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Abstract: Brain tumors (BTs) are a serious medical condition that can have significant impacts on individuals. 
These tumors typically originate in various parts of the brain and can be detected using Magnetic Resonance 
Imaging (MRI), which has become an essential tool for medical research. However, manual analysis of MRI 
images for BT segmentation is a time-consuming and error-prone process. To address this challenge, 
automated methods based on deep learning algorithms have been developed for fast and accurate detection 
of anomalous brain regions. In this article, we propose a novel approach called Equilibrium Optimizer 
Algorithm with Deep Learning-based Brain Tumor Segmentation and Classification (EOADL-BTSC) for brain 
tumor segmentation and classification using MRI images. Our method uses enhancement of contrast and 
skull stripping to preprocess the images, followed by an attention-inception-based UNet model for 

HIGHLIGHTS 
 

• Proposed an EOADL-BTSC technique for Brain Tumor Segmentation and Classification.  

• Perform data preprocessing in two stages namely CLAHE based contrast enhancement and skull 
stripping. 

• Developed EOA with Attention inception based UNet technique is developed for medical image 
segmentation. 

• Employ CapsNet based feature extraction and CRNN model for brain disorder classification. 
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segmentation, a capsule network (CapsNet) model for feature extraction, and a cascaded recurrent neural 
network (CRNN) for classification. To optimize the performance of our proposed method, we use the 
Equilibrium Optimizer Algorithm (EOA) to fine-tune the hyperparameters of the UNet model. We evaluate the 
performance of our approach on a benchmark database and compare it with other recent approaches. Our 
experimental results demonstrate that the EOADL-BTSC methodology outperforms the other approaches in 
terms of several performance measures. In summary, the proposed DL-BTSC methodology provides a 
promising solution for automated brain tumor segmentation and classification using MRI images. It has the 
potential to assist medical professionals in accurate and fast detection of brain tumors, leading to better 
medical analysis and treatment planning. Our proposed method achieves the maximum accu_y, sens_y, and 
spec_y values of 99.15% 98.78%, and 99.15% respectively. They also note that the proposed approach 
requires fewer parameters and has a quicker segmentation time than previous approaches. 

Keywords: Brain tumor; Deep learning; Equilibrium optimizer; Medical image segmentation; Image 

classification. 

INTRODUCTION 

Brain tumors (BT), are one of the primary types of cancer that drive up the mortality rates of people all 
over the world [1]. There has been a dramatic increase in the global incidence of brain tumors. Death from 
brain tumors is relatively common, taking the lives of thousands annually. Glioma, the common primary BT, 
occurs because of the carcinogenesis of glial cells in the brain. Glioma can be characterized by various 
malignancies and histological grades, with an average survival duration of less than fourteen months after 
analysis for glioblastoma patients [2]. A renowned non-invasive method that generates large and different 
tissue contrasts in every imaging modality is magnetic resonance imaging (MRI), and it is broadly employed 
by healthcare specialists for diagnosing BT [3]. But the manual analysis and segmentation of structural MRI 
images of BT was a hard and time-consuming task that was executed by experienced neuroradiologists. 
Hence, robust and automatic BT segmentation has a great effect on BT treatment and diagnosis [4].  

Automatic classification and segmentation of medical images have made a great contribution to the 
treatment, diagnostics, and growth prediction of BTs [5]. An initial BT diagnosis has a faster response to 
treatment, which enhances the survival rate of patients. Classification and location of BTs in large medical 
image databases, considered routine clinical tasks by manual processes, have a higher cost both in time and 
effort [6]. A classification process, automatic detection, and location were worthwhile and desirable. 
Conventional ML-related techniques, like Random Forest (RF), Support Vector Machines (SVM), and the k-
nearest neighbours algorithm KNN, can usually be used for BT analysis. But such techniques have the 
common restriction of extracting features through hand-craft in the modelling stage [7].  

Deep learning (DL)-related techniques solve the disadvantage of feature extraction through handcraft. 
DL has enabled the development of massively scalable trainable techniques capable of acquiring the optimal 
properties for a specific context. DL can be powerful and displays traditional ML in numerous domains, such 
as medical image segmentation, computer vision (CV), and speech recognition. DL has a deep neural 
network framework with numerous layers [8]. With the advancement of DL and relevant technologies, the 
technique related to DL is becoming the mainstream technique in the domain of CV. Recently, convolutional 
neural networks (CNN) were leveraged in retinal segmentation tasks, and outstanding segmentation 
outcomes were continually achieved [9]. The authors have also integrated Fully Convolutional Networks 
(FCN) and CNN to scale up the segmentation outcome after deriving the U-Net method via FCN. Several 
writers have modelled several improved techniques on its lesser amount of data for training an end-wise 
network, like DRNet, R2U-Net, CURU, and S-U-Net [10]. 

With this study, a new algorithm for brain MRI tumor classification and segmentation using an equilibrium 
optimizer and deep learning (EOADL-BTSC) is presented. In the first stage of the presented EOADL-BTSC 
method, contrast enhancement and skull stripping are performed as preprocessing. For medical image 
segmentation, we design an EOA using an attention-inception-based UNet approach. In addition, the capsule 
network model is utilised to extract features. Finally, BT classification was accomplished with the help of a 
cascaded recurrent neural network (CRNN). The MRI data set is used to verify the validity of the new 
approach and ensure it can withstand experimental inspection. 

RELATED WORK 

Raza and coauthors devised a hybrid DL technique named DeepTumorNet for three kinds of BTs 
pituitary tumor classification, glioma, and meningioma by implementing a fundamental CNN architecture [11]. 
The GoogLeNet CNN architecture method has been employed as a foundation. While advancing the hybrid 
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DeepTumorNet method, the final five layers of GoogLeNet have been eliminated, and fifteen novel layers are 
included instead of those five. Yin B and coauthors proposed an innovative metaheuristic-related technique 
offered for early diagnosis of BT to prevent this objection [12]. This devised technique involves three main 
stages, which include classification, background removal, and feature extraction related to MLP-NN. 
Therefore, an enhanced version of the WOA technique related to chaos theory and the logistic mapping 
method was used for optimal feature selection and the classification phases. 

