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ABSTRACT. Accuracy of genomic prediction was compared using three parametric and semi parametric methods, 
including BayesA, Bayesian LASSO and Reproducing kernel Hilbert spaces regression under various levels of 
heritability (0.15, 0.3 and 0.45), different number of markers (500, 750 and 1000) and generation intervals of 
validating set. A historical population of 1000 individuals with equal sex ratio was simulated for 100 generations at 
constant size. It followed by 100 extra generations of gradually reducing size down to 500 individuals in generation 
200. Individuals of generation 200 were mated randomly for 10 more generations applying litter size of 5 to expand 
the historical generation. Finally, 50 males and 500 females chosen from generation 210 were randomly mated to 
generate 10 more generations of recent population. Individuals born in generation 211 considered as the training set 
while the validation set was composed of individuals either from generations 213, 215 or 217. The genome 
comprised one chromosome of 100 cM length carrying 50 QTLs. There was no significant difference between 
accuracy of investigated methods (p > 0.05) but among three methods, the highest mean accuracy (0.659) was 
observed for BayesA. By increasing the heritability, the average genomic accuracy increased from 0.53 to 0.75 (p < 
0.05). The number of SNPs affected the accuracy and accuracies increased as number of SNPs increased; therefore, 
the highest accuracy was for the case number of SNPs=1000. With getting away from validating set, the accuracies 
decreased and the most severe decay observed in the case of low heritability. Decreasing the accuracy across 
generations affected by marker density but was independent from investigated methods. 
Keywords: accuracy, genomic, semi parametric methods, genetic architecture. 

Comparação da acurácia de predições genômicas através de gerações usando métodos 
paramétricos e semi paramétricos 

RESUMO. A acurácia da predição genômica foi comparada através de três métodos paramétricos e semi-
paramétricos, que incluíram BayesA, LASSO Bayesiano e regressão RKHS (Reproducing Kernel Hilbert Spaces) 
sob vários níveis de hereditariedade (0,15; 0,3 e 0,45), números diferentes de marcadores (500, 750 e 1000) e 
intervalos de geração de conjuntos de validação. Uma população histórica de 1000 indivíduos com igual proporção 
sexual foi simulada por 1000 gerações, em tamanho constante. Ela foi seguida por 100 gerações adicionais com 
redução gradual de tamanho para 500 indivíduos na 200ª geração. Indivíduos da geração 200 foram cruzados 
aleatoriamente por mais 10 gerações aplicando-se tamanho de ninhada de 5, para expansão da geração histórica. Por 
fim, uma seleção de 50 machos e 500 fêmeas da geração 210 foram cruzados aleatoriamente, resultando em mais 10 
gerações de população recente. Indivíduos nascidos na geração 211 foram considerados como o conjunto de 
treinamento, enquanto o conjunto de validação foi composto por indivíduos da geração 213, 215 ou 217. O genoma 
foi composto por um cromossomo de 100cM de comprimento portando 50 QTLs. Não houve diferença 
significativa entre a acurácia dos métodos investigados (p > 0,05); porém, dentre os três métodos, a maior média de 
acurácia (0,659) foi observada em BayesA. Com o aumento da hereditariedade, a média da acurácia de seleção 
genômica aumentou de 0,53 para 0,75 (p < 0,0 5). O número de SNPs afetou a acurácia, visto que seu valor 
aumentou com o aumento de SNPs; assim, a maior acurácia foi verificada para número de casos de SNPs=1000. 
Com o afastamento do conjunto de validação, a acurácia diminuiu e a redução mais pronunciada foi observada para o 
caso de baixa hereditariedade. A redução da acurácia através de gerações foi afetada pela densidade do marcador, mas 
foi independente dos métodos investigados. 
Palavras-chave: acurácia, genômica, métodos semi paramétricos, arquitetura genética. 

Introduction 

Animal breeding aims to improve economic 
efficiency of livestock species through selection 
under a changing cost and income scenario. Most of 
the economic important traits in livestock have  a 

polygenic and quantitative expression, i.e., 
controlled by a large number of genes and affected 
by environmental factors. Statistical analysis of 
phenotypes and pedigree information allows 
prediction of the breeding values of the selection 
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candidates based on Fisher’s infinitesimal model 
(Fisher, 1919). The best linear unbiased prediction 
(BLUP) (Henderson, 1974) has been extensively 
used for estimating the breeding values in animal 
and plant breeding programs and it leads to great 
progress in economic important traits. 

