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Abstract: Efficient and exact traffic flow forecasting is critical for intelligent transportation systems. The 
number of model generations increases the computational complexity of deep neural network (DNN) models. 
Overfitting occurs when hyperparameters are used excessively to train neural network models, and this has 
a major influence on prediction accuracy. To address these limitations, this approach employed H2O grid-
based stochastic gradient descent with ridge regression in deep neural network (GSGDRR-DNN). This 
technique efficiently distributes memory across several clusters, runs independently, and simultaneously 
creates numerous DNN models. To remove multicollinearity and achieve better computational efficiency and 
lower variance, GSGDRR-DNN utilizes stochastic gradient descent (SGD) with ridge regression in the H2O 
cluster. Finally, we evaluate the performance of the recommended GSGDRR-DNN approach against several 
DNN methods, including LSTM, Bi-LSTM, GRU, and current state-of-the-art methods. Additionally, the run-
time performance of the parallel GSGDRR-DNN model was compared with the run-time performance of the 
sequential GSGDRR-DNN model. The suggested system has a minimum MSE, a minimum RMSE, a 
minimum MAE, a minimum RMSLE, and maximum R2 values of 0.012, 0.108, 0.096, 0.015, and 0.99. This 
demonstrates that the GSGDRR-DNN model of traffic flows outperforms other state-of-the-art approaches in 
terms of prediction accuracy.  

Keywords: Deep Neural Network (DNN); Ridge Regression; Grid Search; Stochastic Gradient Descent; 
Parallel Distributed Processing; Traffic flow forecasting. 

HIGHLIGHTS  
 

• H2O's parallel grid SGD approach builds a series of DNN models in parallel. 

• Ridge regression reduces multicollinearity and minimizes variance and bias. 

• The SGD parallel grid returns optimal hyperparameters for DNN training. 

• Parallel DNN models predict traffic flows with minimal error metrics. 
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INTRODUCTION 

Due to the non-linearity of traffic data, accurate and well-organized traffic flow estimates are a difficult 
task in Intelligent Transportation System (ITS). Nonlinear traffic data gathered from a variety of sources, 
including radars, inductive loops, CCTV cameras, and other social networks. Congestion, accident 
prevention, navigation time savings, and navigation safety considerations are all aided by accurate traffic 
flow predictions. Both parametric and nonparametric statistical techniques fall into the category of forecasting 
methods. Traditional statistical parametric techniques (SPTs) like Kalman filtering, ARIMA (Auto Regressive 
Integrated Moving Average), and SVR (Support Vector Regression) are not ideal for traffic data non-linearity, 
although they are less computationally complex. SARIMA (Seasonal ARIMA) was contemplated by Williams 
BM and coauthors [1] and is used to estimate univariate traffic state data. Extreme values were difficult to 
forecast using this strategy.  

Okutani I and coauthors [2] suggested Kalman Filtering that could not infer the stochastic features of the 
data. Castro-Neto M and coauthors [3] presented SVR for estimating short-term traffic flow from ordinal data. 
Emami A and coauthors [4] introduced kalman filter using Vissim microscopic traffic simulator to fully predict 
traffic flow when transport boreholes are reduced. However, it is not suitable for high perforation conveyance 
rate. The non-statistical parametric methods such as the K-nearest neighbor (KNN) model (Gong X and 
coauthors [5]) Artificial Neural Networks (ANN) (Zheng W and coauthors [6]; Zhong M and coauthors [7]; Dia 
H [8]; Yin H and coauthors [9]; Kumar K and coauthors [10]; Dougherty M [11]) and various deep learning 
techniques such as LSTM, GRU, SAE have been designed for linear and non-linear flow of traffic. However, 
these approaches have complex network structures that can accurately predict traffic flow and take more 
time to train neural network models.  

Yu B and coauthors [12] suggested KNN as a multi-step predictive model for predicting short term traffic. 
Ghosh B and coauthors [13] to estimate real-time traffic flow at different crossings, researchers introduced a 
Multivariate Structural Time-series (MST) model. The usage of several unknown parameters and the 
stochastic character of traffic data have an impact on model training and forecast accuracy. These methods 
are computationally intensive and inefficient when generating various models for predicting short-term traffic. 
A data-driven approach has emerged to address the stochastic nature of traffic data (Zhang J and coauthors 
[14]). Recently, various types of non-statistical parametric deep learning (NPDL) methods have been 
introduced to predict traffic flow. LSTM-RNN (Long Short-Term Memory-Recurrent Neural Network), which 
memorize the features as a long-term dependency and accurately predict short-term traffic (Ma X and 
coauthors [15]; Zhao Z and coauthors [16]).  

