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Abstract: The optimization of microgrids present challenges such as managing distributed energy resources 

(DERs) and the high reliance on intermittent generation such as PV and wind turbines, which present an 

aleatory behavior. The most popular techniques to deal with the uncertainties are stochastic optimization, 

which comes with a high computational burden, and adaptive robust optimization (ARO), which is often 

criticized for the conservativeness of its solutions. In response to these drawbacks, this work proposes a 

mixed-integer linear programming (MILP) model using a data-driven robust optimization approach (DDRO) 

solved by a two-stage decomposition using the column-and-constraint generation algorithm (C&CG). The 

DDRO model uses historic data to create the bounds of its uncertainty set, eliminating the conservativeness 

created by the arbitrary definition of the uncertainty set that is seen in ARO while maintaining a low 

computational burden. The DDRO model applied was not previously utilized in MGs, only in bulk power 

HIGHLIGHTS 
 

• Novel data-driven approach to uncertainties in microgrid resources 

• Faster convergence that stochastic optimization 

• Reduced conservativeness compared to robust optimization 

• Microgrid system with comprehensive selection of distributed energy resources 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
https://orcid.org/0000-0002-7306-4369
https://orcid.org/0000-0002-0574-1444
https://orcid.org/0000-0002-1639-7765
https://orcid.org/0000-0002-0689-459X


 De Lara Filho, M.O.; et al. 2 
 

 
Brazilian Archives of Biology and Technology. Vol.66: e23220245, 2023 www.scielo.br/babt 

systems. A benchmark MG system was simulated for a 24-hour period without uncertainties, with 

uncertainties using ARO (15% uncertainty budget) and with uncertainties and DDRO. The operational costs 

without uncertainty were $124,600,60, while the ARO approach rose those costs by 32.5% ($ 165,137.18). 

Finally, the DDRO approach managed to keep the costs in $ 126,934.54, a mere 1.8% increase from the 

base case without uncertainty. All simulations were performed in less than 1 minute. The results confirm a) 

the advantages of bounding the uncertainty set with historical data instead of an arbitrary definition of bounds 

and b) the fast-converging times of DDRO.  

Keywords: Operation Planning; Microgrids; Data-Driven Robust Optimization; Demand Response; 

Distributed Energy Resources. 

INTRODUCTION 

Modern distribution systems have been steadily evolving from classic networks, where energy is 
generated in large plants outside the main consumption centers, to active distribution networks (ADNs), 
where the centralized generation is combined with the distributed generation from DERs, such as distributed 
generation (DG), energy storage systems (ESSs), and electric vehicles (EVs). These networks form a much 
more complex grid with bidirectional power flow, both from the larger grid to the consumers and from the 
consumers to the grid. 

In this context, the microgrid (MG) concept emerged. A microgrid is a small-scale ADN that is composed 
of a group of DERs that can be managed by the same operator, aiming to maximize financial benefits, service 
reliability, and a variety of other objectives. Therefore, the rise in microgrid systems has stimulated the 
development of several optimization frameworks for microgrid operation in the literature. On the other hand, 
the number of possibilities to be considered in MG systems, regarding the different types of DERs, the 
optimization techniques, the objectives to be accomplished, and the topology of the system is enormous, 
guaranteeing that the subject still has plenty of opportunities for further development. 

Regarding the topology of MGs, several works, such as (1–7) represent the network in a single-bus 
topology, which simplifies the optimization problem but makes the model unable to account for bus voltage 
and line power flow constraints. On the other side of the spectrum, some works, including (8–10), consider 
the most accurate network models with non-linear constraints that heavily increase the complexity and 
computational burden of the model. Finally, some works, such as (11–16) consider multiple-bus systems with 
linearized constraints to reduce complexity while maintaining important network aspects such as voltage 
control and line power flow constraints. 

With the improvements in control technology in smart grids, demand response programs became 
feasible, especially demand side management (DSM). These programs are divided into price-based DSM, 
where hourly energy tariffs incentivize consumers to shift the operation of loads to less expensive periods, 
such as in (1), or incentive-based DSM, where financial incentives are directly offered to consumers to shift 
or curtail non-essential loads.  

One of the most important factors to be considered in microgrid optimization is the fact that most MGs 
rely heavily on renewable generation, such as photovoltaic (PV) and wind turbines and the availability of 
these sources is dependent on weather conditions. Therefore, these sources have an intermittent and 
aleatory behavior in the short-term, leading to a significant amount of uncertainty in operation planning 
decisions. Also, load demand can suffer fluctuations from the average tendency in a short period of analysis. 
Despite that, many works in MG optimization, such as (1,3,8–11,17,18), and disregard uncertainties, which 
can bring problems to the MG operator if the weather conditions are different than forecasted.  

Different techniques can be applied to cope with uncertain behavior. The work in (19) proposes a 
deterministic approach combined with a real-time algorithm to respond to uncertainty realization. Stochastic 
programming uses probability distribution functions to model the behavior of uncertain variables, generating 
scenarios that are weighted by their probability and thus obtaining an average operational condition, as can 
be seen in (2,4,12,14) . Even if stochastic optimization provides a thorough analysis considering a broad 
spectrum of possibilities, obtaining probability distribution functions for real-world variables is not 
straightforward and can be challenging. Also, the computational burden of generating thousands of scenarios 
can be high. 

