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ABSTRACT: Identification and classification of intracardiac masses in echocardiogram is one of the significant 
processes in the diagnosis of cardiovascular disease. A robust back propagation neural network (RBPNN) 
technique is used to conquer every single conventional-issue utilizing the echocardiogram image analysis for 
this work, which consists of four phases such as noise removal, automatic segmentation, feature extraction, and 
intracardiac masses classification. Initially, the noise is diminished from the echocardiogram images utilizing the 
adaptive vector median filter (AVMF). Then, linear iterative vessel segmentation (LIVS) is applied for automatic 
segmentation of the masses followed by the extraction of texture features using the multiscale local binary pattern 
(MS-LBP) approach. Finally, RBPNN is employed to classify the heart mass from the images of echocardiogram 
with the layered kernel for the system combination. Extensive simulation results obtained using proposed AVMF-
MS-LBP based RBPNN approach disclosed the superiority over existing intracardiac mass detection and 
classification approaches in terms of accuracy of 98.85%. 

Keywords: Echocardiogram; Cardiac Masses; Linear Iterative Vessel Segmentation; Multiscale Local Binary 
Pattern; Robust Back Propagation Neural Network. 

 

HIGHLIGHTS 
 

• Cardiac mass image noise is diminished by Adaptive Vector Median Filter.   

• The masses were automatically segmented dependent on Linear Iterative Vessel Segmentation 

strategy followed by texture features extracted utilizing the Multiscale Local Binary Pattern method. 

• The classification done by Robust back propagation neural network. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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INTRODUCTION 

Intracardiac masses are irregular structures discovered inside or close by the heart. These structures lead 
to genuine cardiovascular issues and require good findings for brief resection and treatment [1]. There are two 
essential kinds of intra heart masses to be explicit: tumor and thrombi. The cancer is the growth of a bit of body 
realized by the unpredictable improvement of tissues, which shows compactness and thrombi is a blood clot 
(solid mass of platelets) [2]. The Echocardiogram intracardiac tumor (Figure 1(a)) and thrombi (Figure 1(b)) is 
shown in Figure 1. 

Therefore, the requirement for a computerized recognition is expanding, which can improve analytic 
precision and guide in which a specialist should be recommended [3]. Because the relative echocardiogram 
inception of the two masses and the picture quality are hazardous, including the vast measure of speckle noise 
[4], the sign forgetting about the rarities [5] and missing shapes [6].  

 

 

 

a) Intracardiac Tumor b) Intracardiac Thrombi 

Figure1. (a) Intracardiac tumor and (b) Intracardiac thrombi 

Research Background 

Assessment of ultrasound images has been utilized effectively in the computer-aided design of 
cardiovascular infection, to distinguish the proof of necessary ultrasound emphasis in the early forecast of stroke 
[7], in the construction of an aid system with the selection based on fuzzy rules for the prognosis of the coronary 
arteries disease [8], and in the use of adaptive blocking adaptive methodologies in the dynamics of the wall and 
the plate of the carotid artery [9]. The neuronal culture was recommended to identify and phase out 
echocardiograms of intracardiac tumors by the hundreds [10]. 

Usually, different types of noise removal strategies are available, such as pixel intensity correction [11], 
median filter based preprocessing [12], speckle-decreasing anisotropic diffusion (SRAD) found preprocessing 
[13] and preprocessing based on wavelet transformation strategies [14]. In [15], F-FDG uptake in cardiac tumors 
can differentiate benign and malignant cardiac tumors and predicts survival. In [16], recent advances in 
cardiovascular-relevant machine learning in the areas of image acquisition and reconstruction, image analysis, 
diagnostic evaluation and derivation of prognostic information are discussed. In [17], the prevalence of malignant 
diseases that is constantly increasing throughout the world is discussed. In [18], Kernel Collaborative 
Representation (KCR) is used to classify the Intra-Cardiac and Thrombi Tumors [19]. But this method failed to 
provide the maximum accuracy, due to improper segmentation and feature extraction. In [20], SVM-PSO method 
introduced for coronary tumor detection and classification. 

Proposed Intracardiac Masses Detection and Classification 

The proposed system consists of four phases, such as noise removal, segmentation, feature extraction, and 
cardiac mass classification. This technique need to manage the differentiation of pattern. Before investigating 
the models, the structure first needs to transfer all the images to a certain level where the examples are 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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increasingly clear for noise-free use with AVMF, and then extract the different types of features, and the extracted 
features can be used to make the classification model. With this classification model framework, finally, 
intracardiac infection masses can be expected. Finally, the proposed framework recommends clinical treatment 
or guidance based on the expected intracardiac disease outcome as shown in Figure 2. 