The GRU (Gated Recurrent Unit) (Fu R and coauthors [17]), SAE (Stacked Auto Encoder) (Lv Y and 
coauthors [18]) methods efficiently process the non-linear traffic flow data. The DNN (Krizhevsky A and 
coauthors [19]; Li P and coauthors [20]; Atrey K and coauthors [21]) have excellent performance in various 
fields. If the dataset is very large, the first major difficulty with non-parametric methods is the inability to 
process large amount of data in a timely and insightful manner. The second drawback is when the regression 
uses multiple predictors. As a result, errors can easily spread to the next layer, leading to overfitting or 
underfitting. In addition, it receives more training parameters and requires higher memory bandwidth to train 
the model, which makes the model more complex. Most researchers rely on back propagation to minimize 
model errors by computing involute derivatives (Annamalai M and coauthors [22]). To overcome these 
problems, this article suggested the GSGDRR method is a combination of four techniques. It includes grid 
search, the stochastic gradient descent (SGD) algorithm, the kernel ridge regression method, and the parallel 
distributed in-memory computations on DNN. 

 
The main contributions of the GSGDRR-DNN model consist of the following: 
 
1. The recommended approach can be exploited to expand real-time traffic data quickly. The sparkling 

water (H2O) is utilized to store and interpret real-time traffic data with exponential oscillations. The 

number of processors in an H2O cluster works in parallel, allowing for appropriate task distribution 

and traffic flow estimation. 

2. On an H2O cluster, the model used the parallel grid SGD approach to construct a sequence of DNN 

models in parallel. The optimal combination of hyperparameters is returned by the SGD parallel grid, 

which is utilized to train DNNs and accurately anticipate traffic flow. 

3. Using ridge regression, the suggested model decreases multicollinearity, overfitting, and achieves 

minimal variance and bias. 
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4. Evaluate the performance of our predictive model compared to non-parametric DNN methods such 

as LSTMs, Bi-LSTMs and GRUs. The finding shows that the GSGDRR-DNN model predicts traffic 

flow more accurately than other state-of-the-art deep learning approaches and has lower error 

metrics.  

5. The runtime performance of the GSGDRR-DNN sequential model is further compared to the 

GSGDRR-DNN parallel model. The GSGDRR-DNN parallel model makes good use of memory and 

performs the fastest calculations to predict traffic flow.  

The article’s content is structured as follows: A review of the literature is described in Section II. The 
methodology is covered in Section III. Section IV presents the experimental findings and related discussion. 
Conclusions are presented in Section V.  

LITERATURE REVIEW 

Vlahogianni EI and coauthors [23] suggested an optimized static MLP (Multilayer Perceptron) using a 
genetic algorithm to predict the performance of univariate and multivariate traffic flow. When training a model 
that predicts time (univariate) and spatial (multivariate), the computational process is complex and time-
consuming. With this method, is not known how much each independent variable is affected by the dependent 
variable. Our recommended model achieved minimal variance and bias by reducing the coefficients using 
ridge regression. It considerably reduces multicollinearity, overfitting, gradient descent issue and model 
involution. Chan KY and coauthors [24] presented hybrid neural networks to estimate short-term traffic flow, 
which combine classical exponential smoothing (ES) with the Levenberg-Marquardt (LM) technique. This 
method effectively uses ES to pre-processes time-series data, which is then fed into the LM algorithm as an 
input. It enhances the model’s ability to generalize. This methodology is ineffective when dealing with non-
linear and multivariate traffic flow data.  

A fully automated procedure, the Dynamic k-NN procedure (DP k-NN) was modeled by Sun B and 
coauthors [25]. It is a self-adjusted parameter that anticipates and trains short-term traffic flow without relying 
on past models. Considering short-term traffic flow, our recommended model outperforms traditional 
parametric methods based on grid search in terms of accuracy. Ma X and coauthors [15]; Gurusamy R and 
coauthors [26] presented LSTM NN to effectively capture non-linear traffic. The contemplated model uses 
the parallel grid SGD method to effectively process and store non-linear traffic data. Tian Y and coauthors 
[27] suggested LSTM RNN improves accuracy by dynamically estimating the ideal delay using three 
multiplication units in the memory block. Our recommended designed approach achieved the highest 
predictive performance in terms of accuracy and stability.  

Fu R and coauthors [17] investigated RNN based on deep learning methodologies such as LSTM and 
GRU to estimate short-term traffic flow. Our model obtained lower MAPE, MAE, MSE and RMSE values than 
existing state-of-the-art methods. Krizhevsky A and coauthors [19] presented deep convolutional neural 
network (CNN). The researcher trained this algorithm using ImageNet's 1.2 million images and divided it into 
1,000 different classes. The model used the GPU (Graphics Processing Unit) to speed up the training 
process. The model used a dropout regularization technique to avoid overfitting. Various CNN models were 
suggested by Li P and coauthors [20] to extract distinct facial features from the face. The retrieved features 
were then used to train the model. Finally, Bayesian probability combines all of the characteristics to produce 
a precise forecast.  