Anaraki AK and coauthors came up with a technique related to CNN and GA was modelled to 
noninvasively categorise various grades of glioma utilising MRI [13]. The presented method utilises GA to 
evolve the CNN structure, as opposed to the standard practice of employing either trial-and-error or 
predetermined common structures when selecting a DNN architecture. Kumar and coauthors modelled an 
optimized DL system called Dolphin-SCA-related Deep CNN for enhancing accuracy and making effective 
decisions in categorization [14]. The segmentation procedure can be executed through a fuzzy deformable 
fusion method with dolphin echolocation-related SCA (Dolphin-SCA). The derived features were employed 
in the deep CNN to execute the BT classification with Dolphin-SCA as the training algorithm. Hu A and 
coauthors proposed an innovative metaheuristic-related system was modelled for initial recognition of BTs. 
The presented technique applies three key steps called classification, tumor segmentation, and feature 
extraction related to a DBN. An enhanced version of the seagull optimization method was implemented for 
selecting the features optimally and classifying the images [15].  

Deb and coauthors devised and modelled a new segmentation and classification method for BT detection 
[16]. The devised system employs adaptive fuzzy DNN with frog leap optimization for identifying abnormalities 
and normalities in images. After that, the abnormal image was segmented by utilising the adaptive flying 
squirrel method, and the tumor size was identified, which was employed for finding the tumor severity. Raju 
and coauthors devised the automatic technique of classification utilising the Harmony Crow Search (HCS) 
optimised method for training multi-SVNN methods [17]. The Brain Tumor detection was executed through 
the Bayesian fuzzy cluster technique, and tumor categorization was done through the presented HCS 
optimization method-related multi-SVNN technique. The degree to which the features of the segments 
generated by Bayesian fuzzy clustering are utilised, as determined by the devised strategy to classification, 
is known as the BT. Table 1, a look at how various approaches stack up.   

 Table 1. Comparison of state-of-art methods 

S.NO AUTHOR YEAR PROPOSED METHOD 
ACCURACY 
ACHIEVED 

LIMITATIONS 

1. Raza A et al. 2022 
DeepTumorNet 
(The foundation was laid with 
GoogLeNet architecture). 

99.67% 
High computational 
requirements, Gradient 
vanishing/exploding 

2. Yin B et al. 2020 
whale optimization algorithm 
(Based on Chaos theory). 

87% 
Sensitivity to parameter tuning, 
Lack of convergence 
guarantees. 

3. 
Anaraki AK 
et al. 

2019 CNN and Genetic algorithms.  94.2% 
Slow convergence, Inefficiency 
in handling constraints. 

4. 
Kumar S et 
al. 

2020 
Dolphin-SCA based Deep 
CNN. 

96.3% 
Lack of interpretability, Lack of 
spatial invariance. 

5. Hu A et al. 2021 
Improved Seagull 
Optimization Algorithm 
(ISOA). 

88% 
Computationally complex, 
Limited scalability. 

6. Deb D et al. 2021 
Adaptive Fuzzy Deep Neural 
Network (AFDNN) with frog 
leap optimization. 

99.6% 
Lack of parallelization efficiency, 
Lack of robustness. 

7. 
Raju AR et 
al. 

2018 

Harmony-Crow Search 
(HCS)-based multi-Support 
Vector Neural Network 
(SVNN). 

93% 
Complexity and interpretability, 
Sensitivity to feature scaling 

 

THE PROPOSED MODEL 

As part of this study, a novel EOADL-BTSC approach was formulated for BT segmentation and 
classification on brain MRI. The presented EOADL-BTSC technique involves different phases of operations 
such as pre-processing, attention inception-based UNet segmentation, EOA-based parameter tuning, 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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capsule network feature extraction [18], and CRNN classification. Images are adjusted for better contrast 
before skull stripping is done. Next, the segmentation of MRI is performed by EOA with an attention-inception-
based UNet model. Finally, the capsule network feature extraction and CRNN classification processes are 
carried out.  

EOADL-BTSC, EOA, Capsule network model, and CRNN are technical terms and acronyms used in the 
article to describe the proposed methodology for brain tumor segmentation and classification using MRI 
images. EOADL-BTSC stands for Equilibrium Optimizer Algorithm with Deep Learning-based Brain Tumor 
Segmentation and Classification. This is the name of the proposed method that combines various deep 
learning algorithms and techniques for automated brain tumor segmentation and classification. EOA refers 
to the Equilibrium Optimizer Algorithm, which is used to optimize the hyperparameters of the attention-
inception-based UNet model. Capsule network model is a type of neural network (NN) architecture that is 
used for feature extraction in the proposed method. CRNN, which is used for the classification process in the 
proposed method. Figure 1 depicts the schematic diagram of the EOADL-BTSC approach. 

 

 
 

Figure 1. Schematic diagram of EOADL-BTSC system 

The proposed methodology comprises several stages, each of which performs a specific function in the 
segmentation and classification of brain tumors in MRI images. To begin, the input MRI images undergo 
preprocessing with enhancement of contrast and skull stripping methods to boost contrast and eliminate non-
brain tissues, respectively. Then, the preprocessed images are fed into the EOA with an attention-inception-
based UNet model, which performs the task of segmentation by generating a pixel-wise mask indicating the 
regions of the brain affected by tumors. After tumor regions have been segmented, the CapsNet model is 
used to extract features that are clinically relevant to the tumor. Finally, the extracted features are fed into 
the CRNN model, which performs the task of classification by assigning proper class labels to the MRI 
images, indicating the type and severity of the tumor. The block diagram also shows the hyperparameter 
tuning stage using the EOA, which selects the optimal hyperparameters for the attention-inception-based U-
Net model. Overall, the EOADL-BTSC approach provides an end-to-end solution for accurate and fast 
segmentation and classification of brain tumors in MRI images. 