To solve the problem of obtaining probability distribution functions, work (13) utilizes adaptive robust 
optimization (ARO). ARO adopts a worst-case scenario approach, obtaining the worst possible realization in 
an interval-based uncertainty set, usually a polyhedric set. This approach eliminates the need for detailed 
knowledge of the probabilistic behavior of the uncertain variables and eases the computational burden, 
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obtaining a safe but often overly conservative result because the worst-case scenario of an uncertainty set 
that was defined without adequate historical data or probability functions can be far greater than the actual 
uncertainty of the variable.   

To establish a compromise between the high computational burden of stochastic programming and the 
conservativeness of ARO, data-driven robust optimization (DDRO) offers an interesting option: it combines 
the robust optimization approach of optimizing for the worst-case scenario, eliminating the need for 
considering lots of scenarios and probability distributions and reducing the computational burden when 
compared to stochastic optimization, while providing a less conservative approach than ARO. In ARO, an 
arbitrary amount of uncertainty is considered for the uncertain variables via an uncertainty budget. This 
makes ARO solutions tend to be overly-conservative. In DDRO, historical data is used to create the bounds 
of the uncertainty set, providing more realistic and less conservative uncertainty sets.  

In (15), historical data of uncertain variables are used as the uncertainty set. Therefore, the uncertain 
variable can assume values that have previously happened or a linear combination of historical scenarios, 
making the uncertainty set much closer to real-world behaviors than an arbitrarily defined budget-constrained 
set that can cause ARO based models to be extremely conservative, including scenarios with extremely low 
probability. This work, although not focused on MGs, but in traditional networks, offers an interesting 
possibility for works in the MG field.  In (16), historical data is also used, but in a different approach compared 
to stochastic programming, called distributionally DDRO, where the past scenarios are used to estimate an 
empirical probability distribution function that is utilized to perform stochastic optimization. 

In this work, the DDRO method considered is close to that of (15), where the uncertainty set is the convex 
hull of a set of points representing historical scenarios, eliminating the need of generating probability 
distributions as is done in distributionally DDRO and stochastic programming.  

Considering the literature review, we propose a MG operational planning optimization model that 
includes:  

 

• A data-driven robust optimization approach to uncertainties in load demand and photovoltaic 
generation 

• A linearized network topology that is suitable for both radial and meshed microgrids and provides 
the possibility to consider voltage control and power flow constraints.  

• Modelling of Battery Energy Storage Systems (BESSs), including degradation costs.  

• Modelling of both non-dispatchable and dispatchable generation.  

• A price-based demand response program 

• A fast-converging column and constraint generation (C&CG) solving algorithm. 
 

The novelty of this work is the application of a novel DDRO methodology that has not been utilized 
previously in a MG system, only in bulk power systems that lack the amount of DERs and other constraints 
that are present in MG systems, filling the research gap between stochastic optimization, that comes with a 
high computational burden, and ARO, which is often criticized by its conservativeness. We also highlight that 
most works found in the literature fail to consider at least one of the DERs considered in this work (ESS, 
demand response, dispatchable and non-dispatchable generation) while this work presents a detailed 
formulation of all these resources, including ESS degradation costs, price-based demand response, PV, and 
thermal generation.  

MATERIAL AND METHODS 

Proposed Model 

The proposed model seeks to minimize the total operational costs of the MG in a 24-hour timespan for 
the worst possible uncertainty realization. These costs include the cost of exchanging energy from the 
upstream grid, the operational costs of the dispatchable generation, the cost of load shedding and the cost 
associated with battery degradation. Uncertainty is proposed in the PV generation and the load demand and 
formulated in a DDRO approach. 

The objective function is represented in Equation (1). 

min
𝑥

max
𝑦

min
𝑢

𝑇𝐶𝑜𝑠𝑡 

 

(1) 
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In equation (1), x represents all the variables related to BESS, controllable loads, and the dispatchable 
generation, y represents the uncertain variables related to non-controllable loads and availability of PV 
generation, while u represents non-utilized PV generation. 

The total cost (𝑇𝐶𝑜𝑠𝑡) is composed of the cost of exchanging energy with the grid, the degradation cost 
of the batteries, the operational costs of dispatchable generators, and load shedding costs, as can be seen 
in (2). 

𝑇𝐶𝑜𝑠𝑡 =  ∑[∆𝑡(𝐶𝑡
𝐺𝑟𝑖𝑑 + 𝐶𝑡

𝐵𝐸𝑆𝑆 + 𝐶𝑡
𝐷𝑔

)] + 𝐶𝐿𝑆

𝑁

𝑡=1

 

 

(2) 

The cost of exchanging energy with the upstream grid can be a positive value in case the MG is in an 
energy deficit and therefore purchasing energy from the grid, or a negative value, in case the MG is in an 
energy surplus situation and selling energy to the grid. Each bus of the MG has a net energy deficit or surplus 
in each period, that can be calculated as in (3). 