According to Lv Y and coauthors [18], the SAE DNN architecture is used to predict traffic flow.  Jiang H 
and coauthors [28] presented numerous machine learning techniques. It includes Backpropagation Neural 
Networks (BP NN), Non-linear Exogenous Autoregressive NN (NARX), Radial Basis Function with Support 
Vector Machine with as Kernel Function (RBFSVM), Linear Function with Support Vector Machine with 
(LinSVM), and Multilinear Regression (MLR) to predict the short-term flow. Huang W and coauthors [29] for 
spark on YARN, Resilient Distributed Data (RDD) and a strip-oriented data model were presented. Because 
shuffling is the system's most time-consuming action, this architecture is not suited for joining heavy 
algorithms. 

Nabavinejad SM and coauthors [30] innovated with a mnemonic approach that cannot fully utilize the 
available computing resources such as memory and CPU. Tang S and coauthors [31] suggested max-min 
fairness, LTRF (Long Term Resource Fairness) and H-LTRF (Hierarchical-LTRF). Using the LTRF method, 
there is a possibility of the starvation problem. To overcome the problem in LTRF problem, H-LTRF 
introduced it based on time-out techniques. Niu Z and coauthors [32] introduced FLEX, a Hadoop meta-
scheduler that strikes a compromise between efficiency and fairness. Chen CP and coauthors [33] presented 
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various tools and techniques for big data. In the context of big data, Chen D [34] suggested using an 
enhanced RBF neural network to predict traffic flow. To estimate long-term traffic, Wang Z and coauthors 
[35] introduced the Attention Calibration Encoder-Decoder (ACE-D) model. Our model attained greater 
scalability, maximum memory efficiency, more expeditious computations, and accurate prediction in DNN.  

MATERIAL AND METHODS  

This article suggests that the GSGDRR method is a combination of four methods. This includes grid 
search, stochastic gradient descent (SGD) algorithms, kernel ridge regression methods, and in-memory 
distributed parallel computations in deep neural networks (DNNs). Ridge regression, SGD predicted by the 
grid, was accumulated to train the model in DNN to forecast traffic flow. For scalability, non-linear information 
stored in spark RDD, and for expeditious computation, the proposed GSGDRR-DNN model uses multiple 
H2O clusters with parallel distributed nodes.  

DEEP NEURAL NETWORK (DNN) 

 

Figure 1. A DNN Architecture includes interconnected input, hidden, and output layers to deepen and improve model 
precision. 

Figure 1 shows Deep Neural Network (DNN) consists of more than one hidden layer to engender a 
deeper model and amend the precision of the model. It consists of several interconnected neurons associated 
with input (D1, D2 …, Di), hidden (h1, h2 …, hi) and output units (Y1, Y2 …, Yi). The weights ω and bias β 
defines the network output, denoted as: 

𝑌𝑖 = 𝑓(𝐷𝑖𝜔𝑖 + 𝛽𝑖)                              (1) 

KERNAL RIDGE REGRESSION 

The problem of multiple regressions is that the multiple independent variables are dependent on other 
several independent variables (multicollinearity). It considerably affects the model’s performance and makes 
the model unstable. To eliminate multicollinearity first step is to find a relationship among the independent 
variables by using correlation heat map operations. It will perform on all nodes in the H2O frame. This method 
is Exploratory Data Analysis (EDA) for analyzing the correlations and relationships between variables in 
training data (TD). A high correlation feature has a high linear dependency and has the same effect on the 
dependent variable. Ergo, we extract the features that have a high correlation, and it calculates as follows: 
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𝐶𝑜𝑟𝑟(𝑇𝐷) =
∑ (𝐷𝑛−𝑚𝑒𝑎𝑛(𝐷))(𝑌𝑛−𝑚𝑒𝑎𝑛(𝑌))𝑚

𝑛=1

√∑ (𝐷𝑛−𝑚𝑒𝑎𝑛(𝐷))𝑚
𝑛=1

2
∑ (𝑌𝑛−𝑚𝑒𝑎𝑛(𝑌))𝑚

𝑛=1
2
                       (2) 

The next step is to identify and remove instability (high variance) features, and it calculates as follows: 

𝐿(ω , β|Y) = ∑ {𝑌𝑖 −𝑚
𝑖=1 ∑ 𝜔𝑗

𝑛
𝑗=0 𝐷𝑖𝑗 + 𝛽𝑗)}2 + 𝜆 ∑ |𝜔𝑗|𝑛

𝑗=0
2
    (3) 

 
Equation 3 is applied repeatedly to all non-linear data stored in spark resilient distributed data (RDD). 

Equation 3 converts the features from high variance to low variance. It minimizes overfitting and withal 
minimizes the intricacy of the model. Spark RDD is responsible to distribute the minimal variance data across 
the different clusters in RDD. All operations such as job scheduling, task dispatching, and basic input/output 
operations running inside RDD. 

GRID SEARCH 

In very large data environments, real-time traffic data is non-linear and non-parametric methods are 
affected by Extract Transform and Load (ETL) performance. The exhaustive search was used to process the 
non-linear traffic data. This search aims to find all possible solutions with minimal errors. It works as follows: 

 
1. Set of parameters (p) with the possible values (v) supplies as input.  

2. Exhaustive search (grid search), select parameters desultorily from the given set.  

3. If p=10 and v=40, this engenders parallel accumulations of v^p parameters. The possible 

amalgamations of parameters distributed among the different groups of H2O clusters are processed 

independently and return a possible DNN model solution with minimal error. 