 

 
 

Figure 2. Proposed intracardiac Masses Detection and Classification’s Block Diagram. 

*Echocardiogram Image – correct only 

Adaptive Vector Median Filter 

Adaptive Vector Median Filter (AVMF) for echocardiogram images is currently used to reduce image noise 

and is a type of nonlinear filtering described in the spatial domain. In this paper, adaptive VMF filter for removal 

of high-density speckle noise from the Echocardiogram cardiac images. A window (5 x 5) is processed over the 

image damaged by impulse noise. The linear non-causal prediction error will be calculated from its non-causal 

region of the running pixel. In the proposed filter scheme, the noisy and non-noisy pixels are categorized based 

on the linear non-causal prediction error. For noisy pixel, Vector Median Filter is pixel-by-pixel processing where 

window size is adapted based on availability of good pixels and the unobtrusive pixel is replaced with a good 

pixel's by vector median filter value. To remove noise from the image, the Adaptive Vector Median Filter algorithm 

described as in below: 

 

Algorithm: 

Input: Scanned image from Ultrasound devices 

Output: Preprocessed image 

Step 1: A two-dimensional window of size 5x5 matrix is chosen and centered on the trained pixel P(a,b) in the 

dishonored image. 

Step 2: Organize the pixels in the chosen window consistent with the ascending order and discover the following 

pixel values. 

(a) Median pixel value indicated by Cmed, 

(b) Maximum pixel value (Cmax) and Minimum pixel value (Cmin) of the organized vector V0. 

Step 3:If the trained pixel is inside the range 

Cmin< P (a, b) <Cmax, Cmin> 0 and Cmax< 255, 

processed as moral pixel and left unbothered. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Else 

P (a, b) is classified as dishonored Pixel. 

Step 4: Replace the dishonored pixel P (a, b) with Cmin. 

Step 5: Step 1 to step 4 are iteratively repeated until the processing is accomplished for the entire image. 

Linear Iterative Vessel Segmentation(LIVS): 

The Linear Iterative Vessel Segmentation (LIVS) strategy was mostly influenced by two factors: the feature 

presentation and the segmentation approach. The proposed unsupervised aggregation method requires 

calculating the Euclidean distance between all input data points and the Gaussian kernel for points distribution 

measurement 𝝆𝒊of the data point𝒊. Clusters of low density and at relatively large distances of points of high 
density surround the centers of mass. In 𝜹𝒊 the distance is measured by calculating 𝒅𝒊𝒋 the maximum distance 

between point ‘i’ and the set of points ‘j’ with high density. The distance 𝜹𝒊 is computed utilizing Equation (1). 

𝛿𝑖 = {
min

𝑗
(𝑑𝑖𝑗)𝑖𝑓𝜌𝑗 > 𝜌𝑖

max
𝑗

(𝑑𝑖𝑗)𝑖𝑓𝜌𝑖𝑖𝑠𝑡ℎ𝑒ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦
    (1) 

Where 𝜌𝑖  , 𝜌𝑗represents the density of point 𝑖, and 𝑗 and 𝛿𝑖 is the distance. 

Global Consistency Error: Global Consistency Error (GCE) is the measure of the extent to which segmentation 

can be viewed as a revision of another. If the first segment is an appropriate subset of the other, then the pixel 

is in the filtering region and the error should be zero. If there is no subgroup relationship, then the two regions 

overlap in an inconsistent manner. The GCE was expressed by the following Equation (2), 

𝐺𝐶𝐸 =
1

𝑛
min{∑ (𝑆1, 𝑆2, 𝑝𝑖) ∑ (𝑆2, 𝑆1, 𝑝𝑖)}𝑖𝑖        (2) 

Where segmentation error takes two segmentations S1, S2 as input and produces the real valued output in the 

range (0::1) where 0 signifies zero error. 

DICE coefficient: The Dice coefficient (DICE) metrics are mostly used to validate the volume of medical image 

segmentation as equation (3), 

𝐼𝐶𝐸 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
                                        (3) 

Algorithm 

Input: Preprocessed image 

Output: Segmentation 

Step 1: Read the image and get the representation of the input image in two color channels (Black and White). 

