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Abstract: The soil tillage practiced over a long period of time impacts soil quality. The first step in soil quality 

assessment is to select which indicators should be used. The objective of this study was to identify the soil 

attributes that discriminate soil tillage systems and can be used as indicators for soil quality assessments. 

Sixteen soil physical and chemical attributes were evaluated: macroporosity (MaP), microporosity (MiP), total 

porosity (TP), bulk density (BD), field-saturated hydraulic conductivity (Kfs), soil resistance to penetration 

(SRP), pH (H2O), pH (CaCl2), aluminium (Al), calcium (Ca), magnesium (Mg), potassium (K), available 

phosphorus (P), total organic carbon (TOC), cation exchange capacity (CEC) and base saturation (BS), of a 

very clayey Red Latosol, cultivated for a long period in no-till (NT), conventional tillage (CT) and minimum 

tillage (MT). The soil attributes (indicators) were selected using canonical discriminant analysis. MiP, Kfs, pH 

(CaCl2), Ca, Mg, CEC e BS were the most efficient indicators to discriminate soil tillage systems. In the 

indicator interpretation step was sustained MiP as the indicator that represents the function of physical 

stability and support, Kfs as the indicator that represents the function of water relations, BS as the indicator 

that represents the function of nutrient cycling and pH (CaCl2) as the indicator that represents the function of 

filtering and buffering. These indicators can be used for future soil quality assessment and monitoring of 

tillage systems in similar regions and conditions. 

Keywords: sensible indicators; canonical discriminant analysis; long period experiment. 

HIGHLIGHTS 

 

 The canonical discriminant analysis was used to identify sensible indicators of soil quality. 

 MiP, Kfs, pH (CaCl2), Ca, Mg, CEC e BS were the indicators that best discriminate the NT, CT and MT. 

 MiP, Kfs, BS e pH (CaCl2) were the indicators recommended for soil quality assessment. 
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INTRODUCTION 

The concept of soil quality expanded from the early 1990s along with the global awareness of the 

importance of soil for agricultural sustainability and environmental quality. It was conceptualized as the 

capacity of specific kind of soil to function within natural or managed ecosystem limitations, to sustain plant 

and animal productivity, maintain environmental quality and support human health and habitation [1, 2]. Since 

then, the need to select, understand and evaluate indicators for soil quality assessment has been studied in 

soil science [3,4]. 

In brief, we can define the soil quality as the capacity of the soil to function. In agricultural conditions, it 

is important to monitor whether the soil is performing its functions. Some important soil functions include 

nutrient cycling, water relations, physical stability and support, filtering and buffering, resistance and 

resilience, biodiversity and habitat, needed to meet a management goal: plant productivity, waste recycling, 

environmental protection [5,6]. For soil quality assessment it is necessary to integrate chemical, physical and 

biological soil indicators [7], because each soil function has associated chemical, physical and biological 

processes, and can be measured from the soil quality indicators [5]. 

The soil quality indicators are properties and processes that have the greatest sensitivity to changes in 

soil function [6] and should be sensitive to changes by tillage [4]. Therefore, a selection is required to identify 

a relevant set of indicators for soil quality assessment. [8, 9] that represent soil functions and be sensitive to 

changes in tillage [5]. Thus, the first step in soil quality assessment is performed by composing a minimum 

data set (MDS), reducing the number of attributes measured which reduces time and cost in future soil quality 

assessment [10,11]. Many studies present mathematical methods for selecting indicators based on sensitivity 

and not redundancy of indicators for soil quality assessment [12,11,13,14,9]. 

To select the indicators, the canonical discriminant analysis (CDA) can be used. This helps to identify 

the indicators that most discriminate the soil tillage systems [15]. The CDA returns linear functions of 

quantitative variables called canonical discriminant functions (CDF). The scores resulted from the functions 

can be correlated with the original variables to identify significant indicators. [16, 15]. This analysis has an 

advantage over the principal component analysis (PCA) because CDA maximizes the variation between and 

minimizes the variation within groups of individuals and PCA ignores the structure of groups of the dataset 

[17]. The CDA has been used to discriminating organic and conventional coffee production systems [18], find 

the indicators that most discriminate soil management systems [19], distinguish among pesticides which had 

a prominent role for the segregation of classes [20], and select indicators that discriminated well three agro-

ecosystems [21]. 