Advances in the molecular genetics technologies 
have greatly increased the information available on 
individual genes for quantitative traits. Molecular 
techniques have enabled researchers to identify 
genetic markers that can be used to precise selection 
of candidates and thus increase efficiency of 
breeding programs. Genomic selection is a new tool 
for selection of animals based on marker 
information in addition to traditional information 
(Meuwissen, Hayes, & Goddard, 2001). The 
implementation of genomic selection takes place in 
two steps. Firstly, the effects of genetic markers, 
typically single nucleotide polymorphism (SNP), are 
estimated in a reference population (animals with 
both marker and phenotypic information). Secondly, 
the estimated effects of the genetic markers are used 
to predict genomic breeding values for individuals of 
validating population (animals with marker 
information and without phenotypic information). 
Meuwissen et al. (2001) suggested using genetic 
marker information in a statistical model of 
prediction of animal breeding values. They used 
three statistical models: a model assigning random 
effects to all available genetic markers (“genomic 
BLUP”), assuming that all markers effects are drawn 
from the same normal distribution, and two 
Bayesian models, where all (“BayesA”) or a subset 
(“BayesB”) of the random marker effects are drawn 
from distributions with different variances. Various 
types of these methods and additional methods have 
been subsequently suggested (Gianola, Campos, 
Hill, Manfredi, & Fernando, 2009). Gianola, 
Fernando, and Stella (2006) and Gianola and van 
Kaam (2008) have suggested a non-parametric 
treatment of genomic information by using 
Reproducing Kernel Hilbert Spaces (RKHS) 
regression, that subsequently have demonstrated 
with real data (González-Recio et al., 2008; 
González-Recio, Gianola, Rosa, Weigel, & Kranis, 
2009). 

Genomic selection provides a greater genetic 
progress in comparison with the traditional methods 
by increasing the accuracy of estimated breeding 
values and reducing generation intervals. The 
accuracy of genomic evaluation depends, among 
other factors, on the linkage disequilibrium (LD) 
between SNPs (Calus, De Roos, & Veerkamp, 2008). 

LD is defined as the non-random association 
between the alleles at two different loci. LD can be 
caused by some factors including migration, 
mutation, selection or genetic drift in small 
populations, or any other event that may affect the 
genetic structure of the population. Population 
structure affects significantly the accuracy of 
genomic predictions when the selection candidates 
are closely related to the reference population 
(Habier, Fernando, & Dekkers, 2007; Habier, 
Tetens, Seefried, Lichtner, & Thaller, 2010) so that 
closer relatedness between subgroups (i.e., more 
recent divergence) increases LD between subgroups 
that leads to accurate genomic predictions 
(Daetwyler, Kemper, Van der Werf, & Hayes, 2012). 

However, LD is decreasing due to 
recombination events in the meiosis before the 
development of the gametes of each new generation 
(Habier, Fernando, & Dekkers, 2009). To have 
sufficient reliability of genomic predictions, new 
genotyped and phenotyped individuals should be 
contributed in the reference population. Because of 
recombination events and decreasing the relatedness 
between subgroups, estimation of the marker effects 
should be re-evaluated at least every three 
generations (Hayes, 2007). 

In this study, we investigated effect of marker 
density, trait heritability and decreasing the 
relatedness between training and validating 
population on prediction accuracy. 

Material and methods 

Simulation 

The populations were simulated using the 
QMSim software (Sargolzaei & Schenkel, 2009) 
based on forward-in-time process. To achieve a 
mutation-drift equilibrium, a historical population 
consisted of 1000 unrelated animals (500 males and 
500 females) were simulated 100 generation and 
then in order to create the linkage disequilibrium 
(LD), its size was gradually decreased from 1000 to 
500 individuals in generation 200. 

In the next step, individual of last historical 
generation (considered as founders) were mated 
randomly for 10 more generations, assuming five 
offsprings per dam and an exponential growth of the 
number of dams. 

Finally, 50 males and 500 females from the last 
generation of the expanded population were 
randomly mated to generate another 10 generations. 
Individuals of generation 211 were considered as the 
training set and the individuals born at either 
generations of 213, 215 or 217 were regarded as 
validation sets. 
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The simulated genome consisted of one 
chromosome of 100 cM length. Aiming to 
investigate the effect of SNP density on prediction 
accuracy, 500, 750 or 1000 bi-allelic markers equally 
spaced across the genome were considered. Additive 
genetic effects were determined by 50 quantitative 
trait loci (QTL) randomly distributed through the 
genome. QTL effects were generated based on a 
normal distribution. The mutation rate of the 
markers and QTLs was assumed 2.5 × 10-5 per locus 
per generation (Solberg, Sonesson, & Woolliams, 
2008). 

