Of these, the 

SNK is the most controversial, but a large volume of Monte Carlo studies corroborate that it has reasonable 

error control capacity (Perecin & Barbosa, 1988; Borges & Ferreira, 2003; Conagin, Barbin, & Demétrio, 2008; 

Girardi et al., 2009; Gonçalves et al., 2015). LSD (t for multiple comparisons) and Duncan tests do not 

adequately control false positives and should not be used (Perecin & Barbosa, 1988; Conagin et al., 2008; 

Girardi et al., 2009; Sousa et al., 2012). Among the less popular, the Bonferroni test modified by Conagin et al. 

(2008) and the Scott–Knott cluster analysis also controls α error rates relatively well (Borges & Ferreira, 2003; 

Conagin et al., 2008). However, the latter should be used sparingly since, in many situations, the ambiguity 

of the performance of treatments can be natural and inherent to the phenomenon under study. In addition, 

in situations of partial nullity, the Scott-Knott test (in reality a procedure to group means) may have 

somewhat inflated Type I error rates (Borges & Ferreira, 2003). 

In terms of the power of these tests, we can order them from the most to the least sensitive: Holm (for a few 

comparisons) > Dunnett > Scott-Knott > Bonferroni modified by Conagin ~ SNK > Tukey > Scheffé. Although it is 

only an approximate order, it helps us to understand why planned comparisons should be the first option when 

they satisfy the research objectives. It is possible that planned contrasts are seldom used due to the difficulty of 

connecting scientific hypotheses and comparisons of interest (Yossa & Verdegem, 2015). In all tests, Fisher’s 

protection criterion may be respected, although this is not mandatory. The same reasoning applies to regression 

analyses. In the case of factorial experiments, even the factorial split should only be carried out if there is a global 

effect for treatments (preliminary ANOVA) (Barbosa & Maldonado Júnior, 2015). 

Univariate regression analysis under experimental conditions 

Quantitative treatments or predictors are those that are defined by numbers or doses. Whenever the 

treatments are quantitative and there are more than three levels, a regression analysis is recommended 

(Piepho & Edmondson, 2018; Possatto Júnior et al., 2019). In addition to being more sensitive than treating 

treatments as qualitative, such analyses are more consistent with the continuous effect of treatment levels 

(Piepho & Edmondson, 2018). A regression analysis relates changes in the dependent variable to changes in 

an independent variable (quantitative treatment levels) in an ‘empirical’ way, since estimates of the intercept 

and slope of the line are calculated from the data, and not from the ‘functional’ or theoretical relationship 

(e.g. based on the underlying biology), which would likely be complicated and involve non-linear relationships 

of many independent variables. 
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In agricultural experimentation, univariate regression analysis (only one predictor or causative variable) 

is more common than multivariate (two or more predictors). Multivariate regression analysis is widely used 

in observational studies, as an exploratory technique to model correlations between n supposedly causal 

variables and a response variable of interest. For more details on this technique, we suggest Alexopoulos 

(2010). Despite the usefulness of regression analysis for understanding many phenomena, there are questions 

about how to best perform it. In experimentation, such analysis always involves two steps. The first is to fit 

different regression models (linear, quadratic, root, exponential, etc.) to the data. In the second stage, the 

quality of this model fit should be tested to determine which models are statistically adequate, and perhaps 

rank the models. In other words, whenever it is stated that “the data were subjected to regression analysis”, 

it would be useful to state which models were considered. 

In experimental statistics, where true replications are almost always used, the quality of the adjustment 

can be assessed in a simple way using two criteria: i) the quality of the fit of the model to the data (assessed 

by the significance of the regression in the regression’s ANOVA), and ii) the level of deviation between the 

data and the model fit, also known as “lack of fit” (Cecon, Silva, Nascimento, & Ferreira, 2012; Dancey, Reidy, 

& Rowe, 2017). The regression ANOVA is a simple decomposition of the sum of squares of treatments 

(SSTreat) into two parts: one that can be explained by the model in question and one that cannot (the lack of 

fit). A regression model will be adequate if the part of SSTreat that it is able to explain (or estimate) is 

significant according to the F-test (Cecon et al., 2012; Dancey, Reidy, & Rowe, 2017). In addition, if the model 

is appropriate, the part of SSTreat not explained by it must be “negligible” (i.e., non-significant lack of fit). 

Therefore, the ANOVA of the regression performed separately for each model to be tested is sufficient for 

determining those models that are statistically adequate. Testing the significance of each model parameter via the 

t-test is redundant in experimental conditions with true replications (Dancey et al., 2017). It is important that the 

ANOVAs of the regressions are performed separately for each model tested so that the lack of fit is correctly 

estimated by the difference between the SSTreat and the sum of squares of the respective model. 

