
Vol.67: e24231115, 2024 
https://doi.org/10.1590/1678-4324-2024231115 

ISSN 1678-4324 Online Edition 

 

 

 
Brazilian Archives of Biology and Technology. Vol.67: e24231115, 2024www.scielo.br/babt 

Article - Engineering, Technology and Techniques 

Modeling of Tuna Swarm Algorithm Based Unequal 
Clustering Approach on Internet of Things Assisted 
Networks 

Balakrishnan Srinivasan1 
https://orcid.org/0000-0002-3836-2926  

Vinoth Kumar Kalimuthu1* 
https://orcid.org/0000-0002-8920-4936  

Thiruppathi Muthu1 

https://orcid.org/0000-0001-9880-539X 

Rajakani Velumani2 
https://orcid.org/0009-0006-4767-0329  

1Vivekanandha College of Engineering for Women, Department of ECE, Tiruchengode, India; 2Anjalai Ammal 
Mahalingam Engineering College, Department of ECE, Thiruvarur, India. 

Editor-in-Chief: Alexandre Rasi Aoki 
Associate Editor: Fabio Alessandro Guerra 

Received: 10-Nov-2023; Accepted: 26-Feb-2024 

*Correspondence: vinodkumaran87@gmail.com; (V.K.K.) 

 

Abstract: Internet of Things (IoT)-assisted Wireless Sensor Networks (WSNs) integrate traditional WSNs 

with the expansive ecosystem of IoT devices. This integration enables sensor nodes (SNs) to connect to the 

internet, facilitating seamless data exchange, remote monitoring, and real-time control of physical 

environments. IoT-assisted WSNs are crucial in various fields, including industrial automation, smart cities, 

healthcare, and environmental monitoring. In these networks, sensor nodes near the base station (BS) are 

responsible for relaying data to nearby nodes and the BS itself, a process that consumes significant energy. 

This issue, known as the "hotspot problem," arises when certain nodes deplete their energy faster than 

others. Unequal clustering techniques address this challenge by distributing the energy load more effectively, 

allowing nodes with higher energy reserves to take on more tasks while conserving the energy of nodes with 

lower reserves. This study introduces the Tuna Swarm Algorithm-based Energy Efficient Unequal Clustering 

Approach (TSA-EEUCA) to enhance the performance of IoT-assisted WSNs. The proposed method aims to 

improve energy efficiency and extend network lifetime by organizing nodes into clusters of unequal sizes. 

HIGHLIGHTS  
 

• The TSA-EEUCA method is used to robust synergy 

• Challenge is suggested as the hotspot problem and is fixed by utilizing processes. 

• Unequal clustering supports the distribution of the energy load more effectively. 

• Binary variants of AOA to be suitable for the FS tasks. 
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The core of this approach is the Tuna Swarm Algorithm (TSA), inspired by the cooperative foraging behavior 

of tuna swarms. Unequal cluster formation and cluster head selection are determined by a fitness function 

that considers both energy levels and distance metrics. To validate the effectiveness of the proposed method, 

a series of simulations were conducted. The results showed that the proposed method outperforms existing 

techniques, offering a more efficient and longer-lasting solution for IoT-assisted WSNs. 

Keywords: Internet of Things (IoT); Wireless Sensor Networks; Energy Enhancement; Network lifetime; 
Unequal clustering. 

INTRODUCTION 

A process of developing new technological characteristics that are intelligent retrieval, infrastructure-less 
wireless networks, on demand IT-services, self-reckoning, computerization, and the network of things are 
significantly changes and improved across various activities in our everyday lives. These exciting 
technologies have been applied in numerous areas, providing effective solutions for digital megacity water 
dispersal, self-acting transit, clever supervision, ecological observation, and inner city reliability.  

The IoT comprises a vast network that interconnects a multitude of devices and smart objects. It is one 
of the most promising technologies, with rapid development potential and a significant impact on modern life. 
WSNs, considered a main component of IoT infrastructure, play a crucial role in this ecosystem. WSNs are 
the primary data-gathering tool used by IoT devices. A dense network of WSNs with IoT capabilities can 
support the development of a robust WSN-based IoT platform. 

Although WSN-based IoT has demonstrated immense potential in various applications, it faces resource 
limitations such as limited processing power, slow communication, short battery life, and low memory 
capacity. Energy efficiency is critical for these nodes to perform effectively over extended periods, often 
years. Key activities such as communication, processing, data collection, and monitoring are heavily 
dependent on the energy available to sensor nodes (SNs). Due to limited battery power and energy loss, 
SNs are prone to energy depletion, potentially degrading network performance. Therefore, extending the 
network lifetime is a primary research goal in WSN-based IoT, especially when replacing batteries in 
hazardous or remote environments is challenging. The rate at which SNs consume energy is a fundamental 
factor in predicting the longevity of a WSN-based IoT. In wireless mesh network, group of nodes head, near 
the sink node can hurriedly deplete their energy, a problem known as the hotspot issue in WSNs. This issue 
can be mitigated by creating clusters of unequal sizes (UECs). Unequal clustering techniques help balance 
the energy load among CHs, reducing the size of clusters near the base station (BS) and increasing cluster 
size with distance from the BS. Clustering methods can be broadly categorized into meta-heuristic and 
standard techniques. 

