Various tumor cells express significantly higher amounts of VIP receptors (VIPR) that provided the basis for the clinical use of radiolabeled VIP for the in vivo localization of tumors. This work studied the labeling of VIP and VIP10-28 with iodine-131 to compare the biological distribution of the labeled compounds in Nuce mice and the affinity for tumor cells. Both VIP and VIP10-28 peptides contain two tyrosine residues, in positions 10 and 22, that are theoretically equally susceptible to radioiodination employing oxidative electrophilic substitution using oxidizing agents like Chloramine T. Radiochemical purity of the reaction mixture was determined by electrophoresis and HPLC. The VIP peptide and the fragment were labeled with radioiodine with good radiochemical yield (above 96%). Suitable, but important differences can be observed in biological distribution studies. Comparatively, blood clearance was faster for labeled VIP and perhaps because of this, the uptake in tumor was lower, especially during the first hour. These differences observed in the biological distribution of the compounds can be related to the lipophilicity of the labeled compounds.
Radiopharmaceuticals; protein radioiodination; VIP; VIP10-28; adenocarcinomas