There are two additional important details to consider. The model chosen must also be a parsimonious 

model, that is, one with relatively fewer estimated parameters. In this sense, the value of the model’s “R2 

adjusted” (R2
a) is of great value because it shows that the largest R2 does not always correspond to the best 

model. Other criteria have been developed for this purpose, like AIC, BIC, etc. Finally, some authors maintain 

that the model should have an adequate theoretical interpretation, consistent with the phenomenon studied 

(Alvarez & Alvarez, 2003). For example, in a classic experiment involving levels of any resource (water, 

nutrient, etc.), the expected response in growth is exponential followed by stabilization. This expectation can 

be used as a tiebreaker between two statistically adequate models with very close R2
a. Thus, the ‘empirical’ 

model should reasonably match the ‘functional’ model. 

A common problem in regression analysis in agricultural research is that only linear, quadratic, and cubic 

models are often tested (Possatto Júnior et al., 2019). Exponential models, such as those that predict 

exponential growth followed by stabilization, are still underused, possibly due to the difficulty of performing 

calculations to estimate parameters (Mazucheli & Achcar, 2002; Kniss, Vassios, Nissen, & Ritz, 2011). These 

models have a good theoretical interpretation of various phenomena, particularly the growth responses of 

plants or animals due to the availability of resources (Freitas, 2005). Some details about common non-linear 

models, such as the Mitscherlich and Logistic models are addressed by Carvalho (2023). On the other hand, 

the cubic model makes a poor theoretical one. Although widely used, its oscillatory behavior (“S shaped” 

curve) rarely has a biological explanation if we assume that the treatments were properly isolated and 

controlled. Furthermore, it is less parsimonious because it has three parameters for shape versus only two 

regression parameters for the exponential models. 

Repeated measures on the same experimental units 

There is a relatively common confusion between the concept of split-plot in time and split-plot in space 

as a synonym for ANOVA for repeated measures in time or space. In reality, split-plot schemes require 

independent experimental units to exist, even though they alter the complete randomization pattern of the 

design. When there are truly independent experimental units (including physically independent ones) for 

different evaluation periods or layers, some researchers consider it reasonable to accept these experiments as 

simple factorials (Gotelli & Ellison, 2011), because there is consistency between the number of DF of the error 

and the true number of experimental units. However, it is important to note that this analysis ignores that 

there were restrictions on how units were randomized to times or to the successive layers of evaluation.  
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Some authors argue that, instead of split-plots, it is valid to consider the split-block model (Alvarez V. & 

Alvarez, 2013; Steel, Torrie, & Dickey, 1997). However, it should be noted that the combined errors 

(Satterthwaite correction for DF (Steel et al., 1997)) are not valid in this case, and the main treatments should 

be compared using only the residue “a” (Snedecor & Cochran, 1989). A better option than split-blocks is to 

perform an ANOVA for repeated measures (Ferreira, 2019), where the correlation structure of the 

experimental units, due to the restrictions on randomization, is taken into account by estimating a residual 

covariance structure that explicitly models dependencies in a mixed models framework. Another option may 

be to consider geostatistics tools. For example, for observations distributed in space, one can describe the 

residual correlation structure using a geostatistical model, theme that goes beyond the scope of this review. 

There are also multivariate strategies for analyzing repeated measures, but these are more complex and 

are not always more sensitive than univariate strategies. ANOVA for univariate repeated measures can be 

understood as a correction of the split-plot ANOVA. However, it requires the sphericity condition. Briefly, 

sphericity is the condition that the variances of the differences between the possible pairs of the levels of the 

non-independent factor are homogeneous. Despite its complexity, this condition can be verified, at least 

approximately, by the Mauchly test, the significance of which can be used to establish a correction for the DF 

of the factor whose levels are not independent (Greenhouse & Geisser, 1959; Huynh & Feldt, 1976). However, 

the most conservative value for this correction corresponds to 1/(p-1), allowing the analysis of repeated 

measures even when the sphericity condition is not known (Greenhouse & Geisser, 1959). 

Alternatively, Vivaldi (1999) and Quinn and Keough (2002) highlight a simple option in cases where it is 

not possible to have independent experimental units over time. They suggest calculating rates, asymptotes, 

inflection points, or other parameters of interest separately for each group of correlated units. Subsequently, 

these parameters are compared as a new response variable.  This works if each group of correlated units can 

be fit with a similar time series model, which could be as simple as a regression with time as the independent 

variable (in a ANOVA for repeated measures). 

Some other procedures and final considerations 

In most agricultural experiments, only ANOVA, means tests, and regression analyses are used, except in 

the area of plant breeding. Recently, some multivariate techniques have become more popular (Possatto 

Júnior et al., 2019) and some non-parametric analyses are occasionally performed. Among the multivariate 

techniques, principal component and cluster analyses are the most common, although they are traditionally 

applied to observational studies without predefined predictors. In addition, in controlled experimental 

conditions, multivariate indices can overcome some of the limitations of univariate analyses. Among these 

indices, the Mulamba-Mock rank sum index (Mulamba & Mock, 1978) and the Desirability index (Candioti, 

Zan, Camara, & Goicoechea, 2014) deserve mention. In some cases, these indices are a simple option for 

multivariate analysis of variance (MANOVA). 

Multivariate analyses also have their requirements, but recommendations do not seem as well established. 