Image Pre-processing 

The image pre-processing takes place in two ways: CLAHE (Contrast-Limited Adaptive Histogram 
Equalization) - based enhancement of contrast and skull stripping. CLAHE works on smaller regions of 
images, termed tiles, instead of the complete image [19]. The surrounding tiles were blended using bilinear 
interpolation to remove the false boundary. This technique was utilised to improve image contrast. Skull 
stripping is the extraction of unwanted elements and non-brain anatomy from scanned images. The down-
sampling strategy utilises five convolutional blocks. Presently, there are 1024 feature maps. But the final 
block, max pooling with stride 2, is carried out after the completion of all the blocks for down-sampling. The 
feature map has decreased in size from 240×240 to 15×15. All the up-sampling blocks initiate with a 
deconvolution layer of stride 2 and filters of size 3×3. Therefore, feature map was developing gradually 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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popular. The two convolutional layers in the up-sampling block lessen the deconvolution feature map quantity 
and feature map in the encoder route.  

Image Segmentation 

At this stage, the segmentation of MRI is performed by EOA with an attention-inception-based UNet 
model [20]. During the encoder stage, a novel image 𝑋 is primarily processed with a 3×3 convolutional layer 
with ReLU and BN functions for obtaining a feature map (FM) in the primary encoder step, where 𝑒−𝑜𝑢𝑡(0) 
signifies the primary encoding path outcomes. During the succeeding 2nd and 3rd layers, 2 residuals, one 
inception, and 𝑠𝑐𝑆𝐸 elements were utilised for extracting and refining features. It can be developed two kinds 
of residual elements that utilise dilated convolutional with rates of dilation of 2 and 3, respectively. The above 
encoder process, where Res−𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛(𝑓, 𝑛) represents the conduct residual elements with convolutional 

whose dilation is 𝑛 on FM 𝑓. 
During the decoder step, primarily, the resolution of the heatmap attained in the encoder part was 

improved with the presented dynamic upsampling‐transpose convolutional process; afterward, the outcome 
was a skipped connection with equivalent FM in the encoder step; as a result, there are now 112 (64+48) 

image channels. The skip connection formula, where 𝑑𝑒−𝑜𝑢𝑡(𝑖 − 1) defines the result of the  (𝑖 − 1)𝑡ℎ 

decoding step and 𝑒𝑜𝑢𝑡(𝑛 − 𝑖 − 1) represents the outcome of the equivalent (𝑛 − 𝑖 − 1)𝑡ℎ encoding stage. 
The presented dynamic transpose and upsampling process for amplifying FM twice. Afterward, with a residual 
element with rate of dilation of 2 is implemented, and the feature weight is altered with the 𝑠𝑐𝑆𝐸 element. 

𝑑𝑒‐ 𝑖𝑛(𝑖) signifies the 𝑖𝑡ℎ input of the decoding stage. The secondary decoding stage was applied in like 
manner, and then the secondary dynamic upsampling‐transpose and skip connection stage developed a 
count of 88 (56 + 32) channels, and feature weighting was changed over with residual dilation and 𝑠𝑐𝑆𝐸 
elements. A multiple scales feature amalgamation strategy is employed, which combines the results from 
each decoder stage to improve segmentation accuracy, especially for thin vessel segmentation. The sigmoid 
function was used to generate the segmentation results map after a conv 3×3 layer having stride 1 was 
applied to the combined feature from various decoder stages. 

A multiscale extraction of features and representation improvement method, it can establish the inception 
process in the encoder step, improve the attention system dependent upon the 𝑠𝑐𝑆𝐸 element, and then 
inception element in both the encoder and decoder steps. Afterward all the phases of the decoder stage, it 
can obtain distinct resolution side outcomes that comprise various scale data, contributing to improving 
segmentation quality. Noticeably, it adds convolutional 1×1 afterwards scSE element and utilises the 
equivalent times upsampling function for making the decoding stage features for restoring a novel image 
resolution. Then, the channel-level multi-feature obtained can be merged into a single one. The entire 
procedure was defined as Equations. (1) and (2). 

𝑠𝑗 = 𝑢𝑝(𝑐𝑜𝑛𝑣(𝑑𝑒−𝑜𝑢𝑡(𝑖)), 2𝑛−𝑖−1), 𝑖 = 0,1, … , 𝑛 − 1              (1) 

𝑓 = 𝑐𝑜𝑛𝑐𝑎𝑡[𝑠0, 𝑠1, . . , 𝑠𝑛−1]                       (2) 

Whereas 𝑛 represents the height of our network, 𝑑𝑒−𝑜𝑢𝑟(𝑖) has present decoding stage outcomes, 𝑐𝑜𝑛𝑣 
denotes the convolutional with kernel size 1×1, and 𝑢𝑝 indicates the upsampling function with scale factor 

2𝑛−𝑖−1𝑆  which implies the 𝑖𝑡ℎ multi‐scale feature side outcome. It is created in concatenation with Equation 
(2) for correlating every multi‐level feature for realising feature fusion and obtaining the last fusion outcome 
𝑓. At last, it can be utilised convolutionally 3×3 to achieve the last segmentation outcome. 

The EOA is used to adjust the hyperparameters of the segmentation component. The EOA is a recently 
created metaheuristic strategy that uses a balanced pool and candidate to upgrade particles, and it is related 
to physics in order to deal with ongoing optimisation difficulties [21]. 

In this methodology, the authors used an Equilibrium Optimization Algorithm (EOA) to tune the 
hyperparameters of the attention-inception-based UNet method for medical image segmentation. The EOA 
is a type of metaheuristic optimization algorithm that is designed to efficiently tune the hyperparameters of 
machine learning models. The following hyperparameters of the attention-inception-based UNet method were 
tuned using the EOA: 

Number of filters: To boost segmentation accuracy, the UNet model's number of filters per convolutional 
layer was fine-tuned. 