𝑁𝐸𝑡,𝑏 =  ∆𝑡(𝐿𝑡,𝑏 + 𝑆𝑡𝑡,𝑏 − 𝐺𝑝𝑣𝑡,𝑏 − 𝐺𝑑𝑔𝑡,𝑏) (3) 

where 𝑁𝐸𝑡,𝑏 represents the net energy surplus/deficit for bus b in period t,  𝐿𝑡,𝑏 represents total load 

(controllable and non-controllable) in the bus for period t, 𝑆𝑡𝑡,𝑏represents net BESS storage/discharge 

(positive values indicate the battery is charging in period t and negative values indicate discharge), 𝐺𝑝𝑣𝑡,𝑏 

represents PV generation, and 𝐺𝑑𝑔𝑡,𝑏represents dispatchable generation. 

Then, the net energy surplus/deficit of each bus is aggregated for all buses, representing the total 
surplus/deficit of the entire MG for a period t. This aggregated net energy is the value that must be purchased 
from the grid in a deficit situation or sold to the grid in a surplus situation. Thus, grid exchanging costs can 
be calculated as in (4). 

𝐶𝑡
𝐺𝑟𝑖𝑑 =  ∑ 𝑁𝐸𝑡,𝑏 ∗ 𝐸𝑇𝑡

𝑛𝑏

𝑏=1

 

 
(4) 

where 𝐸𝑇𝑡 represents the energy tariff for period t.  

 
BESS costs (𝐶𝑡

𝐵𝐸𝑆𝑆) are related to the battery degradation caused by cycling the battery. This degradation 
is mostly dependent on the depth of discharge (DoD) applied to the battery in a discharge cycle. A percentual 
degradation corresponds to each amount of DoD applied to the battery. The cost of this percentual 
degradation can be calculated by associating the degradation with the investment cost of purchasing the 
BESS, as in (5). 

𝐶𝑡
𝐵𝐸𝑆𝑆 =  ∑ 𝐷𝐸𝐺𝑡,𝑏 ∗ 𝐼𝑁𝑉𝑏

𝑛𝑏

𝑏=1

 

 

(5) 

where 𝐷𝐸𝐺𝑡,𝑏represents percentual degradation caused by the discharge cycle applied in period t to a battery 

installed in bus b and 𝐼𝑁𝑉𝑏represents the investment cost of purchasing the battery in bus b. Further details 
on calculating 𝐷𝐸𝐺𝑡,𝑏 are provided in section 2.2.  

The cost of the dispatchable generation is represented in a linear function, with a fixed cost for committing 
the generator in period 𝑡 and a variable cost that depends on the amount of power required, as can be seen 
in (6). 

𝐶𝑡
𝐷𝑔

=  ∑ ∆𝑡 ∗ (𝐴𝑏 ∗ 𝑋𝑑𝑔𝑡,𝑏 + 𝐵𝑏 ∗

𝑛𝑏

𝑏=1

𝐺𝑑𝑔𝑡,𝑏) 

 

(6) 

where 𝐴𝑏 is the cost in $ associated with committing the generator in bus b, 𝑋𝑑𝑔𝑡,𝑏 is a binary variable that 

indicates if the generator in bus b has been committed in period t, 𝐵𝑏 is the linear cost associated with the 
power dispatched from the generator. 

Finally, load shedding costs apply if, for any reason, it is impossible to allocate all the controllable load 
in the 24-hour period, as in (7). 
 

𝐶𝐿𝑆 =  ∑ 𝐿𝑆𝑏 ∗ 𝐿𝑆𝑇

𝑛𝑏

𝑏=1

 

 
(7) 
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where 𝐿𝑆𝑏 represents the total amount of load that was curtailed from bus b in the 24-hour timespan and 𝐿𝑆𝑇 
represents the penalty costs associated with load shedding.  
 

Equations (8) – (14) represent the operational constraints of the battery system. 
 

𝑋𝑡,𝑏
𝐶 + 𝑋𝑡,𝑏

𝐷 ≤ 1 

 

(8) 

𝑋𝑡,𝑏
𝐷 − 𝑋𝑡−1,𝑏

𝐷 = 𝑍𝑡,𝑏
𝑂𝑁 − 𝑍𝑡,𝑏

𝑂𝐹𝐹  

 

(9) 

𝑆𝑜𝐶𝑡,𝑏
𝑀𝐼𝑁 ≤ 𝑆𝑜𝐶𝑡,𝑏 ≤ 𝑆𝑜𝐶𝑡,𝑏

𝑀𝐴𝑋 
(10) 

𝑆𝑜𝐶𝑡,𝑏 = 𝑆𝑜𝐶𝑡−1,𝑏 + 𝛥𝑡 ∗ (𝑆𝑡𝑡,𝑏
𝐶 ∗ 𝜂𝐶 −

𝑆𝑡𝑡,𝑏
𝐷

𝜂𝐷
) 

(11) 

𝑆𝑡𝑡,𝑏 = 𝑆𝑡𝑡,𝑏
𝐶 −  𝑆𝑡𝑡,𝑏

𝐷  
(12) 

0 ≤  𝑆𝑡𝑡,𝑏
𝐶 ≤ 𝑆𝑡𝑡,𝑏

𝑀𝐴𝑋 ∗ 𝑋𝑡,𝑏
𝐶  

 

(13) 

0 ≤  𝑆𝑡𝑡,𝑏
𝐷 ≤ 𝑆𝑡𝑡,𝑏

𝑀𝐴𝑋 ∗ 𝑋𝑡,𝑏
𝐷  

(14) 