RELATED WORK 

In [11], a new method called the Fire Hawk Optimizer-based Unequal Clustering Scheme for Hotspot 
Mitigation (FHOUCS-HSM) was introduced for IoT-enabled WSNs. The FHO method's innovative 
architecture targets UEC, and the FHOUCS-HSM approach uses a fitness function to optimize CH selection 
and UEC size. In [12], an energy-efficient fuzzy-based UEC with a sleep scheduling (EFUCSS) algorithm for 
IoT-enabled WSNs was developed. This algorithm enhances network longevity and reduces energy 
consumption through efficient data transmission, scheduling, and clustering. It employs Fuzzy C-Means 
(FCM) for UEC design to balance energy consumption by minimizing transmission distances, with CH 
selection based on fuzzy logic. 

Chauhan and Soni [13] proposed an energy-aware UEC algorithm (EAUCA) to address energy holes 
and extend network lifespan. EAUCA creates unequal-sized clusters, making clusters near the BS smaller. 
The division of the network into UECs is based on nodes' distances from and residual energy to the BS. 
Jasim and colleagues [14] developed an energy-efficient UEC method based on a balanced energy technique 
(EEUCB), utilizing varying distances to minimize energy loss. EEUCB employs a high-capacity energy node 
and a binary CH approach with a sleep-awake mechanism. It also introduces a clustering rotation 
methodology with two different clusters and involving two or more clusters systems, considering remoteness 
thresholds, BS coverage node averages, and median liveliness thresholds. 

Sivakumar [15] introduced the Balanced-Imbalanced Cluster Algorithm (B-IBCA) with a Stabilized 

Boltzmann Approach (SBA) to balance energy consumption across UECs in WSNs. B-IBCA uses stabilization 

logic to ensure consistent energy usage among SNs and the Boltzmann evaluation technique to assign 

appropriate radii between SNs.In [16], the Energy-efficient Multihop Routing with UEC method (EMUC) was 
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developed to create clusters of different sizes based on the distance between the BS and SNs. This method 

aims to balance energy consumption among CHs by implementing multi-hop communication for data 

transmission to the BS. Ali and coauthors [17] presented a novel two-phase UEC lightweight technique based 

on a BS-determined threshold, considering the distance from the BS and the residual energy of SNs. They 

also introduced a re-clustering method where CHs are locally replaced within each cluster level. 

THE PROPOSED MODEL 

In this dissertation, propose a newest TSA-EEUCA scheme designed to address the SSIDs problem in 
IoT-aid WSNs. The primary goal of the TSA-EEUCA move toward to organize nodes into group together of 
varying range to enhance liveliness efficacy and extend network's lifetime. Figure 1 illustrates the overall 
course of action of the TSA-EEUCA scheme. 

Scheme Model 

The set of connections comprises NSNs with similar capabilities deployed randomly within an X*Y sensor 
field [18]. Nodes and the sink are stationary, with the sink centrally located and known to all deployed nodes. 
Symmetric wireless connections are used for data transmission and control messages. The radio model 
calculates energy consumption by nodes. The free space (fs) model is used for distances less than a 
threshold (d_0); otherwise, the multi-path model is applied. In the TSA-EEUCA technique, inspired by the 
cooperative foraging behavior of tuna swarms, the Tuna Swarm Algorithm (TSA) is central. Tunas, being top 
predators in the ocean, employ cooperative strategies like parabolic and spiral foraging to capture prey 
efficiently [19]. The TSA algorithm integrates these foraging tactics to optimize cluster formation and cluster 
head (CH) selection in WSNs. 

During parabolic foraging, the TSA mimics the tunas' strategy of encircling prey in a parabolic path to 
optimize cluster formation. In spiral foraging, tunas form a spiral shape to explore and capture prey in shallow 
waters. This strategy is adapted in the TSA-EEUCA algorithm to optimize CH selection and cluster formation. 
For asymmetrical cluster structure and CH selection, the TSA-EEUCA technique evaluates suitability based 
on energy and distance criterion [20, 21]. The fitness function determines optimal CH candidates (CHCs) 
based on their energy levels and proximity to other nodes and the base station (BS). Nodes with higher 
residual energy and favorable distances are more likely to be selected as CHCs. 