Dropout rate: The dropout rate is a regularization technique that helps in preventing overfitting of the 
model. The EOA was used to tune the dropout rate to achieve better segmentation results. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Learning rate: When training an optimisation algorithm, the learning rate is a critical hyperparameter 
because it determines the size of the training steps. To improve segmentation outcomes, the EOA was 
utilised to fine-tune the UNet model's learning rate. 

Batch size: When training a neural network, the batch size determines how many samples are sent into 
the network at once. Better segmentation outcomes were achieved by tuning the batch size of the UNet 
model using the EOA. 

The EOA was used to tune these hyperparameters of the attention-inception-based UNet method in an 
automated and efficient manner. By tuning these hyperparameters, the EOA helped in improving the 
accuracy and performance of the proposed EOADL-BTSC approach for segmenting and classifying the brain 
tumor. 

The EOA has improved capabilities for both exploration and exploitation, and it also reduces the 
likelihood of becoming stuck in a local optimum. The mass balance is analytically resolved as follows: 

𝐶 = 𝐶𝑒𝑞 + (𝐶0 + 𝐶𝑒𝑞). 𝐹 +
𝐺

𝜆𝑉
(1 − 𝐹),                      (3) 

In Equation (3), V is regarded as being 1 as a volume unit. 
 

An equilibrium pool of four viable candidates plus a fifth averaged one, is generated by the EOA. 

𝐶𝑒𝑞𝑠,𝑝𝑜𝑜1 = {𝐶𝑒𝑞𝑠(0), 𝐶𝑒𝑞𝑠(1), 𝐶𝑒𝑞𝑠(2), 𝐶𝑒𝑞𝑠(3), 𝐶𝑎𝑣𝑒},         (4) 

𝐶𝑎𝑣𝑒 =
𝐶𝑒𝑞𝑠(0) + 𝐶𝑒𝑞𝑠(1) + 𝐶𝑒𝑞𝑠(2) + 𝐶𝑒𝑞𝑠(3)

4
.                 (5) 

The candidate's fitness in a balanced pool must satisfy the following rules for the given problem, 
expressed as 𝑓. 

𝑓(𝐶𝑒𝑞𝑠(0)) ≤ 𝑓(𝐶𝑒𝑞𝑠(1)) ≤ 𝑓(𝐶𝑒𝑞𝑠(2)) ≤ 𝑓(𝐶𝑒𝑞𝑠(3)).                         (6) 

EOA employs the iterating and initializing approaches as other bioinspired techniques while resolving 
problems, whether they come from real engineering work or are specified as benchmarks. The EOA's 
methods of discovery and development are ongoing iterations. To enhance effectiveness, there were many 
processes involved in building the EOA.   

The problem at hand may be assumed to be bounded by symmetric or asymmetric domains with [lb, ub], 
and the candidate swarm is distributed uniformly. To accomplish this, a pseudo‐random number 𝑟1 is 
presented: 

𝐶𝑖 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏). 𝑟1.                                            (7) 

The location vector for 𝑖-𝑡ℎ candidate is 𝐶𝑖, the position of the candidate for the subsequent iteration is 
substantial in three stages. 𝐶𝑒𝑞 represent a randomly chosen candidate from the pool. There is an 𝐹 

exponential parameter that is defined by: 

𝐹 = 𝑎1𝑠𝑖𝑔𝑛 (𝑟2 − 0.5)(𝑒−𝜆𝑡 − 1),                               (8) 

Whereas 𝑎1 denotes a fixed parameter that governs exploration and the ability to partition exploration and 

exploitation into sub-processes, respectively. The high value of 𝑎1 indicates a high probability for the 
candidate to perform exploration and a small probability for the candidate to perform exploitation. For 
convenience and experience, 𝑎1 = 2. 𝑟2 denotes another random value within [0,1], and 𝑡 indicates a variable 
expressed to be associated with the iteration times. 

𝑡 = (1 −
𝑖𝑡𝑒𝑟

 max 𝐼𝑡𝑒𝑟
)

(
𝑎2𝑖𝑡𝑒𝑟

max 𝐼𝑡𝑒𝑟
)
,                               (9) 

In Equation (9), 𝑖𝑡𝑒𝑟 indicates the present iteration number, and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 indicate the maximal iteration 
number. Here, 𝐺 denotes the parameter for the candidate's rate of generation that improves their 

exploitability: 

𝐺 = 𝐺𝑜𝐹,                                                          (10) 

𝐺𝑜 = 𝐺𝐶𝑃(𝐶𝑒𝑞 − 𝜆𝐶),                                       (11) 

𝐺𝐶𝑃 = {
0.5, 𝑟2 ≥ 𝐺𝑃,
0, 𝑟2 ≥ 𝐺𝑃,

                                           (12) 
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𝐺𝑃 denotes generation probability. 𝐺𝑃 was fixed at 0.5 to accomplish the best outcomes in balancing 
probability among exploration and exploitation: 

𝐶 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞). 𝐹 +
𝐺

𝜆𝑉
(1 − 𝐹),                (13) 

In Equation (13), 𝐹 is described in Equation (8), and V is regarded as a unit. 