Step 2:Compute the cluster centers 

 

(a) Register the thickness ρ and detachment measure δ by using the Equation (3) and Equation (5) 

individually 

     𝜌𝑖 =  ∑ 𝑒𝑥𝑝
−

𝑑𝑖𝑗
2

𝑑𝑐
2

𝑗    

Where 𝑑𝑖𝑗 = Euclidean distance of point 𝑖 and 𝑗 , 𝑑𝑐= cutoff distance. 

(b) Select the information that focuses on high thickness (ρ) and huge separation (δ) as the segmentation 

group. 

(c) Cluster number assigned 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Step 3: Complete the segmentation process based on the tagging results from step 2-3 

Feature Extraction: Multiscale Local Binary Pattern 

When identifying an intracardiac mass in an echocardiogram sequence, cardiologists typically make a 
judgment based on two bases: the movement of the mass and the boundary feature or base length. Five features 
derived from the Multiscale Local Binary Pattern (MS-LBP) (contrast, entropy, autocorrelation, energy and 
homogeneity) are computed at θ =0°, 45°, 90° and 135°and d = 1. The mean density within the cluster can also 
classify the homogeneous and heterogeneous regions. 

Mathematically the MS-LBP feature vector is mentioned in Equation (4) as follows. 

𝑉 = 𝑣(𝑠(𝑔𝑜 − 𝑔𝑐), 𝑠(𝑔1 − 𝑔𝑐) … … … … … … 𝑠(𝑔𝑝−1 − 𝑔𝑐))    (4) 

Where gc is the estimation of the dimming of the average pixel and gn, (n = 0, ... P-1) demonstrates that the 
darkening of the neighboring pixel inside the radius R; P is the complete number of neighbors in the nearby 
picture adjustment. The binary feature vector is the iterative binomial factor and afterward finishes up the code 
that depicts the spatial structure on the neighborhood picture that has changed in the Equation (5) and (6) 
respectively. 

𝑀𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑆(𝑔𝑛
𝑃−1
𝑛=0 − 𝑔𝑐)2𝑛       (5) 

𝑠(𝑥) = {
1  𝑥 ≥ 0
0 𝑥 < 0

         (6) 

Where s(x) = Local neighboring pixel differences, i.e.gn-gc = 0 (when its argument is negative otherwise 
one). The algorithm steps of MS-LBP are discussed in below. 
Algorithm  

Input: Result of Preprocessing  

Output: Different Types of Texture Features 

Start 

Step1: Obtain the data from preprocessing. 

Step2: Compute the value of each binary pattern C and pick the nodes randomly from H 

If C = ∫ 𝑅𝑎𝑛𝑑(𝐻, 1, … , 𝑋)
𝑁

1
 

X- Nodes availability of H. 

Step3: for every Texture Ci from C 

For every random Node Ni from Ci 

Compute Texture features = √𝑁𝑖. 𝐺𝑚 − ∀
𝐶𝑖.𝑁𝑖.𝐺𝑚

∅
 

Step4: Compute the result of user feedback 

Read all feature and stored to the database 

Step5: Goes to step 2 to repeat the process 

Stop 

  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Robust Back Propagation Neural Network Classification  

 

Figure 3. Robust Back Propagation Neural Network 

In this section, a new learning approach based on recurring unit with a variable design to accelerate the 
learning period of the Robust Back Propagation Neural Network Classification (RBPNN) classifier is proposed. 
The behavior of a unique insect species called Weaver Ants is combined with the generic module with frequent 
gates to improve the execution of nervous system learning. The network is trained by a supervised learning 
strategy using the sigmod function. In ANN methods, for feature learning and feature classification, the 
information processed through the multiple levels of non-linear hierarchical layers (architectures). The 
architecture of Robust Back Propagation Neural Network is shown in Figure 3, it comprises of ‘13’ input layers, 
‘36’ hidden layers and ‘3’ output layers. The network is trained by supervised learning strategy using sigmod 
function, the Equation(7) is the sigmoid function. 

𝜑1(𝑥) =
𝑎

1+𝑒−𝑏𝑥        (7) 

Algorithm 

Input: Feature extracted values for Echocardiogram Image 

Output: Classified intracardiac masses. 

Step 1:Pick the quantity of neurons from input, hidden and output layers. 

Step 2: Construct secure RBPNN with 3-layer Architecture. 

Step 3: Choose the examples for training. (feature set matrix). 