The soil tillage aims to improve soil conditions for crop establishment and development and influence 

the soil quality [22]. The soil indicators can be affected in different proportions, depending on the soil tillage 

system. The conventional tillage (CT) is a traditional tillage system characterized by the use of plowing and 

narrowing with the incorporation of plant residues and no-till (NT) is a conservation tillage that differs from 

the traditional tillage in terms of operations, with no soil disturbance. The CT was dominant in Brazil during 

the twentieth century. However, for reason of soil degradation by conventional plow-based tillage, there was 

a growing interest in adopting NT. However, the compaction of the superficial soil layer can seriously 

jeopardize the sustainability of NT [23] and, for that reason, the minimum tillage (MT) started to be adopted, 

because less intensive soil tillage is performed compared to CT [24,25]. 

The local climate, soil characteristics, and management will reflect on how the soil performs its functions. 

Thus, for different conditions, there may be a greater or lesser influence of a given soil indicator [26]. The 

objective of this paper was to identify, using CDA, the physical and chemical soil attributes that discriminate 

soil tillage systems and can be used as indicators for soil quality assessments in a very clayey Red Latosol 

in the subtropical climate. 

MATERIAL AND METHODS  

Experimental site and management 

The field experiments were conducted at the experimental station of IAPAR (Agronomic Institute of 

Parana), located in the city of Ponta Grossa, in the South-central region of the State of Parana, Brazil, 

(25º09’06.2”S, 50º09’15.19”W, 862 m above the sea level) in a very clayey Red Latosol (Brazilian 

classification [27], Oxisol for Soil Taxonomy, USDA classification) (726; 212 and 62 g kg-1 of clay, silt and 

sand, respectively). This soil is formed from Ponta Grossa Formation, with the presence of the following 



 Selection of Indicators to Assess Soil Quality 3 

 

 

Brazilian Archives of Biology and Technology. Vol.63 no.spe: e20190489, 2020 www.scielo.br/babt 

minerals: gibbsite, kaolinite, halloysite, montmorillonite, hematite, rutile, anatase, goethite and quartz [28]. 

The climate of the region is Cfb (humid subtropical, without dry season) according to Koppen's classification 

[29].  

The three tillage systems consist of conventional tillage (CT): a plow tillage followed by two narrow 

disking after summer and winter harvest; minimum tillage (MT): comprising of one chisel plow and one narrow 

disking after summer and winter harvest; no-till (NT): no soil disturbance. In 1981 the experiment began, 

initially by conducting two tillage systems: NT and CT (Figure 1). In 1989, the area of CT was divided to 

perform the MT in the same place of study. Currently, the areas of each preparation system are 10000 m2 

for NT; 5000 m2 for MT and 5000 m2 for CT. In 2017 soil samples were obtained and analyzed, with a history 

of 36 years under NT, 36 years under CT and 28 years under MT. 

 
Figure 1. Chronology of land use in the experimental area at the IAPAR, city of Ponta Grossa, in the South-central 
region of the State of Parana, Brazil.  

The cultures cultivated from the beginning of the experimental period were: (i) succession of soybean 

(Glycine max (L.) Merr.) and maize (Zea mays L.) during the spring-summer; (ii) succession of black oat 

(Avena strigosa Schreb), wheat (Triticum aestivum L.), common vetch (Vicia sativa L.) and intercropping of 

black oat and common vetch during the autumn-winter. Previous of the soil sampling (from 2012 to 2017) the 

following crops were cultivated: (i) soybean during the spring-summer of 2012–2013, 2014–2015, and 2016–

2017 and maize during the spring-summer of 2013–2014 and 2015–2016; (ii) intercropping of black oat + 

common vetch in 2013 during the autumn-winter and black oat from 2014 to 2017 during the autumn-winter. 

The same crops were cultivated on all soil tillage systems. 

Soil sampling and analysis 

The soil sampling and analysis occurred after the spring-summer harvest. The samples were collected 

in a regular grid of 10 × 5 m with regularly spaced lines of 10 m, resulting in 50 samples per soil tillage system, 

in the depth of 0–0.1 m. On each grid point, the soil samples were collected under a radius of one meter. 