Table 1. Set of parameters- Grid Search 

Set of 
parameters(p) 

Description Values(v) 

Activation 
Transfers the weighted sum input to the next 
layer of the network. Used to train intricate 
data models. 

Rectifier, Tanh, Rectifier with 
Dropout, Tanh with Dropout 

Hidden Layer Size of hidden layers. {100, 100, 100} {200, 200, 200} 

Epochs Number of training iterations. 100, 200 

L1 Regularization Lasso technique: Minimize errors. 0, 0.00001, 0.0001 

L2 Regularization Ridge regularization: Minimize errors. 0, 0.00001, 0.0001 

Learning rate (𝜂) 
Small value of optimization algorithm to 
minimize loss function. 

0, 01, 0.005, 0.001 

Rate annealing 
𝜂 Reduced after number of training 
iterations. 

1e-8, 1e-7, 1e-6 

Rho Decay factor. 0.9, 0.95, 0.99, 0.999 

Epsilon Update gradient. 1e-10, 1e-8, 1e-6 

Momentum starts Improves training rapidity and precision. 0, 0.5 

Momentum stable Speed up. 0.99, 0.5, 0 

Input dropout ratio Prevent model from over-fitting. 0, 0.1, 0.2 

Max w2 Maximum sum of squared weights of neuron. 10, 100, 1000, 3.4028235e+38 

Search Criteria Select optimum model. Random Discrete 
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DISTRIBUTED IN-MEMORY RANDOMIZED PARALLEL GRID SEARCH IN DNN  

Our GSGDRR-DNN model allows greater scalability between spark clusters by adjusting the number of 
available processors and efficiently using memory resources for computation. GSGDRR-DNN performs 
arbitrary parallel distributed grid search computations accelerated on the multi-node cluster shown in Figure 
3. This multi-node parallel GSGDRR-DNN cluster is superior to the sequential model. The models are trained 
in parallel in the H2O cluster to minimize processing time. Parallelism engenders several models 
concurrently. To improve the forecast accuracy, the suggested model uses an exhaustive search. This search 
works to finds the optimal combinations of hyperparameters using random discrete.  

GSGDRR-DNN effectively deepens the neural network models and greatly improves the prediction 
accuracy. The GSGDRR-DNN model performs the fastest calculations during the grid search process based 
on fine-grained parallelization methods. The GSGDRR-DNN method uses the structure of sparkling water 
(Spark+H2O) to achieve higher scalability, maximum memory efficiency, faster computation and accurate 
predictions in deep neural networks (DNNs). GSGDRR-DNN architecture illustrates in Figure 2. 

This works as follows: Load a large amount of data into the spark cluster. Spark cluster’s RDD enhances 
in-memory computing. RDDs are responsible for splitting, storing, and distributing data as storage objects 
between different tasks. Data exchange in memory is faster than hard disks and networks. Spark and H2O 
connect to sparkling water via an external server connection. Spark and H2O have separate clusters to store 
and process non-linear traffic data. Send data between spark and H2O cluster over the network by calling 
the spark driver on the H2O node. The H2O cluster contains a large number of distributed H2O in-memory 
nodes that make the computation very fast and efficient. All processes such as DNN training, DNN modelling, 
and prediction are performed in a distributed H2O cluster. For quick estimation, all methods such as training, 
model building, forecasting, etc. are performed on the number of H2O nodes. Feature selection is a 
subsequent factor in DNN model design and significantly changes the accuracy of forecast. The prediction 
accuracy of DNN models is positively correlated with the quality of the input function. GSGDRR-DNN model 
algorithm 1 is well-structured as follows. 

 

Algorithm 1: GSGDRR-DNN model 

Input:  Traffic Data set (TD), No of clusters (N), p,v 

Output: Optimum model (OM) 

1. N<-No of Spark Clusters 

2. D<-Split (Traffic Data) 

3. RDD (N) <-store (D) 

4. H2O Cluster <-Transfer (RDD (N)  

5. All nodes in H2O Cluster do { Parallel: SGD with Ridge Regression in DNN} 

6. Return optimum model(p,v) 

7. Prediction<- OM (p,v) 

8. Return Prediction 

9. RDD Frame <- Prediction 
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Figure 2. The GSGDRR-DNN architecture uses Spark+H2O cluster structure to improve scalability, maximize memory 
efficiency, speed up computation, and produce more accurate DNN predictions. These include grid search, kernel ridge 
regression techniques, stochastic gradient descent (SGD) approaches, and simultaneous in-memory distributed 
computing in DNNs.   