Step 4: Normalize the component vectors of each characteristic in the range of 0 & 1. 

Step 5: Connect the neurons starting with one layer then onto the next with association loads. 

Step 6: Initialize the pheromones (association loads) arbitrarily between - 0.5 and 0.5. 

Step 7: Execute the training. 

Step 8: For each Sample 

• Calculate the output of the RBPN with current loads and store the error (Gmin)  

• weaver ants Nwa chosen based on where Nwa< Na < NC 

• Randomly place ants to connect neurons in the input-hidden-output layers. 

• Calculate the output of RBPNN by considering the loads of neurons to be finite and storing the error value Lmin 

Step 9: If the output Gmin> the cost of error Lmin,Update pheromones only for Neurons are limited and pheromones 

disappear for the rest of the associations (Gmin= Lmin) 

Step 10: Else, update the pheromones of the unlimited neuron, if the NN error is calculated,If error> 0.0001 

then go to step 2, else go to step 1. 

End the process. 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Experimental Images: 

A total of 108real time dataset of clinical echocardiogram images were collected from the 40 patients at 
Department of Echocardiography, Vinayaka Mission's Kirupananda Variyar Medical College & Hospital, Salem, 
Tamil Nadu. A database has 108 images including 46 tumor free images,35 intracardiac thrombi and 27 were 
intracardiac tumors. The image format is JPEG, which are recorded using the 2D, M-mode, Color M-Mode 
echocardiography system equipped with a 2-4 MHz broadband phased array. The MATLAB 2018a simulator is 
used for training and testing the 108 real time dataset images.  

Simulation Results 

Input Images Result of 

Preprocessing 

(AVMF) 

Result of 

Segmentation (LIVS) 

Type of 

cardiac mass 

 

  Thrombi 

   

Thrombi 

   

Tumor 

 
  

Tumor 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Thrombi 

 
  

Thrombi 

Figure 4. Preprocessing and Segmentation results of Different Intra-Cardiac masses 

The simulation result of the preprocessing and segmentation of different samples is shown in Figure 4. The 
performance analysis of Preprocessing with different filter is listed in Table 1. From the Table 1, the classification 
results are found as input images 1,2,5,6 are thrombi and images 3, 4 are tumor.  

Table 1 depicted the proposed AVMF approach attains the low value of MSE is 8.102 and better value of 
PSNR is 42.015 dB over the conventional Gaussian and Mean Filter. The proposed MAE value is 0.007687 and 
SSIM value is 0.671. In this work Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), Mean 
Absolute Error (MAE) and Structural similarity Index metrics (SSIM) are used to validate preprocessing 
performance. This comparison clearly shows the proposed AVMF gives good results because some of the edges 
and image details are not very clear in existing methods, especially at transitions between image regions. But 
the proposed method perfectly enhances the edges. 

Table 1. Performance Evaluation of Filtering Response 

Different 

Parameter

s 

Different 

Filters 

Image 1 Image 2 Image 
3 

Image 4 Image 
5 

Image 6 Avg. value of 108 
Images 

 

MSE (dB) 

Gaussian 14.394 13.869 15.698 14.782 13.698 15.695 16.78 

Mean 11.553 11.569 13.692 12.089 10.859 13.126 13.256 

AVM 7.753 8.693 9.630 8.963 7.631 8.425 8.102 

 

MAE (dB) 

Gaussian 0.034830 0.035789 0.03489 0.03671 0.03283 0.03297 0.034731 

Mean 0.025795 0.02498 0.02681 0.02691 0.02479 0.02579 0.028421 

AVM 0.008532 0.00798 0.00793 0.00792 0.00753 0.00947 0.007687 

 

PSNR(dB) 

 

Gaussian 30.895 32.569 33.698 31.896 32.584 33.698 32.56 

Mean 33.886 34.875 37.960 34.871 35.612 36.742 35.98 

AVM 41.646 40.894 41.467 40.569 41.871 41.968 42.015 

 

SSIM 

Gaussian 0.571 0.565 0.562 0.568 0.561 0.573 0.578 

Mean 0.609 0.607 0.610 0.614 0.604 0.602 0.603 

AVM 0.672 0.680 0.675 0.678 0.677 0.673 0.671 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Table 2 discusses the performance evaluation of segmentation using Global Consistency Error and DICE 
coefficient with different methods. This comparison clearly shows the proposed Linear Iterative Vessel 
Segmentation method obtain a good segmentation ratio compared with K-means and fuzzy C-means clustering 
methods because the Linear Iterative Vessel Segmentation algorithm generates superpixels by clustering pixels 
based on their color similarity and proximity in the image plane. 