A trait with heritability of 0.15, 0.30 and 0.45 was 
simulated. The true breeding value (TBV) of each 
individual was the sum of the QTL allele 
substitution effects and polygenic effects, assuming 
only additive effects. Phenotypes were generated by 
adding residuals, randomly drawn from a normal 
distribution with mean equal to zero, to the TBVs. 
The correlation between the true BV and the 
genomic predicted BV (rTBV,GEBV) was used as a 
measure of the accuracy of GEBV prediction. 

Linkage disequilibrium calculation 

The extent of LD in the training populations was 
measured by r2: 
=2ݎ 

D2

freqሺA1ሻ*freqሺA2ሻ*freqሺB1ሻ*freqሺB2ሻ 
 
where freq (A1) is the frequency of the A1 allele in 
the population, and likewise for the other alleles in 
the population and D is another statistic of linkage 
disequilibrium that calculated as: 
D = freq (A1_B1) * freq(A2_B2) –freq (A1_B2) * freq 
(A2_B1). 
PLINK software (Purcell et al., 2007) was used to 
calculate the LD. 

Statistical analysis 

The general structure for the models in linear 
form is:  

ݕ  = ߤ +෍ ௝ܺ௣
௝ୀଵ ݃௝ + ݁ 

 
where y is the vector of phenotypic records, μ is 

the overall mean, gj is the coefficient of marker j 
denoting the allele substitution effect, Xj is a design 
matrix of genotype codes for the respective marker, 
and e is a vector of residuals. The data were analyzed 
using three different approaches: two Bayesian 
methods (BayesA and Bayesian LASSO) and one 
kernel based semi parametric method (RKHS), 

which was introduced by Gianola et al. (2006) for 
genomic evaluation. The BGLR (Bayesian 
Generalized linear regression) package of R software 
(Pérez & Campos, 2014) was used to genomic 
evaluations. 

BayesA 

Meuwissen et al. (2001) proposed two 
hierarchical Bayesian models for GS denoted by 
BayesA and BayesB. In both methods data and 
variances of the marker positions need to be 
modeled. Inferences about model parameters are 
based on the posterior distribution. The BayesA 
approach applies the same prior distribution for all 
variances of the marker positions.  

Bayesian LASSO 

Park and Casella (2008) introduced the Bayesian 
LASSO (BL) method for estimating the regression 
coefficients. The Bayesian LASSO is also used in GS 
(Campos, Gianola, Rosa, Weigel, & Crossa, 2010; 
Campos et al., 2009; Long, Gianola, Rosa, & Weigel, 
2011) using the hierarchical model with a likelihood 
function. 

Reproducing kernel Hilbert spaces regression 

Gianola et al. (2006) proposed a semi parametric 
method in the genomic evaluations as an alternative 
to SNPs regressions. The hope was that these 
methods are capable for capturing complex 
interaction patterns that may be difficult to account 
for in a linear model framework. 

In this study, each scenario repeated 10 times 
and estimation of marker effects was performed 
using the R package, BGLR (Pérez & Campos, 
2014). In order to investigate effects of heritability, 
marker effect estimation method, number of 
markers and the interval between training and 
validating sets and their interactions on genomic 
prediction accuracy, the PROC GLM of SAS 
software was used (SAS, 2004). 

Results and discussion 

Linkage disequilibrium 

The r2 values for different marker densities were 
presented in Table 1. As expected the r2 value 
increased with increment of SNP density and 
highest value (0.13) was for SNP=1000. 

In genome-wide association studies (GWAS) and 
genomic prediction studies; a minimum value of LD 
is needed to obtain accurate results. For instance, an 
average r2 of 0.2 between markers and QTL is 
essential to detect QTL of moderate effect. The 
extent of genome-wide LD is largely determined by 
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marker density and the past effective population size. 
The marker-QTL LD phase breaks over generations 
due to recombination in the meiosis process in each 
generation. Therefore, the markers effect must 
reestimate at least every three generations (Hayes, 
2007). 

Table 1. The r2 values for different marker numbers. 