𝑋𝑡,𝑏
𝐶  and  𝑋𝑡,𝑏

𝐷  are binary variables that indicate if the battery from bus b is charging (C) or discharging (D) 

in period t. Therefore, equation (8) guarantees that the battery cannot charge and discharge simultaneously. 
𝑍𝑡,𝑏

𝑂𝑁 and 𝑍𝑡,𝑏
𝑂𝐹𝐹  are binary variables that indicate the beginning and end of a discharge cycle according to 

equation (9), which is important to calculate degradation. Equation (10) establishes the state of charge (SoC) 
limits for each battery and (11) corresponds to the inter-temporal power balance in the battery system. 
Equation (12) calculates the net storage value from the battery installed in bus b in a period t and (13) and 
(14) limit the power of charge/discharge of the battery and guarantee that the battery will only be operated if 
the corresponding binary variable is activated. 

Regarding battery degradation, the work in (20) presents a model for the degradation behavior of li-ion 
batteries, which is a non-linear exponential curve that correlates the DoD applied to the battery in each cycle 
and the percentual degradation. Since this work proposes a MILP model, that behavior had to be linearized 
using a piecewise linearization technique, where several linear functions are approximated to sections of the 
original non-linear curve and then, constraint (15) is applied to each of the linear functions. 

𝐷𝐸𝐺𝑏 ≥ 𝐿𝐶𝑓 + 𝐴𝐶𝑓 ∗ 𝐷𝑜𝐷𝑏       ∀𝑓 (15) 

where 𝐿𝐶𝑓 and 𝐴𝐶𝑓 are the linear and angular coefficients of the linear function f among the linear functions 

that were approximated to the degradation curve. Equation (15) guarantees that the value of 𝐷𝐸𝐺𝑏 is above 
that of the approximation, but since a higher value of 𝐷𝐸𝐺𝑏 means a higher degradation cost for the battery, 
the solver will seek the lowest possible values, without violating (15). 

The total load in the MG is divided into controllable and non-controllable loads. Non-controllable loads 
are forecasted on an hourly basis and uncertainty is applied, but controllable loads are provided on a per-
bus basis. Each bus of the MG has an amount of controllable load to be allocated in any period of the day, 
and a percentage of that amount is allocated in each period, as in (16). 

𝐶𝐿𝑡,𝑏
𝑎𝑙 = 𝑑𝑟𝑡,𝑏 ∗ 𝐶𝐿𝑏 

(16) 

where 𝐶𝐿𝑡,𝑏
𝑎𝑙  represents the amount of controllable load allocated in bus b in period t, 𝐶𝐿𝑏 represents the total 

amount of controllable load to be allocated in bus b in the 24-hour timespan, and 𝑑𝑟𝑡,𝑏  represents the 

percentage of the total controllable load for bus b that has been allocated in period t. Equation (17) guarantees 
that the values of 𝑑𝑟𝑡,𝑏 are between 0 and 100% and (18) establishes that no more than 100% of the total 

controllable load for bus b is allocated in the 24-hour period. 
 

0 ≤ 𝑑𝑟𝑡,𝑏 ≤ 1 (17) 
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∑ 𝑑𝑟𝑡,𝑏

𝑁

𝑡=1

≤ 1 

 

(18) 

Finally, if the sum of 𝑑𝑟𝑡,𝑏for the 24-hour period is smaller than 100%, it means that some portion of the 

controllable load for bus b has not been allocated, meaning it was curtailed. Then, the load shedding amount 
can be calculated from (19). 

𝐿𝑆𝑏 = (1 − ∑ 𝐷𝑅𝑡,𝑏

𝑁

𝑡=1

) ∗ 𝐶𝐿𝑏 

 

(19) 

Total load for a bus b in period t, required to calculate the net energy from equation (3), can be calculated 
as in (20). 

𝐿𝑡,𝑏 = 𝐶𝐿𝑡,𝑏
𝑎𝑙 + 𝑁𝐶𝐿𝑡,𝑏 

(20) 

where 𝑁𝐶𝐿𝑡,𝑏 represents non-controllable load. 

 
The work in (21) presents a comprehensive formulation of thermal generators, considering ramp 

constraints and start-up and shut-down ramp constraints. In this work, for the sake of simplicity, the modelling 
of thermal generators is a simplified version of (21) where start-up and shut-down ramp rates are equal to 
the ramp rate for an already powered up generator, meaning there are no special constraints for the start-up 
and shut-down moments. Binary variable 𝑋𝑡ℎ𝑡,𝑏 is activated when the thermal unit from bus b is committed in 

a period t, while binary variables 𝑌𝑡ℎ𝑡,𝑏 and 𝑍𝑡ℎ𝑡,𝑏 are activated if the thermal unit in bus b is starting up/shutting 

down in period t, respectively. 
Equations (21)-(30) represent the thermal generation constraints. Further clarification can be found in 

(21).  