Disturbed samples were used for chemical analyses and undisturbed samples (cylinders of 0.05 × 0.05 m) 

were used for physical analyses. 

The undisturbed soil samples were saturated by capillary rise and then used to determine the 

macroporosity (MaP) under a tension of -6 kPa on sand table. After oven drying the samples at 105 °C, it 

was determined the microporosity (MiP), total porosity (TP), and bulk density (BD) [30]. The disturbed soil 

samples were oven-dried at 40 °C and utilized to the chemical analyses determination of pH (H2O), pH 

(CaCl2), aluminium (Al), calcium (Ca), magnesium (Mg), potassium (K) [31], available phosphorus (P) [32], 

total organic carbon (TOC) (Walkey–Black method) [33], and it was calculated the cation exchange capacity 

(CEC) and base saturation (BS). 

Field-saturated hydraulic conductivity (Kfs) was measured using the simplified falling-head method [34]. 

A ring infiltrometer of 0.198 m diameter was pressed 0.05 m into the soil, and a pre-established volume of 
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water (0.5 L) was poured on the soil surface, then the infiltration time was measured. The α parameter utilized 

to calculate Kfs was 12 [35] due to the soil defined structure and infiltration time less than 5 minutes. The soil 

resistance to penetration (SRP) was measured in the filed with a penetrometer penetroLog (Falker, BR), 

using cone type 03 (7.94 mm diameter and 30°) and a rod of 0.4 m. The volumetric soil moisture was measure 

using the sensor Delta T Devices ML2 (Moisture Meter). 

Statistical analysis 

The analyses were done using the software R [36]. First, it was verified the presence of outliers and after 

its exclusion, it was kept 42 observations per tillage system. It was verified the univariate normality of the 

attributes with the Shapiro-Wilk’s test and the multivariate normality by Royston’s test. The data that did not 

show normality was transformed by squared root or natural logarithm to meet the normality premise. 

It was utilized the package candisc [37] to perform the CDA on two steps [15], (i) all attributes were added 

on the discrimination procedure and it was obtained the canonical discriminant functions (CDF), those were 

assessed for its significance by the Wilks’ Lambda (p<0.05). The indicators with significant correlation (r<0.70) 

with the scores of the CDF were selected to follow to the second step, (ii) the selected indicators were 

resubmitted to the CDA and the indicator with the highest coefficients on the CDF were selected. It was 

procedure analysis of variance (ANOVA) of the scores of the CDF, if significant (p<0.05) the differences of 

the means were assessed using the Tukey’s test (p<0.05). 

RESULTS 

The means and standard error of physical and chemical attributes are shown in Table 1. The physical 

attributes that presented the highest ratio of the standard errors with the mean were Kfs, SRP, and MaP; and 

the chemical attributes were P, K, and Al. The physical attributes that presented the lowest ratio of the 

standard error with the mean were TP, BD, and MiP and the chemical attributes were pH (H2O and CaCl2), 

CEC, and TOC. 
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Table 1. Descriptive statistics for 42 physical and chemical attributes of soil with means, standard error, Shapiro-Wilk’s 
univariate normality test and Royston’s multivariate normality test.  