STOCHASTIC GRADIENT DESCENT WITH RIDGE REGRESSION IN DNN 

Increasing the number of layers in the DNN creates the problem of over fitting which greatly affects the 
accuracy of the forecast. The suggested GSGDRR-DNN diminishes multicollinearity, overfitting, and 
involution of the model. The model trained with 13 sets of hyperparameters (p) with 40 different values (v) is 
shown in Table 1. This will generate a combination of 6.711e+20 that will be evaluated and compared. All 
nodes in the H2O clusters perform parallel SGD ridge regression. This will generate the optimal set of 
parameters using the values listed in Table 2. To avoid CPU and memory constraints and minimize 
computational time, multiple tasks are dispatched in parallel during the grid search process shown in Figure 
3. GSGDRR-DNN can provide weight updates  ∇𝐿(ω , β|Y)  asynchronously for each training data (TD) 

independently. SGD with ridge regression ∇𝐿(ω , β|Y) calculated by back propagation.  
GSGDRR-DNN provides faster computational speeds than sequential mechanisms without sacrificing 

performance. In-memory model training and parallel distributed multiprocessor using parallel distributed grid 
SGD in the H2O clusters illustrated in Figure 3. For DNN training, the presented GSGDRR-DNN model uses 
parallel grid stochastic gradient descent (SGD) with ridge regression optimization techniques to minimize the 
loss function. It yields the lowest error in training and validation shown in Figure 4. The training model is 
deepened and the prediction accuracy is greatly improved. When training DNN with SGD, the H2O clusters 
use the rho and epsilon parameters to balance global and local search performance. Other combinations of 
manual hyperparameters such as rate, rate_annealing, momentum_start, momentum_stable are the most 
needed to improve the accuracy of the DNN model.   
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SGD with Ridge Regression in DNN Pseudo code 

Step 1: Initialize weight ω, bias β, learning rate 𝜂, regularization parameter 𝜆. 

Step 2:  For each H2O cluster, get training data Tx ∈ [D1, D2, D3 ……, Dn] to perform SGD with Ridge    
             Regression defined in equation (3).  

 f(D) = {
0.01D, D < 0

D, D > 0
       (4) 

where 𝑓(𝐷) Ramp activation function. 
Step 3: Repeat until minimum variance and bias is obtained. 
 for i =1, 2, ……., m do: 
     ∇𝐿(ω , β|Y)  with respect to  ω using SGD with Ridge Regression and Ramp activation function      
     calculated as follows: 

∇𝐿

∇𝜔
=

∇𝐿

∇𝑌̃
∗  

∇𝑌̃

∇𝜔
                 (5) 

           From equation (3), 

 𝑌̃=∑ 𝜔𝑗
𝑛
𝑗=0 𝐷𝑖𝑗 + 𝛽𝑗       (6) 

where 𝑌̃ predicted output. 

 
∇𝐿

∇𝑌̃
= −2(1 − 𝑌̃) + 2 𝜆𝜔      (7) 

 
∇𝑌̃

∇𝜔
=  

∇𝑌̃

∇h
∗ 

∇h

∇𝜔
        (8) 

similarly, from hidden layer h calculated as follows: 

 𝑌̃ = ∑ 𝜔𝑗
𝑛
𝑗=0 ℎ𝑖𝑗 + 𝛽𝑗       (9) 

 
∇𝑌̃

∇h
=  𝜔 ∗ 𝑓′(𝜔𝑗ℎ𝑖𝑗 + 𝛽𝑗)      (10) 

 
∇h

∇𝜔
=  𝐷𝑖𝑗 ∗ 𝑓′(𝜔𝑗𝐷𝑖𝑗 + 𝛽𝑗)      (11) 

 where  ℎ𝑖𝑗 = 𝑓(𝜔𝑗𝐷𝑖𝑗 + 𝛽𝑗),  𝑓′(𝐷) = {
0.01, 𝐷 < 0

1, 𝐷 > 0
 

 
∇𝐿

∇𝜔
=  −2 ∑ 𝐷𝑖𝑗

𝑚
𝑖=1 {𝑌𝑖 − ∑ 𝜔𝑗

𝑛
𝑗=0 𝐷𝑖𝑗} + 2 𝜆𝛽𝑗    (12) 

Step 4: Calculate updated weight, 

 𝜔𝑗
𝑡+1 =  𝜔𝑗

𝑡 +  𝜂{−2 ∑ 𝐷𝑖𝑗
𝑚
𝑖=1 {𝑌𝑖 − ∑ 𝜔𝑗

𝑛
𝑗=0 𝐷𝑖𝑗} + 2 𝜆𝛽𝑗}  (13) 

Step 5: Go back to Step 2.  