𝑌𝑡ℎ𝑡,𝑏 − 𝑍𝑡ℎ𝑡,𝑏 = 𝑋𝑡ℎ𝑡,𝑏 − 𝑋𝑡ℎ𝑡−1,𝑏 (21) 

𝑃𝑑𝑔𝑡,𝑏 ≥ 𝑃𝑏
𝑚𝑖𝑛(𝑋𝑡ℎ𝑡,𝑏 − 𝑍𝑡ℎ𝑡+1,𝑏 − 𝑌𝑡ℎ𝑡,𝑏) 

(22) 

𝑃𝑑𝑔𝑡,𝑏 ≤ 𝑃𝑏
𝑚𝑎𝑥(𝑋𝑡ℎ𝑡,𝑏 − 𝑌𝑡ℎ𝑡,𝑏) + 𝑅𝑏 ∗ 𝑌𝑡ℎ𝑡,𝑏 (23) 

𝑃𝑑𝑔𝑡,𝑏 ≤ 𝑃𝑏
𝑚𝑎𝑥(𝑋𝑡ℎ𝑡,𝑏 − 𝑍𝑡ℎ𝑡+1,𝑏) + 𝑅𝑏 ∗ 𝑍𝑡ℎ𝑡+1,𝑏 (24) 

𝑃𝑑𝑔𝑡,𝑏 − 𝑃𝑑𝑔𝑡−1,𝑏 ≤ 𝑃𝑏
𝑚𝑎𝑥 ∗ 𝑌𝑡ℎ𝑡,𝑏 +  𝑅𝑏 ∗ (𝑋𝑡ℎ𝑡,𝑏 − 𝑌𝑡ℎ𝑡,𝑏) (25) 

𝑃𝑑𝑔𝑡−1,𝑏 − 𝑃𝑑𝑔𝑡,𝑏−≤ 𝑃𝑏
𝑚𝑎𝑥 ∗ 𝑍𝑡ℎ𝑡,𝑏 +  𝑅𝑏 ∗ (𝑋𝑡ℎ𝑡,𝑏 − 𝑍𝑡ℎ𝑡,𝑏) (26) 

𝑋𝑡ℎ𝑡,𝑏 ≥ 𝑌𝑡ℎ𝑡,𝑏 (27) 

𝑋𝑡ℎ𝑡,𝑏 ≥ 𝑍𝑡ℎ𝑡−1,𝑏 (28) 

𝑌𝑡ℎ𝑡,𝑏 + 𝑍𝑡ℎ𝑡,𝑏 + 𝑍𝑡ℎ𝑡+1,𝑏 ≤ 1 (29) 

𝐺𝑑𝑔𝑡,𝑏 =  𝛥𝑡 ∗
(𝑃𝑑𝑔𝑡,𝑏 + 𝑃𝑑𝑔𝑡−1,𝑏)

2
 

(30) 

 
Equations (21) and (27)-(29) establish the connections between binary variables. Equations (22)-(24) 

establish the minimum and maximum power output of the thermal generators according to the different stages 
of operations (start-up, shut-down, and normal operation). Equations (25)-(26) establish the ramp constraints 
for the same stages. Equation (30) calculates the energy delivery in each period. 

In this work, a linearized power flow model based on (22) is utilized. This model has the advantages of 
being capable of representing voltage and power flow constraints for both radial and meshed networks. 
Equations (31)-(38) represent the constraints associated with the power flow model. 
 

𝑃𝑓𝑙𝑡,𝑙 = 𝐴 ∗ (𝑉𝑎𝑡 − 𝑉𝑏𝑡) + 𝐵 ∗ (𝜃𝑎𝑡 − 𝜃𝑏𝑡) (31) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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𝑄𝑓𝑙𝑡,𝑙 = 𝐵 ∗ (𝑉𝑎𝑡 − 𝑉𝑏𝑡) + 𝐴 ∗ (𝜃𝑎𝑡 − 𝜃𝑏𝑡) 
(32) 

𝐴 =
𝑟𝑎𝑏

𝑟𝑎𝑏
2 +𝑥𝑎𝑏

2        𝐵 =
𝑥𝑎𝑏

𝑟𝑎𝑏
2 +𝑥𝑎𝑏

2  (33) 

-𝑃𝑓𝑙𝑙
𝑀𝐴𝑋 ≤ 𝑃𝑓𝑙𝑡,𝑙 ≤  𝑃𝑓𝑙𝑙

𝑀𝐴𝑋 
(34) 

-𝑄𝑓𝑙𝑙
𝑀𝐴𝑋 ≤ 𝑄𝑓𝑙𝑡,𝑙 ≤  𝑄𝑓𝑙𝑙

𝑀𝐴𝑋 (35) 

𝑁𝐸𝑡,𝑏

𝛥𝑡
−  ∑ 𝑃𝑓𝑙𝑡,𝑙

𝛺𝑏
𝑙=1  = 0 

(36) 

𝑝𝑓 ∗
𝑁𝐸𝑡,𝑏

𝛥𝑡
− ∑ 𝑄𝑓𝑙𝑡,𝑙

𝛺𝑏

𝑙=1

= 0 

(37) 

𝑉𝑀𝐼𝑁 ≤ 𝑉𝑡,𝑏 ≤ 𝑉𝑀𝐴𝑋 (38) 

 

where 𝑟𝑎𝑏  and 𝑥𝑎𝑏  are the resistance and reactance from a feeder that connects buses a and b, 𝑉𝑎𝑡  and 
𝑉𝑏𝑡  are the voltages from buses a and b connected by feeder l in a period t and 𝜃𝑎𝑡  and 𝜃𝑏𝑡  are the angles 
associated with the same buses. 
 