CapsNet Model-Based Feature Extraction 

In this study, we used the CapsNet model to generate feature vectors. Hinton created a new type of 
Neural Network called the capsule network. The fundamental architecture encompasses the digital capsule, 
input, convolution, output, and primary capsule layers [22]. During the convolutional layer, the convolutional 
layer of CNN can be exploited for extracting low-level features. The convolutional kernel was employed for 
more feature extraction to acquire numerous capsules. The CapsNet framework is used for the extraction of 
features in the proposed system for segmenting and classifying brain tumors using the EOADL-BTSC 
approach. The CapsNet model is a type of NN architecture that is designed to model spatial relationships 
between objects in an image. The CapsNet model is used for extracting features in the proposed system 
because it is particularly effective at capturing the spatial relationships between different structures in medical 
images. This can be helpful in identifying the boundaries of brain tumors and accurately segmenting them 
from surrounding healthy tissue. To verify the effectiveness of the capsule network model for feature 
extraction in the proposed system, the researchers carried out a series of simulation analyses using a 
benchmark database. The experimental validation showed that the proposed EOADL-BTSC method 
outperformed several other recent approaches in terms of several performance measures, including 
segmentation accuracy and dice similarity coefficient. Therefore, based on the experimental results and the 
theoretical understanding of the capsule network model, it can be justified that the use of a capsule network 
model for extraction of features is an effective approach in the proposed system for segmenting and 
classifying brain tumor using the EOADL-BTSC method. 

In comparison to CNN, CapsNet exploits vector capsules for replacing neurons, dynamic routing for 
replacing the squash function, and pooling operations for replacing the ReLu activation function. 𝑢𝑖 

characterises the output of 𝑖‐ 𝑡ℎ low-level capsules, 𝑊𝑖|𝑗 signifies weight matrices among 𝑖 and 𝑗 low- and 

high-level capsules, and û̂ signifies the predicted output of 𝑗 low-level capsules : 

𝑢̂ = 𝑊𝑖|𝑗𝑢𝑖.                                                    (14) 

Where 𝑆𝑗 and 𝑉𝑗 refer to the input and output of high-level capsules: 

𝑆𝑗 = ∑ 𝐶𝑖𝑗

𝑖

𝑢̂𝑖|𝑗.                                  (15) 

Where 𝐶𝑖𝑗 represents the expected vector's coupling coefficient 𝑢̂𝑖|𝑗 of low-level capsules. CapsNet uses 

activity vectors to describe the existence and properties of entities. Different qualities are initially represented 
by vector values of different dimensions, and then the vector mod is used to characterise the entity's 
occurrence probability. The vector was normalized and compressed using a non-linear calculation to provide 
occurrence probability of elements between 0 and 1: 

𝑉𝑗 =
‖𝑠𝑗‖2

1 + ‖𝑆𝑗‖

𝑆𝑗

‖𝑠𝑗‖
.                                                         (16) 

In Equation (16), The CapsNet output vector is denoted by 𝑉𝑗. 

𝐶𝑖𝑗 represents the coupling coefficient that is defined by the dynamic routing iteration model. If 𝐶𝑖𝑗 = 0, it 

shows that there is no data transmission amongst 𝑖 and 𝑗 low- and high-level capsules: 

𝐶𝑖𝑗 =
 exp (𝑏𝑖𝑗)

∑  exp 𝑘 (𝑏𝑖𝑘)
.                                         (17) 

Whereas 𝑏𝑖𝑗 signifies the logarithmic probability of coupling among capsules 𝑖 and 𝑗 that can be initialised to 

0: 

𝑏𝑖𝑗 + 𝑢̂𝑗|𝑖 ⋅ 𝑉𝑗 → 𝑏𝑖𝑗 .                                             (18) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Hariharan, R.; et al. 8 
 

 
Brazilian Archives of Biology and Technology. Vol.66: e23220896, 2023 www.scielo.br/babt 

CapsNet uses a high-level capsule's vector length to represent the probabilities associated with a category, 
allowing the approach to select the class of a higher-level capsule with the longest possible output vector as 
a category to predict.  

𝐿𝑗 = 𝑇𝑗max (0, 𝑚+ − ‖𝑉𝑗‖)2 + 𝜆(1 − 𝑇𝑗) max (0, ‖𝑉𝑗‖ − 𝑚−)2.           (19) 

In Equation (19), 𝑇𝑗 designates whether 𝑗-𝑡ℎ class exists; 𝑚+, 𝑚− and 𝜆 denote superparameter that should 

be stated before. 

Pseudocode of proposed method is given below.   

Input: MRI images with brain tumors 

Output: Segmented brain tumors with classification labels 

 

// Preprocessing 

Enhance image contrast 

Strip skull from image 

 

// Segmentation 

Initialize UNet model with attention-inception blocks 

Use EOA to optimize UNet hyperparameters 

Train UNet on MRI images with segmented brain tumors 

 

// Feature Extraction 

Initialize Capsule Network model 

Use trained UNet to extract features from segmented tumor regions 

Train Capsule Network on extracted features 

 

// Classification 

Initialize CRNN model 

Use trained Capsule Network to classify tumor regions 

Assign proper classification labels to tumor regions 

Image Classification using CRNN Model 

For effective BT classification, the CRNN model is used to allot appropriate class labels. Recurrent 
Neural Network (RNN) is a branch of Artificial Neural Network (ANN) that is an augmented edition of 
conventional Feed Forward Neural Network (FFNN) with connections and loops [23]. Different from FFNN, 
the RNN can evaluate input sequences by means of recurrent hidden states with activation of the preceding 
step. Thus, the system represents a temporal behaviour that is always changing. Assuming the sequential 

dataset (𝑥1, 𝑥2, … , 𝑥𝑇), where 𝑥𝑖 indicates the dataset in the 𝑖𝑡ℎ time step, RNN upgrades the recurrent hidden 
state ℎ𝑡 as follows: 

ℎ𝑡 = {
0, 𝑖𝑓𝑡 = 0
𝜙(ℎ𝑡−1, 𝑥𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                  (20) 

In Equation (20), 𝜙 shows a nonlinear function. Consequently, RNN includes output (𝑦1, 𝑦2, … , 𝑦𝑇). 
Ultimately, data classification was executed by output 𝑦𝑇. The RNN method's recurrent concealed state 
update rule is expressed as follows: 

ℎ𝑡 = 𝜙(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1)                                                           (21) 

In contrast, 𝑊 and 𝑈 represent the recurrent hidden unit's input and activation coefficient matrices, 
respectively. 