                                         Table 2. GSGDRR-DNN Optimum hyperparameters 

P v 

Activation Rectifier 
Hidden Layer {200,200,200} 
Epochs 100 
L1 Regularization 1.0e-5 
L2 Regularization 0.0 
Learning rate (𝜂) 1 

Rate annealing 1.0e-6 
Rho 0.999 
Epsilon 1.0e-8 
Momentum starts 0.5 
Momentum stable 0.5 
Input dropout ratio 0.0 
Max w2 10 
Search Criteria Random Discrete 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Table 3. GSGDRR-DNN status of neuron layers 

S.No Layer Units Type Dropout L1 L2 Mean_rate Rate_rms Momentum Mean_weight Weight_rms Mean_bias Bias_rms 

              

1 1 7 Input 0.0% nap nap nap nap nap nap nap nap nap 

2 2 200 Rectifier 0.0% 0.00001 0.0 0.839 0.185 0.0 0.0015 0.058 0.002 0.03 

3 3 200 Rectifier 0.0% 0.00001 0.0 0.834 00276 0.0 -0.0046 0.0269 0.0153 0.2182 

4 4 200 Rectifier 0.0% 0.00001 0.0 0.446 0.452 0.0 -0.0089 0.0547 -0.299 0.4208 

5 5 1 Linear Nap 0.00001 0.0 0.612 0.385 0.0 -0.0062 0.0605 -0.102 0.0000 

   *nap – not applicable 

 
Figure 3. The GSGDRR-DNN parallel distributed grid search model efficiently handles large combinations of parameters that can be assigned to different groups of H2O 
clusters, independently managed by adjusting the processors and memory resources available for computation. It generates the ideal DNN model with minimal error. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Our investigated model accomplishes higher computational efficiency and greater forecasting accuracy. 
Finally, we evaluated the suggested model’s performance with state-of-art techniques and other NPDL 
techniques such as LSTM, Bi-LSTM (Bi-directional LSTM) and GRU. The result shows that our GSGDRR-
DNN model efficaciously presages traffic flow with more minute error metrics than other state-of-art and 
NPDL techniques. We also compared the runtime performance of the GSGDRR-DNN sequential model to 
the GSGDRR-DNN parallel model shown in Figure 6. The multiple node parallel GSGDRR-DNN model 
exploits the in-memory meritoriously and accomplishes the most expeditious computations to forecast traffic 
flow.  

EXPERIMENTAL RESULTS AND DISCUSSION 

DATASET 

The GSGDRR-DNN model was implemented as 5-minutes traffic flow in the data collected from PeMS 
(Caltrans Performance Measurement System) database (https://pems.dot.ca.gov). To assess the 
effectiveness of the suggested GSGDRR-DNN model, we consider that five minutes of traffic and speed data 
were composed between January 01 and February 25, 2021. To measure the predicted performance of the 
proposed model, entire data was randomly split into training data by 60%, validation data by 20% and the 
remaining 20% by testing data. 

PREDICTIVE EVALUATION MEASURES 

In this article, we examine five performance metrics for predictive error analysis to assess the predictive 
effectiveness of the proposed model, including mean squared error (MSE), root mean squared error (RMSE), 
the mean absolute error (MAE), R2 (R-squared Error) and the root mean squared logarithmic error (RMSLE). 
It defined as follows: 

 

𝑀𝑆𝐸 =
1

𝐷
∑ (𝑌 ̃ − 𝑌𝑖)2𝐷

𝑖=𝑖         (14) 

𝑅𝑀𝑆𝐸 = √
1

𝐷
∑ (𝑌 ̃ − 𝑌𝑖)2𝐷

𝑖=𝑖         (15) 

𝑀𝐴𝐸 =
1

𝐷
∑ |(𝑌 ̃ − 𝑌𝑖)|𝐷

𝑖=1         (16) 

𝑅2 =
∑ 𝑌 ̃2

∑ 𝑌𝑖
2          (17) 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
∑ (log (𝑌 ̃ + 1) − (log (𝑌𝑖 + 1))2𝑛

𝑖=𝑖       (18) 

 

Where, D = Range of data, 𝑌𝑖 = Actual Output, 𝑌 ̃= Predicted Output. 
 

ANALYSIS OF FORECAST PERFORMANCE 

The GSGDRR-DNN model trained with all possible 6.711e+20 combinations of hyperparameters 
tabulates is in Table 2. GSGDRR-DNN model used deep learning techniques to randomly searches for 
parallel meshes to find patterns. Optimal hyperparameters for training the model greatly increase prediction 
accuracy. The suggested model structure and the status of neuron layers shows in Table 3. GSGDRR-DNN 
model used H2O ridge regression deviance techniques obtained consistent training and validation predictions 
illustrated in Figure 4. The model achieves the smallest RMSE, deviance and MAE error values of 0.1309, 
0.0536 and 0.0123 at epoch’s size 9.  

By evaluating the GSGDRR-DNN model, the traffic flow reproduced stochastically every 5 minutes. It 
assesses through the ramp activation function since the mean & the variance of the traffic flow change 
significantly from time to time. This approach considerably decreases the complication in model building. 
Feature selection plays a decisive role in predicting forecast accuracy. To shorten the execution time of the 
training process, the GSGDRR-DNN model excludes the variables that make a small contribution during the 
training process using ridge regression. This process is known as the significance of the variable. The 
variable Lane 3 Flow (Veh/5 Minutes) highly contributed to build and train the DNN model. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
http://pems.dot.ca.gov/
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We compared the indicators of training and testing of various regression models with different values of 
λ- parameters. In comparison, ridge regression achieved the minimum bias and variance between training 
and test metrics than other regression models shown in Table 4, which considerably improves prediction 
accuracy.  