Equations (31)-(33) calculate active and reactive power flow in each feeder l and each period t, while 
(34) and (35) establish the maximum power flow value for each feeder. (36) establishes the power balance 
for each bus in the MG and (37) proposes a fixed power factor for all the MG, for the sake of simplicity. Finally, 
(38) establishes voltage limits for each bus of the system. 

Considering on-grid operation of the MGs, peaks in energy demand from the upstream grid may be a 
challenge for the DSO and represent stability concerns for the grid and, therefore, should be avoided.  

This concept can be illustrated by the load factor (LF), which is the ratio between the average power 
demand and the peak power demand of the MG, as in (39). A high LF means that the peak power of the 
system is not far greater than the average power demand, therefore, the operation is smooth and regular. A 
low LF means that the peak power is far greater than the average, which is undesirable.  

To provide minimal impact on the upstream grid, it is proposed that the load factor of the MG after the 
optimization of DERs is not diminished harshly from the original value considering only the total load of the 
system. It is proposed that the new LF is limited to being above 80% of the original LF, as in constraint (40). 
 
 

𝐿𝐹 =
∑ ∑ 𝐿𝑡,𝑏

𝑛𝑏
𝑏=1

𝑁
𝑡=1

24 ∗ max 𝐿𝑡,𝑏

 
(39) 

∑ 𝑁𝐸𝑡,𝑏 ≤
∑ ∑ 𝑁𝐸𝑡,𝑏

𝑁
𝑡=1

𝑛𝑏
𝑏=1

24 ∗ 0.8 ∗ 𝐿𝐹

𝑛𝑏

𝑏=1

 

(40) 

Delivery of power from PV generators depends on the available generation and on the operational 
conditions of the MG that may demand a curtailment of the PV generation to satisfy constraints. Equations 
(41) and (42) model this behavior. 
 

𝐺𝑝𝑣𝑡,𝑏 = 𝐺𝑝𝑣𝑡,𝑏
𝐴𝑣 − 𝐺𝑝𝑣𝑡,𝑏

𝑐𝑢𝑟𝑡  

 

(41) 

0 ≤ 𝐺𝑝𝑣𝑡,𝑏
𝑐𝑢𝑟𝑡 ≤  𝐺𝑝𝑣𝑡,𝑏

𝐴𝑣 

 

(42) 

where 𝐺𝑝𝑣𝑡,𝑏
𝐴𝑣  is the available PV generation for the PV system on bus b on period t and 𝐺𝑝𝑣𝑡,𝑏

𝑐𝑢𝑟𝑡  is the amount 

of PV generation that has been curtailed. 
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Solution Algorithm and Data-Driven Uncertainty Set 

As stated in the previous section, the objective function of the problem is a tri-level min-max-min problem. 
The solution to this sort of problem is not trivial and cannot be handled by commercial solvers directly. Thus, 
it is necessary to decompose the problem in stages that can be resolved separately and aggregated further. 
Most robust optimization problems, such as (13,15), utilize the column and constraint generation (C&CG) 
algorithm, as shown in Fig. 1. 

 

 
Figure 1. C&CG algorithm 

 
In this formulation, the problem is divided into two stages. The first stage is a min problem where the 

operational decisions are initially made based on the forecasted scenario, without any uncertainties. In this 
stage, the availability of PV generation (𝐺𝑝𝑣𝐴𝑣) and the non-controllable loads (𝑁𝐶𝐿) are considered fixed 
parameters and the operational decisions regarding BESS, thermal generation and controllable loads are 
made.  

After the solution of the first stage, the operational decisions are fixed in the second stage, and the 
constraints associated with these decisions are disregarded. Then, the availability of PV generation and the 
non-controllable loads, that are considered fixed parameters in the first stage, are now considered as 
variables, where the algorithm seeks the worst-case scenario of the uncertain variables for the operational 
decisions made in the first stag, bounding these variables to the data-driven uncertainty set. 

The data-driven uncertainty set for PV availability is represented by equation (43), and the uncertainty 
set for non-controllable loads is represented in (44).  Additional references for this formulation can be found 
in (15). 

𝑮𝒑𝒗𝒃
𝑨𝒗  = {𝑮𝒑𝒗𝒃

𝑨𝒗 ∈ 𝑅𝑁 𝑥 𝑛𝑏|𝑮𝒑𝒗𝒃
𝑨𝒗 = ∑ 𝛼𝑔𝑑1

𝐷1

𝑑1=1

𝑮𝒑𝒗𝒃,𝒅𝟏
𝑨𝒗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ∑ 𝛼𝑔𝑑1

𝐷1

𝑑1=1

= 1, 𝛼𝑔𝑑1 ≥ 0}  

 

 
 

(43) 

𝑵𝑪𝑳𝒃  = {𝑵𝑪𝑳𝒃 ∈ 𝑅𝑁 𝑥 𝑏|𝑵𝑪𝑳𝒃 = ∑ 𝛼𝑙𝑑2

𝐷2

𝑑2=1

𝑵𝑪𝑳𝒃,𝒅𝟐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, ∑ 𝛼𝑙𝑑2

𝐷2

𝑑1=1

= 1, 𝛼𝑙𝑑2 ≥ 0}  
 

(44) 

The uncertainty set is composed of D1 scenarios in case of PV, represented by 𝑮𝒑𝒗𝒃,𝒅𝟏
𝑨𝒗̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and D2 scenarios 

in case of NCL, represented by 𝑵𝑪𝑳𝒃,𝒅𝟐. Each scenario represents one historical scenario (a full 24-hour 

period) that occurred in the past for each bus b. Therefore, the resulting scenario will be a linear combination 
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of the past scenarios, and the solver is responsible to find a combination of the weights 𝛼𝑔𝑑1and 𝛼𝑙𝑑2 that 
result in the worst-case scenario for the optimization process. 

