Acessibilidade / Reportar erro

Craft Brewery Wastewater Treatment: a Fixed-Bed Single-Batch Reactor with Intermittent Aeration to Remove COD and TN

HIGHLIGHTS

A fixed-bed single-batch reactor with intermittent aeration was used to remove COD and TN from brewery wastewater.

The surface response from CCD showed that, when using the same HRT, the higher the aeration time the higher the efficiency.

Good quality effluent was obtained with 20 h HRT and 3 h aeration time, in a 4 h cycle.

Polyurethane foam (Mini Biobob©) is an adequate biofilm media support to promote the SND process.

The correction of influent alkalinity promoted better COD and TN removal efficiencies than with no such correction.

Abstract

This study evaluated an intermittently aerated, fixed-bed, single-batch reactor, with mini BioBob© as biofilm media support, as an alternative treatment of craft brewery wastewater. In order to remove chemical oxygen demand (COD) and total nitrogen (TN), seven conditions were performed in a central composite experimental design (CCD) with different aeration times (1, 2 and 3 h in a 4 h cycle) and hydraulic retention times (HRT) (12, 16 and 20 h). The results showed that the removal of COD and TN were positively affected by increased aeration time and HRT. The condition that presented the best quality effluent was Condition No. 1 (20 h HRT and 3 h aeration), with 209 ± 28 mg COD L-1; 3.00 ± 0.15 mg TKN L-1 ; and 0.67 ± 0.11 mg NO3-N L-1. Kinetic assays showed that the highest values for the substrate removal rate constant, kCOD = 0.1774 h-1 were obtained with the longest aeration time (3 h). The most probable number (MPN) test showed a higher concentration of denitrifying bacteria (heterotrophic), 3.3 x 106, than for AOB and NOB bacteria (autotrophic), which were 4.9 x 103 and 2.7 x 103, respectively. Moreover, it was possible to verify that correcting the influent alkalinity with 7.14 mg CaCO3 for each 1 mg of TKN resulted in better process efficiency. It was concluded that COD and TN can be removed from craft brewery wastewater using an intermittently aerated, fixed-bed, single-batch reactor with mini Biobob© as biofilm media support.

Keywords:
simultaneous nitrification and denitrification; polyurethane foam; MPN method; mini Biobob®

Instituto de Tecnologia do Paraná - Tecpar Rua Prof. Algacyr Munhoz Mader, 3775 - CIC, 81350-010 Curitiba PR Brazil, Tel.: +55 41 3316-3052/3054, Fax: +55 41 3346-2872 - Curitiba - PR - Brazil
E-mail: babt@tecpar.br