To compare the performance of our GSGDRR-DNN model with other familiar DNN models like the LSTM, 
Bi-LSTM and GRU model shown in Figure 5. Our model performs well and correctly predicts the actual traffic 
flow. It achieves the greater prediction accuracy for predicting the traffic flow shown in Figure 5. The figure 
shows that our model achieved the highest prediction accuracy and fastest computation by parallelizing the 
multiple tasks across multiple H2O clusters using the random grid search method and returns the best DNN 
model to forecast the traffic flow. The whole process carries out through an in-memory computation. By 
comparison, the model achieves the consistent traffic flow prediction with the smallest RMSE, MAE, deviance 
and MAE. 

 

 
 

Figure 4. Scoring History: Training and Validation Deviation. The model obtains the lowest RMSE, deviance, and MAE 
values of 0.1309, 0.0536, and 0.0123 for epochs of size 9.44 and provides consistent validation with training predictions 
using the H2O ridge regression deviance technique. 

(a) (b) 
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(c) 
Figure 5. 5-minute performance comparison of actual and predicted traffic flows for different models such as LSTM, 
Bi-LSTM, and GRU. (a) GSGDRR-DNN vs. LSTM (b) GSGDRR-DNN vs. Bi-LSTM (c) GSGDRR-DNN vs. GRU. The 
GSGDRR-DNN model provides the lowest error value for 5-minute traffic flow prediction as the MSE, RMSE, MAE, 
and RMSLE values are 0.011, 0.108, 0.0959, and 0.0147, respectively.  

Traffic flow prediction of 5-minutes, 10-minutes, 15-minutes, 20-minutes, 25-minutes, and 30-minutes 
intervals compared with other well-known non-parametric methods shown in Table 5. The average 
generalizability of LSTM, Bi-LSTM, and GRU for 10-minutes MAE time series prediction is 17%, 18%, and 
17.89% respectively. The average generalizability of LSTM, Bi-LSTM, and GRU for 30-minutes MAE time 
series prediction is 19%, 28%, and 23% respectively. The average generalizability of LSTM, Bi-LSTM, and 
GRU for RMSE time series prediction is 25.25%, 29.9%, and 25.66% respectively. Results show that our 
model accomplished extreme mean prediction accuracy enhancement of MAE up to 26% compared with Bi-
LSTM, over 17% compared with LSTM and over 21% compared with GRU. Average accuracy enhancement 
of RMSE up to 24.25% compared with LSTM, above 28.9% compared with Bi-LSTM and up to 24.66% 
compared with GRU. 

   Table 4. Trade-off between training and testing error metrics using various Regression Models 

Alpha 
Value λ 

Regression 
Training Error Metrics Testing Error Metrics 

MSE  RMSE  MAE R2  MSE  RMSE  MAE R2  

0.5 

Ridge  73.8876 8.5958 6.3750 0.9932 73.2866 8.56076 6.3981 0.9933 

Lasso  82.1628 9.0644 6.6681 0.9924 83.1347 9.1178 6.7687 0.9924 

Elastic net  5758.997 75.8881 66.5125 0.4669 5821.781 76.3006 66.8389 0.4652 

0.1 

Ridge  73.8795 8.5953 6.3790 0.9932 73.2542 8.5589 6.4019 0.9933 

Lasso  75.7629 8.7042 6.4504 0.9930 75.3253 8.6790 6.4625 0.9931 

Elastic net 1396.588 37.3709 32.4334 0.8707 1421.064 37.6970 32.7319 0.8695 

0.01 

Ridge  
 
 

73.8792 8.5953 6.3799 0.9932 73.2484 8.5585 6.4028 0.9933 

Lasso  74.1484 8.6106 6.4004 0.9931 73.4811 8.5718 6.4123 0.9933 

Elastic net  116.7115 10.6679 8.3435 0.9895 116.7115 10.8033 8.3435 0.9893 

0.001 

Ridge  
 
 

73.8792 8.5953 6.3801 0.9932 73.2478 8.5585 6.4029 0.999 

Lasso  73.8824 8.5955 6.3817 0.9932 73.2452 8.5583 6.4034 0.9933 

Elastic net  74.7066 8.6433 6.3545 0.9931 74.4361 8.6277 6.3879 0.9932 
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Our GSGDRR-DNN model provides a higher minimum error than other DNN models. Conversely, the 
prediction error rate contributes to the accuracy of the prediction. As the error decreases, the accuracy of the 
prediction automatically increases. Our model gives very minimal error values for 5 minutes traffic flow 
prediction such as MSE, RMSE, MAE, and RMSLE values are 0.011, 0.108, 0.0959, and 0.0147 respectively. 
It is the minimum error no any other model gives such low error values. Our model hit an R2 value of 0.999 
which, is an adequate estimation as shown in Table 5. Creating a  DNN model is a time-consuming process. 
To minimize the computation time distributes the multiple tasks in parallel on the H2O cluster during the 
training process. Our model generates multiple distributed DNN models either by sequential or parallel 
random grid search.  