Table 2. Performance evaluation of Segmentation Ratio. 

Different 

Parameters 
Different Segmentation 

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6 

Avg. 

value 

of 108 

Images 

Global 

Consistency 

Error(dB) 

K-means clustering 
0.4615 0.4521 0.4896 0.4715 0.4612 0.4487 

0.4661 

FCM clustering 
0.4361 0.4389 0.4516 0.4579 0.4316 0.4284 

0.4437 

LIVS 
0.3619 0.3542 0.3498 0.3371 0.3618 0.3701 

0.3558 

DICE Coefficie K-means clustering 
0.64 0.62 0.68 0.65 0.66 0.67 0.62 

FCM clustering 
0.81 0.79 0.84 0.82 0.84 0.83 0.82 

LIVS 
0.96 0.98 0.95 0.92 0.97 0.94 0.95 

 

The proposed LIVS has low GCE inconventional K-means clustering and fuzzy C-means (FCM) clustering 
methods. The average value of Global Consistency Error rate was 0.3558 for LIVS segmentation over existing 
methods Fuzzy C means clustering is 0.4437 and K means clustering is 0.4661 of total 108 cardiac images. The 
average value of DICE coefficient value is 0.95 

Comparison of Features Subsets 

Table 3 features were used to calculate additional classifications, bringing to a total of 11. Subgroup features 
that are present in all 9 subgroup features were discovered. Mass movement and base length were mentioned 
in the characterizations of the cardiologist. They were all about features of cardiologists, their traditional features, 
and their newer texture feature sets. 

Table3. Features for Normal, Cardiac Tumor and Cardiac Thrombi Images 

Features Normal (Mean±SD) 
Cardiac Tumor 

(Mean±SD) 

Cardiac Thrombi 

(Mean±SD) 

Standard deviation 1.5634± 0.4011 0.0807±1.9196 0.3161±0.0218 

Contrast 0.0845±0.0142 0.02845±0.0324 0.0724±0.0672 

Correlation 0.7289±0.0126 0.1244±0.2407 0.5620±0.0236 

Energy 1.7834±0.0248 0.7833±0.3889 0.9326±0.0278 

Entropy 2.2351±0.1737 0.7270±0.9234 0.5231±0.1340 

Homogeneity 2.1427±0.0207 0.9323±0.0158 0.9394±0.0054 

LBP1 3.2314±0.1361 1.4299±0.4938 1.7744± 0.217 

LBP2 3.3325±0.0252 1.5374±0.0340 1.7734±0.894 

LBP5 1.7631±0.1972 0.4923±0.6536 0.6489±0.3908 

LBP9 1.9480±0.0324 0.4697±0.0504 0.5550±0.1113 

Mean intensity 3.1248±0.02719 0.9402±0.0218 1.26143±0.0267 

*SD – Standard Deviation 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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The simulation result for the Area Under – Receiver operating characteristics Curve (AU-ROC) is shown in 
Figure 5. This conclusion is supported by these results, which demonstrate that the AU-ROC response is equal 
to one. 

 

Figure 5. AU-ROC Curve. 

Table 4. Overall Performance analysis of classifier based on best feature selection. 

Performance 

Metrics 
All 11 features 

Only the feature 

subset of 

cardiologists 

Only the traditional 

feature subset 

Only the new feature 

texture subset 

Accuracy 98.96% (96/108) 98.94% (94/108) 91.76% (75/108) 98.93% (89/108) 

Sensitivity 96.17% (54/54) 97.44% (51/54) 85.44% (51/54) 97.03% (47/54) 

Specificity 94.33% (42/54) 95.55% (43/54) 81.11% (23/54) 95.11% (41/54) 

Positive Prediction 96.91% (56/59) 96.22% (51/53) 85.67% (53/75) 96.11% (48/57) 

Negative Prediction 98.56% (40/49) 93.49% (43/55) 87.5% (21/33) 95.41% (41/51) 

 

The results have shown in Table 4 shows the effectiveness of the proposed method when different feature 
sets are used. Overall classification accuracy is 98.93%. When all 11 features were used as expected, the 
highest rating was obtained. 