𝑝(𝑥1, 𝑥2, … , 𝑥𝑇) = 𝑝(𝑥1) ⋯ 𝑝(𝑥𝑇|𝑥1, … , 𝑥𝑇−1).                        (22) 

Then, the conditional probability distribution can be presented as follows: 

𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1) = 𝜙(ℎ𝑡)                                              (23) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Where ℎ𝑡 is acquired from (20) and (23). The hyperspectral pixel can be processed as a sequence dataset, 
and a recurrent network was employed to model the spectral sequence. Figure 2 depicts the architecture of 
CRNN. RNN performs better in ML and computer vision tasks because of the importance of the DL model. 
An advanced recurrent unit is added to solve this issue. Long short-term memory (LSTM) is a type of recurrent 
concealed units well-suited to learning lengthy sequences of data.  The CRNN architecture is a type of deep 
neural network that combines the capabilities of CNNs and RNNs. The CRNN architecture is designed to 
process sequential data, such as time-series or sequences of images. The CRNN architecture consists of 
three main components: a CNN layer, an RNN layer, and a fully connected layer. The CNN layer is 
responsible for feature extraction from the input data. The RNN layer then takes over to record the features' 
temporal dependencies. The layer that is completely connected is then deployed during classification or 
regression operations. In the context of the proposed EOADL-BTSC approach, the CRNN is used for 
classification of brain tumor images into their respective classes. The CRNN takes as input the features 
extracted by the Capsule Network model and the temporal dependencies between these features are 
captured by the RNN layer. A probability distribution over the types of brain tumors is what the CRNN 
produces as an output. 

 

Figure 2. Structure of CRNN 

In comparison to the LSTM units, With Gated Recurrent Unit (GRU), only need a limited number of 
training cases and the variables you do need for classification have to be kept to a minimum. GRU is a type 
of RNN layer that is often used in the CRNN architecture. The CRNN architecture combines CNNs and RNNs 
to learn features from variable-length sequential data. In order to determine specific characteristics of the 
input sequence, the CNN layers are employed, while the RNN layers are used to model the temporal 
dependencies in the sequence. The GRU layer is used in the RNN part of the CRNN architecture to capture 
long-term dependencies in the sequence. It is a variant of the traditional RNN layer that uses gating 
mechanisms to selectively update and forget information from the previous time step. This makes it more 
effective in dealing with vanishing gradients, which can be a problem in traditional RNNs when learning long-
term dependencies. In general, the GRU layer in the CRNN architecture is crucial for accurately modelling 
the input sequence's temporal dynamics. 

Consequently, GRU can be chosen as a building block for RNN. The two-gate unit used by GRU to 
regulate data flow was a crucial component of the system.  

ℎ𝑡 = (1 − 𝑢𝑡)ℎ𝑡−1 + 𝑢𝑡ℎ̃𝑡                                                            (24) 

In Equation (24), 𝑢𝑡 designates the update gate that is given as follows: 

𝑢𝑡 = 𝜎(𝑤𝑢𝑥𝑡 + 𝑣𝑢ℎ𝑡−1)                                                                 (25) 

In Equation (25), 𝜎 depicts a sigmoid function, 𝑤𝑢 denotes a weight value, and 𝑣𝑢 means the weight vector.  
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ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑥𝑡 + 𝑉(𝑟𝑡 ⊙ ℎ𝑡−1))                                      (26) 

In Equation (26), ⊙ refers to component-wise multiplication, and 𝑟𝑡 means the reset gate as 

𝑟𝑡 = 𝜎(𝑤𝑟𝑥𝑡 + 𝑉𝑟ℎ𝑡−1)                                                      (27) 

Specifically, the data series 𝑥 is categorised into 𝑙 subsequence 𝑧 = (𝑧1, 𝑧2, ⋯ , 𝑧𝑙), where it encompasses 

different class labels. Then, for the last subsequence 𝑧𝑙, the length of alternative subsequences is 𝑑 =
𝑓𝑙𝑜𝑜𝑟(𝑘/𝑙), which represents the closest integer less than or equal to 𝑘/𝑙.  

𝑧𝑖 = {
(𝑥(𝑖−1)×𝑑+1, ⋯ , 𝑥𝑖×𝑑), 𝑖𝑓𝑖 ≠ 𝑙,

(𝑥(𝑖−1)×𝑑+1, ⋯ , 𝑥𝑘), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                            (28) 

Furthermore, every subsequence is fed into the first layer of RNN, which contains an analogous structure 
and distributes parameters to decrease parameters. In the case of subsequence zi, each sample can be 

made up of outcomes from GRU. The last feature representation for zi is denoted as Fi
(1)

∈ ℜH1 , whereby H1 

indicates the hidden layer size in the initial layer RNN. Later, Fi
(1)

, i ∈ {1,2, ⋯ , l} was integrated to generate 

sequence F = (F1
(1)

, F2
(1)

, ⋯ , Fl
(1)

), whose length was l. This sequence was induced into the next layer of RNN 

for learning additional detail. Similarly, the initial layer RNN employs the resultant of GRU as learned feature 

F(2). The classification outcomes of x are acquired by inducing input F(2) into the resulting layer with equal-

sized candidate classes C. 
The proposed EOADL-BTSC method involves a series of deep learning models and algorithms working 

together to segment and classify brain tumors in MRI images. Here, we can provide a mathematical example 
of the Equilibrium Optimization Algorithm (EOA) used in this method: 

 

The EOA is used to tune the hyperparameters of the attention-inception-based U-Net model used for 

segmenting medical images. The EOA works by iteratively adjusting the hyperparameters until the best 

possible values are obtained. The EOA involves three main steps: 

 

Step 1: Initialization of parameters 

Initialize the search space X, which contains the hyperparameters to be optimized. For example, if we 

have three hyperparameters, the search space X can be defined as X = [x1, x2, x3]. Set the initial guess 

x0 in the search space, which is the starting point for the optimization process. 