The CH selection process involves determining the competition radius (R_c) and rejection radius (R_j) 
for each node, ensuring balanced energy consumption and efficient data aggregation. Nodes evaluate their 
candidacy as CHs based on these radii and compete to become CHs based on their fitness scores.  This 
approach ensures that CHs are strategically placed to minimize energy consumption and maximize network 
lifetime.  Figure 2 outlines the iterative steps involved in the TSA algorithm.  

 

ETx(l, d)=ETx-elec(l)+ETx-amp(l, d)= {
l*Eelec+l*εfs*d

2
if d<d0

l*Eelec+1*εmp*d
4
if d≥d0

    (1) 

 

The energy necessary for the radio to receive a k-bits message can beexpressed as: 
 

 

ERX(k)=Eelec*k          (2) 
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Figure 1. Proposed method process diagram 

 

The mathematical model for initializing the tuna individual is as follows: 
 

Xi
int

=rand⋅(ub-lb)+lb=
[xi

1xi
2 . . .xi

j
]

{
i=1,2, …, NP

j=1,2, …, Dim

      (3) 

 

TS can be mathematically modelled as follows: 
 

Xi
t+1

= {
Xbest

t
+rand⋅(Xbest

t
-Xi

t
)+TF⋅p2⋅(Xbest

t
-Xi

t
), if rand <0.5

TP⋅p2⋅Xi
t
,  if rand ≥0.5

   (4) 

 

p= (1-
t

tmax
)

t (
t

i max 
)
        (5) 
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The spiral foraging approach is mathematically modeled as follows: 

Xi
t+1

=

{
 
 
 
 

 
 
 
 α1⋅(Xrand

t
+τ⋅|Xrand

t
-Xi

t|+α2⋅Xi
t),

i=1

α1⋅(Xrand
t

+τ⋅|Xrand
t

-Xi
t|+α2⋅Xi-1

t ),

i=2,3, …,NP

if rand <
t

tmax

α1⋅(Xbest
t

+τ⋅|Xbest
t

-Xi
t
|+α2⋅Xi

t
)

i=1

α1⋅(Xbesi
t

+τ⋅|Xbest
t

-Xi
t
|+α2⋅Xi-1

t
)

i=2,3, …, NP

if rand≥
t

tmax

      (6) 

 
The computation process is given as: 

α1=a+(1-a)⋅
t

t max
)         (7) 

α2=(1-a)-(1-a)⋅
t

tmax
         (8) 

τ=ebl⋅ cos (2πb)         (9) 

l=e3 cos (((tmax+1/t)-1)π)         (10) 

 
The Figure 2 presents proposed method steps. 

 

 

Figure 2. Proposed method flow diagram 

The equation is represented as follows: 
 

Rt= (1-0.3×
dmax-d(i, BS)

dmax-dnin
)×Rmax                    (11) 

Rj=α×β×Rc            (12) 
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α = {
max [

1

2
, (1 +

Eave-Ei

Eave
)] , Ei ≥ Eave

min [
3

2
, (1 +

Eave-Ei

Eave
)] , Ei < Eave

        (13) 

β={
max [

1

2
, (1+

Nave-Ni

Eave
)] , Ni≥Nave

min [
3

2
, (1+

Nave-Ni

Nave
)] ,Ni<Nave

           (14) 

Nave=
π×N×Rc

2

S
2             (15) 

ti = 
d(i,⋅RNs)

Rs
× t0           (16) 

RESULTS AND DISCUSSION 

In this revision, the presentation of the planned technique is analyzed underneath different node calculate 
(NC). Table 1 shows an evaluation of the proposed algorithm in terms of energy consumption (ECM), network 
lifetime (NLT), and throughput (THRO). 

         Table 1. Proposed Method analysis of ECM, NLT, and THRO  

Nodes Proposed Bi-HCLR FEECIIR NFEPO FR-LDG HEED 

Power utilization (millijoules) 

100 5 30 45 63 69 136 

200 14 40 75 89 112 160 

300 22 49 104 113 145 181 

400 31 63 120 142 162 214 

500 40 79 148 170 188 255 

Life Span of Network (Rounds) 

100 5900 5500 5500 5000 4802 4299 

200 5475 5347 5210 4787 4604 4007 

300 5471 5358 5018 4692 4375 3835 

400 5434 5227 4910 4326 4104 3420 

500 5392 5236 4703 4095 3898 3099 

Throughput (Mbps)  

100 99.80 98.79 94.98 91.17 80.52 75.92 

200 98.18 96.57 82.51 77.71 69.47 71.09 

300 97.85 95.19 73.49 69.46 60.44 63.04 

400 96.58 92.95 66.66 60.04 54.21 52.21 

500 95.92 92.16 63.23 53.80 45.39 47.99 
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Figure 3. Proposed method ECM outcome 

In Figure 4, the LSN results of the proposed technique are presented. The results highlight the 
improved LSN values of the proposed technique.  