That creates a new scenario of the uncertain variables, which is then incorporated to the first level, and 
the optimization is conducted again, but with the addition of the new scenario generated in the second stage 
of the previous iteration. The process then continues until the objective functions present the same value in 
both the first and second stages. That means that the first stage could not reach a new solution that improved 
the objective function, nor the second stage could find an even worse scenario, meaning that this solution is 
the best solution for the worst-case scenario.  

Simulation Results 

All numeric experiments are carried out using Gurobi Optimizer in an Intel® Core® i5-7300HQ CPU 
with 8 GB of RAM. The formulation was made in Python language, using the Pyomo framework to connect 
Python and Gurobi. 

The work in (23) presents a detailed benchmark test system for networked microgrids. In this work, 4 
different MG systems are proposed, between radial and meshed topologies, including PV and wind 
generation as well as thermal units and one year of historical data for load demand and PV availability, which 
is crucial for the implementation of the DDRO model. Therefore, the MG system that is simulated in this work 
is adapted from (23), with a few differences, such as replacing wind turbines with PV generation, since PV 
provides additional challenges due to the unavailability of PV generation at night and in peak tariff hours, and 
disregarding the connections with the other MGs proposed, only considering the connection with the 
upstream grid. Line data (resistance and reactance) can be obtained in (23). Battery acquisition costs were 
considered to be $100/kWh. For all the test systems, the values are considered in per unit values (pu), with 
an 11 kV base voltage and 10 MVA base power. 

The base scenario of the uncertain variables is taken from a random summer day among the one-year 
scenarios proposed in (23). The energy tariffs follow the Brazilian white tariff. The data associated with the 
chosen scenario can be seen in Table 1.  

                         Table 1. Data for simulation 

Data 

Period % of peak load % of peak PV Energy Tariff ($/kWh) 

0-1AM 81 0 0.68559 
1-2 77 0 0.68559 
2-3 80 0 0.68559 
3-4 79 0 0.68559 
4-5 79 11 0.68559 
5-6 82 20 0.68559 
6-7 84 40 0.68559 
7-8 87 60 0.68559 
8-9 90 86 0.68559 
9-10 94 100 0.68559 
10-11 95 100 0.68559 
11-12PM 94 100 0.68559 
12-1 93 83 0.68559 
1-2 91 56 0.68559 
2-3 88 32 0.68559 
3-4 87 23 0.68559 
4-5 91 0 0.68559 
5-6 95 0 0.93679 
6-7 98 0 1.45488 
7-8 100 0 1.45488 
8-9 97 0 1.45488 
9-10      94 0 0.93679 
10-11      84 0 0.68559 
11-12      88 0 0.68559 

 
 

The microgrid considered for simulation has 6 buses and 11 lines, in a meshed topology shown in Figure 
2. 
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Figure 2. Benchmark microgrid, adapted from (23) 

Batteries are not shown in Figure 1, but are installed in buses 2, 3 and 4. The main resources installed 
in MG1 can be seen in Table 2. 
 
      Table 2. Benchmark microgrid data, adapted from (23) 

Resources 

Bus 
Max PV 
power (pu) 

Max Thermal 
Power (pu) 

BESS capacity 
(pu.h) 

BESS max charge and 
discharge power (pu) 

Peak Load (pu.h) 

1 - 0.5 - - - 
2 0.2 - 0.3 0.2 0.2125 
3 0.24 - 0.4 0.24 0.3329 
4 0.2 - 0.3 0.2 0.205 
5 - - - - 0.1257 
6 - - - - 0.1056 

 

The work in (23) provides real-world data for PV generation and non-controllable loads for one year (364 
days). These samples were separated by the year season since PV generation will be highly affected by 
seasonal changes, which resulted in 91 real-world scenarios for each season of the year. The summer 
season was considered for this work. 

To expand the size of this set, an oversampling process was conducted by adding and subtracting 
random small deltas to historical data scenarios, generating new synthetic scenarios that are not real-world 
data, but would be in the realm of possibilities for the historical data. 

Therefore, the final set of uncertainty consisted of 910 scenarios, being 91 real-world scenarios from (23) 
(which represent the summer season of one year), plus 9 more summers of synthetic data created based on 
the real-world data.  

RESULTS 

The microgrid was simulated using the DDRO approach and using a traditional adaptive robust 
optimization (ARO) approach for comparison. For the ARO simulation, a 15% uncertainty budget was 
considered for both PV generation and non-controllable loads, meaning that the overall amount of PV 
generation and non-controllable load can vary by up to 15% from the base case, while for DDRO the historic 
set constructed in the previous section was used to bound the uncertainty set. The detailed C&CG iterative 
process is shown for DDRO below. 