Physical attributes 

 BD TP MaP MiP Kfs SRP 

g cm-3 ---------------------------%-------------------------- cm min-1 Mpa 

NT1 1.03 ± 0.05 62.40 ± 2.15 10.82 ± 3.75 51.58 ± 3.24 1.19 ± 0.74 1.39 ± 0.57 

MT1 1.02 ± 0.07 62.38 ± 2.50 17.69 ± 5.08 44.70 ± 2.95 3.77 ± 2.31 0.60 ± 0.37 

CT1 1.02 ± 0.06 62.91 ± 2.29 21.11 ± 4.90 41.80 ± 2.91 6.30 ± 3.13 0.61 ± 0.29 

Shapiro-Wilk's statistics2 

Statistic 0.99 0.99 0.98 0.98 0.99 0.99 

p-value 0.65 0.28 0.10 0.07 0.20 0.59 

Chemical attributes 

 pH  pH  Al Ca Mg 

H2O CaCl2 ---------------------cmolc dm-3------------------------- 

NT1 4.58 ± 0.13 3.96 ± 0.07 1.40 ± 0.31 2.24 ± 0.47 1.83 ± 0.35 

MT1 4.83 ± 0.10 4.22 ± 0.08 0.75 ± 0.23 3.50 ± 0.85 3.82 ± 0.65 

CT1 4.69 ± 0.12 4.12 ± 0.09 1.05 ± 0.32 2.05 ± 0.52 1.40 ± 0.35 

Shapiro-Wilk's statistics2 

Statistic 0.99 0.99 0.98 0.99 0.99 

p-value 0.70 0.49 0.06 0.24 0.71 

 K  P  TOC CEC BS 

cmolc dm-3 mg dm-3 g dm-3 cmolc dm-3 (%) 

NT 0.31 ± 0.08 1.20 ± 0.56 30.23 ± 1.61 19.25 ± 0.66 22.74 ± 2.72 

MT 0.34 ± 0.10 0.88 ± 0.60 29.86 ± 2.40 20.75 ± 1.10 36.80 ± 3.20 

CT 0.28 ± 0.10 0.43 ± 0.29 29.37 ± 2.04 17.44 ± 0.68 21.41 ± 4.09 

Shapiro-Wilk's statistics2 

Statistic 0.98 0.99 0.99 0.99 0.98 

p-value 0.14 0.29 0.70 0.32 0.17 

Royston statistics3 

Statistic 12.08 

p-value 0.23 
1Means and standard error for bulk density (BD), total porosity (TP), macroporosity (MaP), microporosity (MiP), 
saturated hydraulic conductivity (Kfs), soil resistance to penetration (SRP), pH (H2O) and (CaCl2), aluminium (Al), calcium 
(Ca), magnesium (Mg), potassium (K), phosphorus (P) available, total organic carbon (TOC), cation exchange capacity 
(CEC), and base saturation (BS) in different soil tillage systems (no-till = NT; minimum tillage = MT; conventional tillage 
= CT). 2Shapiro-Wilk’s univariate normality test (Square root of P and logarithm of SRP, Kfs, and K). 3Royston’s 
multivariate normality test. 

The physical attributes that did not show normality were SRP and Kfs and the chemical attributes that did 

not show normality were K and P. The latter was transformed by square root and the others by logarithm. 

Then, it was verified univariate normality by the Shapiro-Wilk’ test for each variable (Table 1) and multivariate 

normality by the Royston’ test (Table 1).  

In the first step of the CDA, the two CDF obtained were significant according to the Wilks’ Lambda test 

(Table 2). Significant correlations between the scores of the first CDF and the original attributes occurred for 

MiP e Kfs, showing a negative and positive correlation, respectively. The strongest correlations between the 
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scores of the second CDF and the original attributes occurred for pH (CaCl2), Ca, Mg, CEC e BS, showing 

positive values for all these attributes. 

Table 2. Significance, eigenvalue and correlation coefficients between canonical discriminant functions and the 
physical and chemical attributes in the first step. 

 CDF 1 CDF 2 

F 63.52 56.79 

Significance1 2.20E–16 2.20E–16 

Eigenvalue 11.29 7.81 

BD (g cm-3) -0.08 -0.02 

TP (%) 0.10 -0.05 

MaP (%) 0.69 0.20 

MiP (%) -0.80* -0.27 

Kfs (cm min-1) 0.78* 0.23 

SRP (Mpa) -0.54 -0.43 

pH (H2O) 0.24 0.65 

pH (CaCl2) 0.45 0.72* 

Al (cmolc dm-3) -0.33 -0.64 

Ca (cmolc dm-3) -0.16 0.74* 

Mg (cmolc dm-3) -0.24 0.94* 

P (mg dm-3) -0.57 -0.03 

K (cmolc dm-3) -0.21 0.22 

TOC (g dm-3) -0.18 0.00 

CEC (cmolc dm-3) -0.55 0.71* 

BS (%) -0.16 0.95* 
1Probability of the correlation of the scores of the CDF with the attributes to be null. 
*Correlations above 0.7 were selected. 