SNP number 500 750 1000 
r2  value 0.08 0.11 0.13 

Prediction accuracy 

The results of analysis of variance of accuracy 
were presented in Table 2. Main factors including 
heritability, number of markers, generation of 
validating set, and also interaction of h2× Number 
of markers, h2× generation of validating set and 
Number of markers× generation of validating set, 
affected the accuracy significantly (p < 0.05). 

Table 2. Output of Analysis of variance for accuracy. 

Source of variation* DF SS MS F value PR > F

Method 2 0.00044816 0.00022408 9.17 0.0022 

H2 2 0.64965327 0.32482664 13298.9 <.0001

N_marker 2 0.19771151 0.09885576 4047.3 <.0001

Interval 2 0.03076771 0.01538385 629.84 <.0001

Method*h2 4 0.00033287 0.00008322 3.41 0.0338 

Method*n_marker 4 0.00023608 0.00005902 2.42 0.0915 

Method*interval 4 0.0001345 0.00003362 1.38 0.2861 

H2*n_marker 4 0.06258846 0.01564712 640.62 <.0001

H2*interval 4 0.00391493 0.00097873 40.07 <.0001

N_marker*interval 4 0.00212542 0.00053135 21.75 <.0001

Method*h2*n marker 8 0.00029984 0.00003748 1.53 0.2215 

Method*h2*interval 8 0.00025359 0.0000317 1.3 0.3118 

Method*n_marker* 
interval 

8 0.00011898 0.00001487 0.61 0.7579 

H2*n_marker*interval 8 0.00628114 0.00078514 32.14 <.0001

H2= heritability, N_marker= number of marker, Interval= the interval between 
training and validating sets. 

Among investigated main factors, heritability and 
number of markers had the highest effect on 
accuracy. However, marker density is a factor easily 
controlled by researcher but heritability is a factor 
relating to trait structure and could not easily 
controlled by researcher. 

Table 3 shows the accuracy of all investigated 
scenarios using three methods. Among three 
investigated methods, there were no differences in 
terms of accuracy but the highest mean accuracy 
rTBV,GEBV =0.659 was obtained in BayesA method 
(Figure 1a), while the computational demands of 
two other methods were higher. In RKHS method, 

choosing the reproducing kernel and bandwidth 
value affected the results. In this study, the Gaussian 
reproducing kernel with the Euclidean distance 
between each pair of input vectors was chosen and 
the model using arbitrarily chosen bandwidth value 
was fitted. Gianola et al. (2006) reported that in 
comparison with RKHS and multiple linear 
regression (MLR) mixed model, when gene action 
was additive, these two methods had the same 
accuracy but when gene action was non additive 
(additive by additive interaction), the parametric 
MLR was clearly outperformed by RKHS. In a 
simulation study, the accuracies of BayesA and BL 
were the same and higher than RKHS (Howard, 
Carriquiry, & Beavis, 2014). 

Table 3 and Figure 1 (a-d). Accuracy of different investigated 
scenarios (For all cases Standard Error < 0.04). 

 
1Heritability, 2Number of SNP, 3BayesA, Bayesian LASSO and Reproducing kernel 
Hilbert spaces regression.   

With increasing the heritability, the correlation 
between TBV and GEBV was increased and the 
amount of excess was higher when departure was 
from 0.15 to 0.30 rather from 0.3 to .45 (Table 3 and 
Figure 1b). The high heritability equals with high 
contribution of gene effects in phenotypic variation 
and therefore the high accuracy. Many researchers 
have confirmed the high accuracy achieved for high 
heritabilities (Daetwyler, Villanueva, & Woolliams, 
2008; Goddard, 2009; Howard et al., 2014). For high 
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heritability traits (such as carcass characteristics in 
meat animals), the gene effects have great 
contribution in phenotypic variation and therefore 
provide more accurate evaluations. Therefore, 
performing selection would easily lead to progress in 
this kind of traits. 

The marker density is the most easily 
controllable factor by the researcher. The higher 
accuracy of genomic breeding values was associated 
to more dense markers (Figure 1c). Doubling the 
marker density, the accuracy increased from 0.59 to 
0.71. The more marker density was led to more 
coverage of the genome and high LD which in turn 
resulted to better estimation of QTL effects. In a 
simulation study, doubling the number of SNP was 
led to increase the accuracy from 0.63 to 0.73 
(Piyasatian & Dekkers, 2013) which is in agreement 
with our results. Increasing the accuracy of GEBV 
due to increment of marker study was reported in 
many studies (Combs & Bernardo, 2013; Piyasatian 
& Dekkers, 2013; Solberg et al., 2008) 