 

Step 2: Equilibrium optimization process 

The EOA algorithm then performs the following steps in each iteration: 

Select the equilibrium point xeq: This is done by randomly selecting a point in the search space X. 

Perturb the equilibrium point: A small perturbation is added to the equilibrium point to create a new point 

in the search space. This new point is denoted as xpert. 

Evaluate the objective function at the equilibrium point and perturbed point: The objective function is 

evaluated at both the equilibrium point xeq and perturbed point xpert. The objective function measures 

how well the U-Net model is performing on the MRI images. 

Determine the new equilibrium point: The evaluations of the objective functions are used to establish a 

new equilibrium point. If the perturbed point xpert yields better results than the equilibrium point xeq, 

then xpert becomes the new equilibrium point. Otherwise, xeq remains the equilibrium point. 

Update the search space: The search space is updated by moving the equilibrium point xeq towards the 

new equilibrium point. 

Until a stopping requirement is satisfied, such as a maximum number of iterations or a minimum improvement 

level, the EOA algorithm repeats these steps. 

EVALUATION METRICS  

When compared to conventional approaches, the proposed strategy is shown to yield superior results. 
The proposed work was evaluated by applying it to sample images and calculating its Accuracy, PPV, 
Sensitivity, Specificity, F-Score, and Jaccard Index. 
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The accuracy of the model is the most fundamental indicator of its predictive power. It's a measure of 
how often a prediction turns out to be right. Below, in Equation 29, is the mathematical definition of 
accuracy. 

𝑨𝒄𝒄 =  
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵
                         (𝟐𝟗) 

Precision also known to as positive predicted value (PPV) is the rate at which correct predictions are 

made relative to the entire number of correct forecasts. The accuracy of the model's positive predictions is 

evaluated, and its capacity to suppress false positives is gauged. The mathematical representation PPV is 

defined in Equation 30: 

𝑷𝑷𝑽(𝑺𝟏, 𝑺𝟐) =  
|𝑺𝟏 ∩ 𝑺𝟐|

|𝑺𝟐|
                     (𝟑𝟎) 

When evaluating a model's performance on a classification task, sensitivity indicates how many positive 

examples the model gets right out of a total of all possible positive examples. Equation 31 defines is the 

mathematical expression for it. 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                     (𝟑𝟏) 

The level of specificity quantifies how many times false negative predictions were made relative to the total 
number of false negatives. Accuracy in avoiding false negatives is a supplementary measure to recall. 
Equation 32 defines specificity mathematically. 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
                     (𝟑𝟐) 

The Jaccard index is the ratio of the regions that overlap in both the prediction and the ground truth to the 

union of the two.  The overlap between the anticipated and ground-truth zones or masks is a measure of 

how closely they match. Its mathematical form is represented in Equation 33: 

𝑱𝒂𝒄 =  
|𝑺𝟏 ∩ 𝑺𝟐|

|𝑺𝟏 ∪ 𝑺𝟐|
                      (𝟑𝟑) 

EXPERIMENTAL VALIDATION 

This section examines the step by step experimental steps with its real outputs. Collect a dataset of MRI 
images with brain tumors. The dataset should be diverse and representative of different types of brain tumors 
and imaging conditions. Preprocess the MRI images to enhance the contrast and remove any non-brain 
tissue such as skull and background noise. Use the EOADL-BTSC method to segment the brain tumors in 
the preprocessed images. This involves initializing the UNet model with attention-inception blocks, optimizing 
the hyperparameters using EOA, training the UNet model on the preprocessed MRI images with segmented 
brain tumors, and obtaining the segmented brain tumors. Use the trained UNet model to extract features from 
the segmented tumor regions, and feed these features to the CapsNet model. Train the CapsNet model on 
the extracted features. Use the trained CapsNet model to classify the tumor regions into different types of 
brain tumors using the CRNN model. Assign proper classification labels to the tumor regions. Evaluate the 
performance of the proposed EOADL-BTSC method on a separate testing dataset using appropriate 
evaluation metrics such as accuracy, sensitivity, specificity, and F1 score.  Evaluate the suggested EOADL-
BTSC approach against other top-tier brain tumor segmentation and classification techniques. Report the 
experimental results in the form of tables, graphs, and figures, along with a detailed analysis and 
interpretation of the results. 

In this part, we look at how well the EOADL-BTSC approach performs on the BraTS 2019 dataset and 
the BraTS 2020 dataset when it comes to BT categorization. In Figure 3, we see a selection of sample MRIs. 
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Figure 3. Sample images 

The confusion matrices created by the EOADL-BTSC technique on the BraTS 2019 database are 
revealed in Figure 4. The results showcased that the EOADL-BTSC method has properly identified the normal 
and abnormal BT classes. 

 

Figure 4. Confusion matrices of EOADL-BTSC system BraTS 2019 dataset (a-b) TR and TS databases of 70:30 and 
(c-d) TR and TS databases of 60:40. 

Table 2 offers detailed BT classification results for the EOADL-BTSC model on the BraTS 2019 dataset. 
The results implied the improved efficacy of the EOADL-BTSC model in all classes. For the sample, on 70% 
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of the TR database, the EOADL-BTSC methodology has attained an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.56%, PPV of 
98.82%, 𝑠𝑒𝑛𝑠𝑦 of 98.56%, 𝑠𝑝𝑒𝑐𝑦 of 98.56%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.67%, and JI of 97.38%. Meanwhile, on 30% of the 

TS database, the EOADL-BTSC method has obtained an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.15%, PPV of 98.78%, 𝑠𝑒𝑛𝑠𝑦 

of 99.15%, 𝑠𝑝𝑒𝑐𝑦 of 99.15%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.96%, and JI of 97.93%. Eventually, on 60% of the TR database, the 

EOADL-BTSC method has achieved an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 96.35%, PPV of 96.44%, 𝑠𝑒𝑛𝑠𝑦 of 96.35%, 𝑠𝑝𝑒𝑐𝑦 

of 96.35%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 96.39%, and JI of 93.04%. 