In the second step, the two CDF obtained were significant according to the Wilks’ Lambda test (Table 

3). The CDF 1 represented 53.06% of the total variance with the highest coefficient for MiP and second-

highest for Kfs, both physical processes of the soil. A high and positive score of this CDF 1 indicates that the 

soil tillage system shows conditions of low MiP and high Kfs (Figure 2). The CDF 2 represented 46.94% of 

the total variance showing the highest coefficient for Mg and BS, followed by Ca, CEC and pH(CaCl2), 

represented soil chemical processes. A high and positive score of this CDF for the soils under a given soil 

tillage system signalize that the soil have high values for all these indicators (Figure 3). 
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Table 3. Significance, eigenvalue and correlation coefficients between canonical discriminant functions and the 
physical and chemical attributes in the first step. 

 
CDF 1 CDF 2 

F 120.98 133.85 

Significance1 2.2E–16 2.20E–16 

Eigenvalue 7.69 6.8 

MiP (%) -0.83 -0.23 

Kfs (cm min-1) 0.80 0.19 

pH (CaCl2) 0.50 0.70 

Ca (cmolc dm-3) -0.12 0.75 

Mg (cmolc dm-3) -0.20 0.96 

CEC (cmolc dm-3) -0.52 0.74 

BS (%) -0.11 0.96 
1Probability of correlation of CDF scores with attributes to be 0. 

The Shapiro-Wilk’ test showed normality of the scores of the CDF 1 (p= 0.8852) and the ANOVA 

indicated significance for CDF 1 scores (p<2e–16). Mean scores of the three tillage were significantly different 

by the Tukey’ test, showing the highest mean for CT, the lowest mean for NT and the intermediate mean for 

MT (Figure 2). 

 
Figure 2. Boxplot graphs of the scores of the CDF 1 for the soil under the different tillage systems. Boxes followed by 
the same letter are not significantly different according to the Tukey's test at p < 0.05. NT = no-till; MT = minimum 
tillage; CT = conventional tillage. 

The Shapiro-Wilk’ test showed normality of the scores of the CDF 2 (p= 0.8039). The tillage systems 

also influenced the variability of scores according to the ANOVA (p<2e–16). The mean CDF 2 scores of CT 

and NT did not differ according to the Tukey’ test and were lower than the mean of the scores of the MT 

(Figure 3). 
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Figure 3. Boxplot graphs of the scores of the CDF 2 for the soil under the different tillage systems. Boxes followed by 
the same letter are not significantly different according to the Tukey's test at p < 0.05. NT = no-till; MT = minimum tillage; 
CT = conventional tillage. 

The Figure 4 illustrates the separation of NT, MT and CT.  

 
Figure 4. Representation of group discrimination using variables selected by canonical discriminant functions. NT = no-
till; MT = minimum tillage; CT = conventional tillage. 
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DISCUSSION 

The CDA was efficient in selecting the indicators that most discriminate soil tillage systems and which 

can be used to soil quality assessment for its sensitivity. The CDF 1 reflects a linear combination of a group 

of physical indicators that are not correlated with the linear combination of a group of chemical indicators 

from the CDF 2. Absence of correlation between discriminant functions indicates that each CDF extracts a 

dimension of information from the data set [15]. 

Indicators 

The CDF 1 indicates that the MiP and the Kfs are strong discriminators of soil tillage systems and both 

indicate physical soil processes. These indicators are strongly and negatively correlated (Table 3), showing 

that both are sensitive but redundant and that soils that have a high value of one indicator will show low value 

of another. Interested in reducing the number of indicators measured, consider only the MiP is advantageous 

due to the higher correlation value with the scores of the CDF 1 (-0.83), and the MiP presented lower 

variability compared to the Kfs that required transformation for normalization (Table 1). The MiP represents 

the function of physical stability and support. 