In the first stage of the first iteration (which has no uncertainty and considers the base case), the dispatch 
of DERs in MG can be seen in Figure 3. 
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Figure 3. First stage, k = 1 

As can be seen, the battery was charged off-peak and discharged in peak tariff periods, and the thermal 
generator was ramped-up a few periods before the 6PM start of the peak tariff period to be operated at full 
capacity during this expensive energy period. Controllable loads were allocated fully outside of the peak time. 
The operational cost for the MG in this scenario was $ 124,600.60, and so LB = 124,600,60.  

Following with the algorithm, BESS, CL, and the thermal generator variables were fixed in the second 
stage, and the worst-case scenario for PV and NCL was searched, resulting in Figure 4. 

 

 
Figure 4. Second stage, k = 1 

In this stage, it is possible to observe a decrease in PV generation, meaning that the solver found a worst 
feasible scenario of PV for the operating conditions found in the first stage. Operational costs in this stage 
rose to $ 126,934.81, and so UB = 126,934.81.  

Since UB-LB is greater than the tolerance, the uncertainty scenario generated in the second stage is 
incorporated in the first stage, and a new iteration begins. The dispatch of DERs for the second stage can be 
seen in Figure 5. 
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Figure 5.  First stage, k = 2 

Comparing Figure 5 with Figure 3 shows that the operation of CL and BESS was slightly changed from 
the first stage of the first iteration. The obtained cost for this stage was $ 126,934.81, so the new LB is 
126,934.81. This change means that the first stage could not find a better solution for the new uncertainty 
scenario. So, the second stage is performed, and if it cannot find a worse uncertainty realization, the process 
would reach convergence. The dispatch for the second stage can be seen in Figure 6. 

 

 
 

Figure 6. Second stage, k = 2 

The cost obtained was $ 126,934.81, and so UB = 126,934.81. In this case, convergence was achieved 
in 2 iterations and the total computational time was 8.85 seconds.  

Comparing Figure 6 and Figure 4, the presence of uncertainties caused changes in the operational 
decisions, mainly regarding BESS and demand response, showing the importance of uncertainty 
consideration for better planning. Also, the solution is immune to the worst-case scenario and therefore to all 
other uncertainty scenarios that represent better operational conditions.  
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Table 3 shows the costs comparison considering the base case (without uncertainties), the ARO scenario 
and the DDRO approach. 

 

                                            Table 3. Operational costs, different optimization approaches 

Base Case DDRO, summer ARO, 𝛤 = 15% 

124,600.60 
126,934.54 
 (+1.8%) 

165,137.18 
(+32,5%) 

 
In ARO, the historical data for the uncertain variables is unknown, so an arbitrary uncertainty budget is 

established. Using a 15% uncertainty budget for both PV generation and uncontrollable loads, the final 
operational cost obtained was $ 165,137.18. That represents an increase of 32.5% from the base case with 
no uncertainties, compared to a mere 1.8% increase when the uncertainty set was bounded using DDRO, 
showing the advantages of using the historical data to create a more realistic uncertainty set. 

In terms of grid transactions, Figure 7 shows the amount of energy exchanged with the upstream grid for 
the DDRO approach. 

 
 

 
Figure 7. Energy exchange with the upstream grid 

The load factor constraints contained the energy exchanges with the grid to a moderate value, without 
peaks from a large allocation of controllable loads, for example. The exchange is lower during the afternoon 
because of the peak PV generation (less energy is necessary from the grid) and the lowest in the peak tariff 
period because batteries and the thermal generators are utilized at their full capacity to avoid paying 
expensive tariffs to the DSO.  

CONCLUSIONS 

The objective of this work was to develop a comprehensive linear model for the day-ahead optimization 
of microgrids, using a novel data-driven robust optimization approach (DDRO) that was not previously used 
for MG systems. A MILP model was proposed and a tri-level min-max-min formulation was created. The 
formulation was solved using a two-stage decomposition and the column and constraint generation algorithm 
(C&CG).  

The results highlight the importance of considering uncertainties when planning the operational decisions 
of MG systems, since the uncertainties can modify the ideal utilization of the distributed energy resources 
through the day. Also, while in the DDRO scenario the costs rose by only 1.8% when compared to the base 
case without uncertainties, showing that the random historic scenario that was chosen was already close to 
the worst-case scenario in terms of cost, other more optimistic scenarios could have been chosen, which 
would cause a lower operational cost for the base case and therefore a higher percentual increase when 
uncertainties are considered.  
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Also, by finding and optimizing for the worst-case scenario of uncertainties, the DDRO solution 
($ 126,934,54) is immune regarding costs to the uncertainty set that was considered. This means that the 
DDRO model will present equal or lower overall operational costs for all other uncertainty scenarios in the 
uncertainty set.  

It is also highlighted the importance of demand response in providing flexibility for the MG operation and 
allowing load factor constraints to be applied without convergence issues. 

Finally, the fast-converging time for simulation is highlighted, showing that DDRO is a capable tool for 
finding historically accurate results without the high computational burden found in other optimization 
techniques such as stochastic programming. 
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