Overall Performance: 

In this proposed work, 108 real time images collected from Hospital were used for training and testing. Out 
of this, 80 images were used for training and 28 images used for testing. For 5-fold cross validation, 80 images 
used as 5 different classes and each class used 20 images as shown in Table 5.A cross-validation was 
performed using a five-fold analysis. The experiment used 100 epochs and a mini-batch size of 8.The accuracy 
98.85% achieved using our proposed RBPNN classifier is better than other state-of-the-arts techniques are SVM-
PSO, KCR, Sparse Represent, ANN and SVM in Table 6. The reason for this improvement in classification 
accuracy is due to the ability of extracting the influential features in decrementing the type of cardiac masses 
using MS-LBP feature extraction with 5 fold cross validation method and SPSS tool. 
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Table 5.5-fold; 80% data in training set, 20% in test. 

Cardiac Masses Classifier Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

SVM 89.25 91.48 90.91 91.36 90.57 

ANN 91.38 91.28 92.49 91.8 91.84 

Sparse Representation 92.89 93.47 93.56 91.76 92.65 

KCR 92.16 94.73 93.78 93.35 93.49 

SVM-PSO 94.65 96.43 94.12 94.13 94.89 

RBPNN 98.46 97.67 98.89 98.38 98.65 

Table 6.Comparison of the overall performance evaluation with different classifiers. 

Cardiac 

Masses 

Classifier 

 

 

Real Time Data Set (108 Cardiac 

Masses Images) 

Accuracy 

(%) 

Sensitivity 

(%) 

Specifici

ty (%) 

PPV 

(%) 

NPV 

(%) 

SVM 90.33 95.28 87.78 88.14 97.74 

ANN 91.98 92.78 82.39 92.1 96.93 

Sparse 

Representatio

n 

92.48 94.47 83.65 94.74 96.23 

KCR 93.92 94.89 87.23 94.98 95.973 

SVM-PSO 94.55 96.79 89.82 96.29 95.34 

RBPNN 98.85 97.38 98.31 98.6 94.5 

Run Time Analysis: 

The running time of the proposed method was calculated for each processing and it took about 412.782 
seconds to analyze and identify the cardiac masses, where it took 290.45 seconds to eliminate the noise and to 
segment the masses, took 110.75 seconds. 

State of art techniques 

Table7.State of art techniques classification of the conventional classifier 

Cardiac Masses Classifier Cardiac masse Image Dataset Accuracy Sensitivity Specificity 

SVM [15] Echocardiogram 92.79 89.89 90.91 

ANN [13] Echocardiogram 84.65 87.78 86.94 

Sparse Representation [5] Echocardiogram 92.48 90.33 91.98 

SVM-PSO [19] CT 96.23 97.74 96.93 

KCR [17] MRI 94.74 88.14 92.1 

RBPNN Echocardiogram 98.85 97.38 98.31 
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The accuracy 98.85% achieved using our proposed RBPNN classifier is better than other state-of-the-arts 
techniques are SVM-PSO, KCR, Sparse Represent, ANN and SVM in Table 8. The reason for this improvement 
in classification accuracy is due to the ability of extracting the influential features in decrementing the type of 
cardiac masses using MS-LBP feature extraction. The proposed adaptive vector median filters suppressed the 
noise very effectively while maintaining fine details and very well, and filter performance over conventional filters. 
The Linear Iterative Vessel Segmentation algorithm clusters pixels based on color similarity and proximity in the 
image plane to generate superpixels. The MSLBP description shows the local texture capabilities of an image 
by comparing each pixel to an adjacent pixel. The method provided contains the complete structural information 
extracted by the Local Binary Patterns and uses the size information to extract additional information to get 
additional discriminative power.  

CONCLUSION 

In this work, a robust back propagation neural network (RBPNN) scheme is proposed to detect and classify 
the intra-cardiac masses from echocardiogram images. Initially, the noise is diminished from echocardiogram 
images utilizing the adaptive vector median filter. The masses were automatically segmented dependent on 
linear iterative vessel segmentation strategy followed by texture features extracted utilizing the multiscale local 
binary pattern method. These features were used to separate the intracardiac mass from the echocardiogram 
images using an RBPNN with conventional Sparse Representation, SVM-PSO, SVM, ANN and KCR methods. 
The Accuracy, sensitivity, and specificity suggested RBPNN system are 98.85%, 97.38%, and 98.31%. More 
prominent productivity and basic execution make the RBPNN approach helpful for cardiologists to make 
anticipation before medical surgery. 
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