The MaP showed a high correlation (0.69) but <0.70 and was not selected. The MaP showed greater 

variability than MiP, pointing that MiP is a more stable indicator. The greater variability of MaP demonstrates 

that it is more unstable, requiring a larger number of soil samples for its representation. On the other hand, 

the low variability of MiP shows its greater stability, which characterizes it as a better indicator. This can be 

explained by the hierarchy of aggregation. Microaggregates contain micropore and these are more stable in 

soil [5, 37]. Macropores are formed mainly between aggregates and are more easily altered by root action 

and tillage, and thus are more unstable in the soil, which leads to greater variability of MaP. The BD and TP 

presented low variability but were not sensitive to soil tillage systems. The SRP presented a few ability of 

discrimination of soil tillage systems (-0.54) and high data variability (Table 1), thus it was not selected due 

to the low correlation with the scores of the CDF (<0.70). 

Our data indicate that even showing a great variability, Kfs differs substantially between the soil tillage 

systems (Table 3), pointing the potential of the use of it as a sensitive indicator for soil quality assessment. 

However, it needs a larger number of samples due to spatial variability and may present temporal variability 

[38, 39]. The Kfs is a dynamic soil indicator associated with water relations function. An advantage of using 

the Kfs as an indicator is that it can be field determined, by simplified falling-head method, which was used in 

this study, reducing time and cost [34]. On the one hand the determination of MiP needs laboratory processes, 

requiring more time and specific equipment for its determination, but on the other hand it can be built with 

low cost [41]. Laboratory experiments can also be conducted to determine the Kfs, but it needs more time and 

specific equipment, as well as other techniques for field Kfs determination such as pressure infiltrometer [40].  

The CDF 2 signalizes that the chemical indicators were strong discriminators of soil tillage systems, 

represent soil chemical processes. Both of these chemical indicators (pH (CaCl2), Ca, Mg, CEC and BS) are 

positively correlated. The BS and Mg showed the highest correlation between FDC 2 and the original data 

(0,96) (Table 3).  

Ca, Mg, K, and CEC are used in the calculation of BS, requiring these analytical determinations for BS 

to be calculated, which is more labor intensive than determining only Mg. In addition to the strong 

discrimination of BS, it shows low variability and indicates the behavior and availability of various elements 

essential to plant development [42]. This indicator gives a more complete idea of soil fertility and it is the base 

measurement used for liming recommendation for the state of Parana [43]. Thus, BS is an indicator that can 

be maintained for soil quality assessment because includes Ca, Mg, and CEC, which are also strong 

discriminators (Table 3) and can be associated with the function of nutrient cycling. 

The BS is strongly and positively correlated with soil pH (Table 3), however, the pH provides information 

that BS does not provide, such as soil micronutrient availability to crops, aluminum balance and toxicity, 

decomposition of organic matter and many biological processes in soils [44]. Furthermore, the pH is an 

indicator that can represent the function of filtering and buffering, because the variation in soil pH alters the 

availability of toxic elements such as Al3+ and also micronutrients that in certain amounts in the soil are toxic 

to plants. The soil pH is a fast measure to obtain and showed low variability in this study. This indicator is 

largely used in soil quality assessment [44,14,45,46,9].  
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In this study, the pH (CaCl2) discriminated soil tillage systems more strongly than pH (H2O) (Table 2). 

The soil pH (CaCl2) is lower than soil pH (H2O) because the addition of CaCl2 results in reduced pH due to 

the exchange of Ca2+ with H+ and Al3+ on the solids surface [44]. The pH (CaCl2) may have been more 

sensitive than the pH (H2O) because it is affected by soil CEC (Table 1), expressing CEC information in this 

indicator (pH (CaCl2)). 

The TOC was not a sensitive indicator, despite being described as a good indicator of soil quality 

assessment [7] and showed low variability in our study. In clay soils, the flocculation of clay particles and 

stability of soil aggregation are advantaged. Consequently, there is physical protection provided by the 

occlusion of the carbon within the aggregates, hiding or preventing the access of microorganisms and their 

enzymes, and in micropores where even diffusive oxygen flow is difficult, there is greater preservation of 

carbon. Intrinsic soil properties, such as soil texture and mineral content, probably regulates the stabilization 

of TOC inputs by fine soil particles [48], demonstrating that TOC is dependent on soil texture and highly 

correlated with the quantity of fine soil particles [49]. Possibly the fractionation of TOC in particulate organic 

carbon (POC) and mineral-associated organic carbon (MAOC) could have a higher sensitivity to soil tillage 

systems than TOC. The POC represents a relatively small proportion of the TOC [48], but is easily 

decomposed and extremely sensitive to environmental variations [50]. The MAOC represents 50–80% of 

TOC and is stabilized by fine soil particles, being fundamental for the persistence of TOC in soil [48]. For soil 

quality assessment it is recommended to use at least one indicator representing each soil process (chemical, 

physical and biological) [51]. The TOC could represent the biological processes, however, does not present 

sensitivity, and then it is recommended to verify a more sensitive biological indicator for the soil quality 

assessment for the experimental condition. 