In addition to the complex assessment of what would be a normal multivariate distribution, in most 

multivariate analysis techniques it is also important to avoid multicollinearity (Yoo et al., 2014). There are a 

variety of ways one can do this, for example, by using variables resulting from a principal components 

decomposition instead of the original dependent variables or using the condition number of the dependent 

variable matrix (Manly, 1994). In cluster analysis, there still seems to be no consensus recommendation on 

the grouping method and the most appropriate stopping criterion in each situation (Gotelli & Ellison, 2011; 

Saraçli, Dogan, & Dogan, 2013).  

A classic analysis that is still underutilized is the analysis of covariance (Tavares et al., 2016). The analysis 

of covariance is very useful when it is desired to separate the effect/interference of an unplanned variable (for 

example the variation in the plant stand or in the incidence of some disease between the plots in a field 

experiment) from another response variable of interest. Despite being a well-known procedure (Montgomery, 

2019), it has some analytical complexities that seem to restrict its popularity. The estimation of the corrected 

variable is the most controversial step of the analysis, since there are several alternatives and there is no 

consensus on which correction algorithm is the most appropriate. Many researchers recognize that a simple 

correction by simple rule of three is not adequate. Schimildt, Cruz, Zanuncio, Pereira, and Ferrão (2001) 

present several methods, one of the simplest and usual being the correction by the “average value” 

(𝑍𝑖𝑗 =  𝑌𝑖𝑗 − 𝑏 . (𝑋𝑖𝑗 − 𝑋̅) 
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where Zij and Yij represent the corrected and original values of the response variable in the experimental unit 

belonging to the i treatment, j repetition; Xij represents the covariate; and b is the linear regression coefficient 

as a function of Xij. 

More recently, outlier testing has gained more popularity. Although it is still a non-consensual subject, 

some tests for outliers have strong practical and theoretical support and should not be treated as a fraudulent 

device. Criticisms of the use of tests for outliers generally come from researchers in the field of ecology 

(Gotelli & Ellison, 2011), where research is not always conducted under controlled experimental conditions. 

Using a good test for outliers can prevent suspicious data from resulting in unrealistic significant effects for 

treatments (Onofri et al., 2010; Tavares et al., 2016). 

The Grubbs-Beck test and ESD tests reviewed by Rosner (1983) have been the most suitable for outliers 

since they allow the magnitude of the experimental error to be considered as a whole (Manoj & Senthamarai-

Kannan, 2013; Cohn et al., 2013). Although they are dependent on normality, they are quite conservative, 

which is important in this case. Even if we consider the critical values of the Rosner ESD test for many outliers 

simultaneously, the critical values are always superior to the Chauvenet or Grubbs tests. 

Despite the analytical ease resulting from the popularization of statistical software, problems of misuse of 

statistical procedures in agricultural sciences are frequent (Montanhini Neto & Ostrensky, 2013; Tavares 

et al., 2016; Kramer et al., 2016; Possatto Júnior et al., 2019). Apparently, problems occur even with the 

development of free applications that are particularly simple to use, such as SISVAR (Ferreira, 2019), Assistat 

(Silva & Azevedo, 2016), SPEED Stat (Carvalho, Mendes, Mendes, & Tavares, 2020), AgroEstat (Barbosa & 

Maldonado Júnior, 2015), BioEstat (Ayres, Ayres Júnior, Ayres, & Santos, 2007), RBio (Bhering, 2017), and 

others. This shows that, in many cases, the problem may also be related to the lack of knowledge about 

statistics. Considering that statistical science and its recommendations are always evolving, it is normal to 

expect some problems. However, we must also try to understand the reasons for these recurring problems. 

Why is there still little interest in statistics on the part of agricultural science students? If we look at statistics 

only as one of the tools for agricultural innovations, perhaps we have poorly balanced the time invested 

between teaching people how to use the software and teaching statistics itself. How can we best train and 

update researchers from different areas of the agricultural sciences in statistical science? 

In this brief review, we have not exhausted the discussions on improvements in the use of classic statistical 

procedures applicable to agricultural experimentation. Statistics should not be seen as a set of rigid 

recommendations, and each experimental situation should be approached individually. As general suggestions, we 

strongly recommend reading Onofri et al. (2010), Casler (2015), and Kramer et al. (2019) and the good sense of 

seeking help from a statistician in the planning phase of more complex experimental situations. 

Conclusion 

The classic procedures of experimental statistics continue to be very useful for most agricultural research. 

However, they have requirements that are often ignored or poorly understood, resulting in incorrect 

conclusions. With the advancement of statistical science, the properties of some tests have been better 

understood, resulting in changes in recommendations. For example, Duncan, t-tests for multiple comparisons 

(LSD), and Kolmogorov–Smirnov tests for small samples are no longer recommended. It is also not 

recommended to perform ANOVA without checking its assumptions under the justification that the F-test is 

robust. In addition, there is a growing understanding that repeated measures in time or space over the same 

experimental units should not be analyzed as simple split-plots. Other procedures and experimental models 

are more accessible and have become increasingly recommended, such as nested mixed models, models for 

repeated measures, regression for non-polynomial models, tests for outliers, and multivariate analysis. 
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