The parallel grid search used four cores on a single CPU with up to 4GB of memory. It allows multiple 
calculations performed at the same time. These CPUs have a large amount of memory to avoid the computing 
work related to memory. The suggested GSGDRR-DNN model achieves high performance by computing in 
parallel execution shown in Figure 6.  

We compared the execution time for the sequential building of the DNN model with the grid search 
parallel DNN models. The results demonstrate that compared to the sequential grid search approach, the 
parallel grid search DNN model offers faster execution time. Training of various DNN models is very 
complicated and takes 24- 48 hours. Our model computes several DNN training models with combinations 
of entire hyperparameters in less than 5 hours using 12 parallel single CPU cores. It supports up to 64GB of 
memory. With the grid search parallel technique, we generate several models within the fraction of seconds 
shown in Figure 6.  

Finally, we compared our method to other analogous state-of-art methods to show that the GSGDRR-
DNN model outperforms well with minimal errors shown in Table 6. For MSE, the model achieved the highest 
minimum error rate of 2.8%  it is relatively reduced compared with other state-of-art techniques such as Ma 
X and coauthors [15], Fu R and coauthors [17] (LSTM) and Fu R and coauthors [17] (GRU) error values are 
4.08,710.05,668.93 respectively. RMSE, our model outperformed other techniques of Lv Y and coauthors 
[18] and Emami A and coauthors [4] and our model improves forecasting accuracy in all aspects of error 
metrics such as MAE, RMSLE, R2, MAPE, PERR, MRE and MAD. 

 

 

Figure 6. A runtime comparison of multi-node sequential grid search and multi-node parallel grid search. The parallel 
grid search approach requires a runtime of 04:27:13:1 hours to produce the optimal DNN models with a combination of 
hyperparameters, while the sequential grid search method requires 32:24:12:6 hours to produce the same optimal DNN 
models. 
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  Table 5: Comparison of  traffic flows at different time intervals using different models 

S. 
No 

Traffic  
Flow  
Predictio
n 

Prediction error metrics 

GSGDRR-DNN LSTM Bi-LSTM GRU 

MSE 
RMS

E 
MAE RMSLE R2 MSE RMSE MAE 

RMSL
E 

R2 MSE 
RMS

E 
MAE RMSLE R2 MSE 

RMS
E 

MAE RMSLE R2 

1 

5- minutes 0.012 0.108 0.96 0.02 0.99 5.86 24.2 17.4 2.3 0.92 5.88 24.2 17.6 2.4 0.91 5.70 23.8 17.2 2.1 0.90 

2 

10-
minutes 

0.017 0.110 1.3 0.024 0.99 5.90 24.6 17.56 2.45 0.91 5.86 24.8 18.2 2.6 0.95 5.78 24.6 17.89 2.6 0.91 

3 

15- 
minutes 

0.019 0.124 1.5 0.03 0.98 6.25 25.3 17.92 2.98 0.95 5.46 26.5 18.9 2.9 0.94 5.91 25.2 20.3 2.678 0.92 

4 

20- 
minutes 

0.026 0.154 1.89 0.035 0.99 6.54 25.46 18.62 3.64 0.94 5.21 30.2 22.53 3.2 0.96 6.05 26.23 20.6 2.78 0.94 

5 

25- 
minutes 

0.032 0.189 2.2 0.056 0.99 6.56 25.84 18.74 3.68 0.95 5.90 36.4 24.57 3.8 0.96 6.06 26.54 21.23 2.96 0.97 

6 

30-
minutes 

0.062 0.2 2.31 0.06 0.98 6.59 26.08 19.23 4.5 0.96 6.03 37.5 28.9 3.95 0.97 6.52 27.58 23.45 3.24 0.94 
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CONCLUSION  

We came up with distributed in-memory randomized parallel Grid search SGD with Ridge Regression 
amalgamated together to train the DNN model. It greatly truncates multilinearity, overfitting, and involution of 
the model. The model also focuses on scalability, effectively distributing in-memory over numerous H2O 
clusters to perform quick computations and determining the appropriate DNN hyperparameters. The method 
obtained more preponderant precision in the prognostication of traffic flow. It achieves a minimum number of 
errors by adjusting parameter λ in Ridge Regression. To train DNN models, parallelize several DNN models 
across the multiple H2O clusters utilizing the GSGDRR-DNN parallel multi-node SGD training method. 
GSGDRR-DNN grid search parallel model offers more expeditious execution times through efficient use of 
H2O cluster memory and achieves faster processing speed than the GSGDRR-DNN sequential model. 
GSGDRR-DNN model compared to other familiar models such as LSTM, Bi-LSTM and GRU. Compared with 
other models, our model got the lowest MSE, RMSE, MAE, RMSLE and highest R2 values such as 0.012, 
0.108, 0.096, 0.015 and 0.99 accordingly, which results in better precision in the prognostication of traffic 
flow.  

   Table 6. Performance comparisons of various DNN state-of-art techniques 

    *nap-not applicable. 
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