Tillage System 

The CDF 1 discriminated the three soil tillage systems (Figure 2, 4), marking that the physical indicators 

are the most efficient in this discrimination (MiP e Kfs). Between NT and CT, the separation by physical 

indicators was greater. The soil tillage in CT increases the MaP and the Kfs, and NT has greater MiP than CT. 

This happens because in NT the agricultural operations may increase soil compaction in the superficial soil 

layer and there is no soil tillage for the reversing process [23], resulting in reduced MaP and increased MiP. 

MT is a less intensely soil tillage compared to CT with less soil manipulation, and incorporation of residues 

into the soil. On the other hand, compared to NT, MT increasing the MaP due to soil tillage, being the MT 

intermediate to CT and NT (Figure 04). 

The physical indicators are important when comparing NT with CT and MT because these indicators are 

affected by soil tillage. It is common for the NT to present a higher MiP, and soil tillage in TC and MT increases 

MaP and Kfs [24]. These indicators are related to soil structure [52]. Dynamic physical indicators as the Kfs 

tend to be greatly affected by soil tillage [39]. The Kfs is an important soil property because the higher the Kfs 

the greater is the water infiltration and there is a lesser surface runoff, reducing erosion. However, the greater 

Kfs can increase leaching of pesticides and nutrients from agricultural lands, and migration of pollutants from 

contaminated sites to the groundwater [34]. Our study showed that Kfs is related to soil structure by its 

correlation with MiP, as found in other studies. [53]. 

The CDF 2 separated MT from CT and NT (Figure 3), being the chemical indicators the most efficient in 

this discrimination (Figure 4). The tendency of the NT is to present better fertility conditions in the superficial 

layers of the soil, but the best condition is verified mainly in the first 0.05 m of soil depth [54] due to the 

superficial deposition of fertilizers, lime, and organic residues. In CT the tendency is to find a lower but uniform 

fertility condition along the profile due to tillage (primary and secondary tillage operations), with higher 

oxidation of organic residues, higher nutrient leaching and erosion losses. [55], but in the present study there 

was no such effect, being the fertility found in CT similar to NT because the chemical conditions did not 

discriminate these systems (Figure 04). This result may be related to the soil depth considered in this study 

(0–0.10 m) and under NT is expected higher fertility in the most superficial soil depth (0–0.05 m). In addition, 

increased erosion soil losses that may occur in CT [56] but NT can increased water losses in extreme events 

due to low MaP and Kfs, and due to higher fertility in more superficial layers, nutrient losses tend to be high 

[57].  

The MT differed from CT and NT presenting better soil fertility conditions. The MT results in intermediated 

soil physical conditions between CT and NT and this may also have favored chemical conditions. The higher 

Kfs of MT when compared to NT may have affected the oxidation and reduction of the soil and consequently 
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the soil pH, by affecting the oxidation potential and reduction of the soil, what affects the nutrient dynamics 

[58]. Comparing MT with CT, MT can cause lower nutrient losses. 

CONCLUSION 

The indicators that most discriminate soil tillage systems in very clayey Red Latosol were: microporosity 

(MiP), field-saturated hydraulic conductivity (Kfs), pH (CaCl2), calcium (Ca), magnesium (Mg), cation 

exchange capacity (CEC) and base saturation (BS).  

For the soil quality assessment in soil tillage systems, it is recommended to use the MiP representing 

the function of physical stability and support, Kfs representing the function of water relations, BS representing 

the function of nutrient cycling and pH (CaCl2) representing the function of filtering and buffering, in a very 

clayey Red Latosol in the subtropical climate.  
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