Highest accuracy was observed when the interval 
between training and validating sets was as short as 
two generations (generation of validating set=3th). 
As time interval between training and validating sets 
prolonged, the accuracy of GEBV decreased. In a 
simulation study, accuracies were compared in the 
cases that validating set belonged to 1th and 7th 
generations and the accuracies were 0.73 and 0.60, 
respectively (Piyasatian & Dekkers, 2013). 
Accuracies decreased across generations because of 
the decay of genetic relationships that can captured 
by markers and changing of LD phase. In some 
researches, decreasing of genomic prediction 
accuracies over time due to breakdown of LD phase 
was reported (De Roos, Hayes, Spelman, & 
Goddard, 2008; Meuwissen et al., 2001). The 
recombination events break the LD phase during 
provision of gametes in each generation (Habier et 
al., 2009). In order to perform accurate genomic 
evaluations, marker effects should be re-evaluated at 
least every three generations (Hayes, 2007). 

As mentioned above, the genomic accuracy 
increased along with increase in marker density, but 
the increment was different among three levels of 
heritability. At the low heritability (0.15), as the 
number of SNPs were doubled the accuracy 
increased 19 unites but at the high heritability (0.45), 
the excess only was 3 unites (Table 4). This 
suggested that dense SNP panels are more efficient 
in terms of accuracy, for traits with lower heritability. 

The accuracy of genomic prediction decayed due 
to recombination effect across generations that 
change the LD phase between QTLs and markers. 

The greater decline of accuracy was observed when 
the marker density was 500 and the decay of 
accuracy was decreased when the denser marker 
panels were used (Table 6). These results showed 
that using dense marker panels, the estimated 
marker effects of validating set could apply for 
longer time and it decreased the costs of re-
estimating of marker effects. Habier et al. (2007) 
reported that accuracy of genomic prediction 
decreased across generations but opposite to our 
results the amount of decay depended on marker 
estimation method; therefore, the lowest and 
highest declines were for TP-BLUP and Bayes-B2, 
respectively.  

Table 4. The estimated genomic accuracy for three marker 
density and three levels of heritability. 

Heritability Number of SNP 
500 750 1000 

0.15 0.44 0.53 0.63 
0.30 0.61 0.71 0.74 
0.45 0.73 0.75 0.76 
 

As Table 5 shows, when heritability was 0.15, the 
accuracy of genomic evaluation for generation 7 of 
training set was 11 percent lower than the value for 
generation 3. The corresponding reductions for 
moderate and high heritabilities were 6 and 5 
percent, respectively. As getting away from 
validating set, the accuracies decreased rapidly for 
low heritability case, suggesting that re-evaluating of 
marker effects is more imperative in the low 
heritability traits. 

Table 5. The estimated genomic accuracy for three validating 
sets and three levels of heritability. 

Heritability Generation of training set 
3th 5th 7th 

0.15 0.57 0.52 0.51 
0.30 0.70 0.69 0.66 
0.45 0.77 0.74 0.73 
 

Table 6. The genomic accuracy for three validating sets and three 
levels of marker density. 

Number of markers Generation of training set 
3th 5th 7th 

500 0.63 0.58 0.56 
750 0.68 0.66 0.64 
1000 0.74 0.71 0.70 

Conclusion 

The results of this study showed that for models 
with additive gene action RKHS method did not 
perform better than parametric methods such as 
BayesA and BL, although the RKHS is more 
complicated and time consuming. Comparison of 
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these methods for non-additive models should be 
performed under different simulation and real data. 
Marker density is one of the most important factor 
that affect the genomic prediction accuracy and 
fortunately by new progresses in genotyping 
technologies, the high density SNP panels with low 
cost is available and could employ easily for getting 
accurate genomic prediction. Preventing decay of 
accuracy due to recombination across time was one 
of most important benefits of dense marker panels 
so when the highest number of markers (1000) were 
used, the lowest accuracy decay was happened. In 
this study, the decreasing trend of accuracy across 
generations was not affected by marker effect 
estimation methods. In high heritability traits, 
increasing the number of markers had slight effect 
on accuracy but for low heritability trait, increasing 
number of markers increased accuracy severely; 
therefore, using the dense marker panels is 
imperative for low heritability traits. There was the 
same association between heritability and the 
interval between validating and testing sets, so that 
getting away from validating sets decreased the 
accuracy of high heritability trait slightly but the 
decline was severe for low heritability trait. 
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