 

Figure 4. Proposed method LSN outcome  

 

Figure 5 illustrates the comparative THRO results of the proposed method. The outcomes show that 
the TSA-EEUCA system has higher THRO values.  
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Figure 5. Proposed method Throughput outcome 

Figure 6 depicts the DDR outcomes of the proposed algorithm. The results show that the TSA-EEUCA 
method achieves higher DDR values. 

Table 2 presents the evaluation results of the datagram distribution ratio (DDR), packet failure ratio 
(PFR), and boundary-to-boundary latency (BTBL) with newest TSA-EEUCA. 

 

         Table 2. Proposed Method analysis of DDR, PFR, and BTBL 

Nodes Proposed Bi-HCLR FEECIIR NFEPO FR-LDG HEED 

Datagram Distribution Ratio (%) 

100 100.00 100.00 99.23 98.23 97.19 95.24 

200 99.89 99.14 98.22 97.28 96.19 94.13 

300 99.16 98.28 97.23 96.22 94.27 92.20 

400 98.14 97.11 96.25 95.25 93.25 90.14 

500 97.64 96.24 95.15 94.24 92.21 88.23 

Datagram Loss Ratio (PFR) (%)  

100 0.00 0.00 1.10 2.07 3.13 5.09 

200 0.46 1.21 2.12 3.05 4.12 6.20 

300 1.18 2.05 3.09 4.12 6.07 8.12 

400 2.20 3.22 4.07 5.09 7.08 10.19 

500 2.70 4.07 5.20 6.07 8.12 12.10 

Boundary-to- Boundary Latency (sec)  

100 2.11 3.26 4.08 4.29 4.78 5.91 

200 2.01 3.57 4.15 5.04 5.71 6.62 

300 2.39 4.12 5.00 6.18 6.66 7.42 

400 3.02 4.12 5.78 7.84 8.26 8.63 

500 3.13 4.77 6.37 8.92 9.37 9.64 
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Figure 6. Proposed method DDR outcome 

 

Figure 7 examines the PFR results of the proposed method compared to recent systems. The results 
indicate that the HEED algorithm has the highest PFR outcomes.  

 

 
 

Figure 7. Proposed method PFR outcome  

 

Figure 8 shows the BTBD outcomes of the proposed system compared to recent approaches.  
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Figure 8. Proposed method BTBD outcome 

Table 3 and Figure 9 present the bit error rate (BER) outcomes of the proposed algorithm compared 
to recent approaches.  

Table 3. Bit Error Rate Analysis  

Bit Error Rate (%)  

Nodes Proposed Bi-HCLR FEECIIR NFEPO FR-LDG HEED 

110 1.63 2.96 6.25 7.96 9.23 9.90 

220 0.58 3.25 7.26 10.36 12.36 13.65 

330 2.96 5.96 10.96 12.68 15.78 17.91 

440 4.35 9.25 12.95 16.87 18.89 20.39 

550 5.25 9.35 16.89 20.84 25.96 26.01 

 

 

Figure 9. Proposed method BER analysis with Existing method 
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CONCLUSION 

We introduce TSA-EEUCA, a novel approach designed to mitigate energy hotspots in IoT-assisted Wireless 
Sensor Networks (WSNs). This method aims to optimize energy efficiency and extend network lifespan by 
organizing nodes into clusters of varying sizes. Inspired by the cooperative foraging behavior observed in 
tuna swarms, TSA-EEUCA leverages the Tuna Swarm Algorithm (TSA). This algorithm is instrumental in 
creating unequal clusters and selecting cluster heads (CHs) using a fitness function that integrates energy 
levels and distance metrics. In the proposed method, nodes near the base station (BS) are responsible for 
transmitting data to adjacent nodes and the BS itself, which can deplete their energy unevenly, leading to the 
hotspot problem. Unequal clustering addresses this challenge by distributing the energy load more effectively. 
Nodes with higher energy reserves undertake more tasks while those with lower reserves conserve energy, 
thereby enhancing overall network efficiency. To validate the effectiveness of proposed method, extensive 
simulations were conducted. The results demonstrate significant improvements over existing techniques, 
showcasing proposed method capability to provide a superior solution for managing energy hotspots in IoT-
assisted WSNs. By leveraging TSA's ability to mimic natural swarm behaviors, our approach not only 
optimizes energy consumption but also prolongs the operational lifespan of WSNs, crucial for applications in 
industrial automation, smart cities, healthcare, and environmental monitoring. This novel approach 
contributes to advancing the field of IoT-assisted WSNs by addressing critical energy efficiency challenges, 
thereby supporting sustainable and reliable operation across diverse application domains. 

Funding: The authors declare they have no funding applied. 
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