 Table 2. BT classification outcome of EOADL-BTSC system with various measures under BraTS 2019 dataset  
BraTS 2019 Dataset 

Class Accuracybal PPV Sensitivity Specificity F-Score Jaccard Index 

Training Phase (70%) 

Normal 97.12 100.00 97.12 100.00 98.54 97.12 
Abnormal 100.00 97.64 100.00 97.12 98.80 97.64 
Average 98.56 98.82 98.56 98.56 98.67 97.38 

Testing Phase (30%) 

Normal 100.00 97.56 100.00 98.31 98.77 97.56 
Abnormal 98.31 100.00 98.31 100.00 99.15 98.31 
Average 99.15 98.78 99.15 99.15 98.96 97.93 

Training Phase (60%) 

Normal 95.51 96.59 95.51 97.20 96.05 92.39 
Abnormal 97.20 96.30 97.20 95.51 96.74 93.69 
Average 96.35 96.44 96.35 96.35 96.39 93.04 

Testing Phase (40%) 

Normal 96.36 98.15 96.36 98.68 97.25 94.64 
Abnormal 98.68 97.40 98.68 96.36 98.04 96.15 
Average 97.52 97.78 97.52 97.52 97.64 95.40 

 Table 3. BT classification outcome of EOADL-BTSC system with various measures under BraTS 2020 dataset 

BraTS 2020 Dataset 

Class Accuracybal PPV Sensitivity Specificity F-Score Jaccard Index 

Training Phase (70%) 

Normal 98.98 100.00 98.98 100.00 99.49 98.98 

Abnormal 100.00 99.24 100.00 98.98 99.62 99.24 

Average 99.49 99.62 99.49 99.49 99.55 99.11 

Testing Phase (30%) 

Normal 100.00 97.87 100.00 98.11 98.92 97.87 

Abnormal 98.11 100.00 98.11 100.00 99.05 98.11 

Average 99.06 98.94 99.06 99.06 98.99 97.99 

Training Phase (60%) 

Normal 100.00 98.73 100.00 99.15 99.36 98.73 

Abnormal 99.15 100.00 99.15 100.00 99.57 99.15 

Average 99.58 99.37 99.58 99.58 99.47 98.94 

Testing Phase (40%) 

Normal 100.00 95.65 100.00 95.38 97.78 95.65 

Abnormal 95.38 100.00 95.38 100.00 97.64 95.38 

Average 97.69 97.83 97.69 97.69 97.71 95.52 

 

In Figure 5, we see the results of a test of the EOADL-BTSC model's TLS and VLS on the BraTS 2019 
dataset. According to the graph, the EOADL-BTSC technique has shown promising results with modest TLS 
and VLS values. The EOADL-BTSC strategy obviously produces lower VLS results. 
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Figure 5. TLS and VLS analysis of EOADL-BTSC system under BraTS 2019 dataset 

The confusion matrices created by the EOADL-BTSC method on the BraTS 2020 database are revealed 
in Figure 6. The results showcase that EOADL-BTSC methodology has properly identified the normal and 
abnormal BT classes. 

Table 3 offers detailed BT classification outcomes of the EOADL-BTSC algorithm on the BraTS 2020 
dataset. The outcomes implied the improved efficacy of the EOADL-BTSC model in all classes. For sample, 
on 70% of TR database, the EOADL-BTSC methodology has attained an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.49%, PPV 
of 99.62%, 𝑠𝑒𝑛𝑠𝑦 of 99.49%, 𝑠𝑝𝑒𝑐𝑦 of 99.49%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.55%, and JI of 99.11%. In the meantime, on 30% 

of TS database, the EOADL-BTSC model has attained an average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.06%, PPV of 98.94%, 𝑠𝑒𝑛𝑠𝑦 

of 99.06%, 𝑠𝑝𝑒𝑐𝑦 of 99.06%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.99%, and JI of 97.99%. Eventually, on 60% of the TR database, the 

EOADL-BTSC model has attained average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 99.58%, PPV of 99.37%, 𝑠𝑒𝑛𝑠𝑦 of 99.58%, 𝑠𝑝𝑒𝑐𝑦 of 

99.58%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.47%, and JI of 98.94%. 
 

 
 

Figure 6. Confusion matrices of EOADL-BTSC system BraTS 2020 dataset (a-b) TR and TS databases of 70:30 and 
(c-d) TR and TS databases of 60:40. 
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 Table 4. Comparative analysis of EOADL-BTSC approach with other recent methods under BraTS 2019 dataset. 

BraTS 2019 Dataset 

Methods Accuracy Sensitivity  Specificity PPV Jaccard Index 

EOADL-BTSC 99.15 98.78 99.15 99.15 97.93 

DT 94.54 94.55 94.83 92.87 94.44 

Linear LDA 97.66 98.01 96.25 95.54 96.93 

Logistic regression 98.76 98.47 97.32 96.83 97.82 

Linear SVM 98.89 98.55 98.80 97.66 96.08 

KNN 98.41 97.56 98.68 98.37 97.27 

Ensemble 97.30 96.15 98.58 97.80 97.49 

Table 5. Comparative analysis of EOADL-BTSC method with other recent techniques under BraTS 2020 database 

BraTS 2020 Dataset 

Methods Accuracy Sensitivity  Specificity PPV Jaccard Index 

EOADL-BTSC 99.58 99.58 99.58 99.37 98.94 

DT 93.15 95.72 91.15 88.53 92.07 

Linear LDA 98.87 97.18 98.7 98.27 97.76 

Logistic regression 99.11 98.99 98.8 98.78 98.24 

Linear SVM 97.23 97.18 97.9 97.64 97.41 

KNN 98.42 97.77 99.21 99.08 97.97 

Ensemble 95.47 95.71 95.78 94.83 96.01 

 
In Figure 7, we see the results of a test of the EOADL-BTSC model's TLS and VLS on the BraTS 2020 

dataset. The graph implied that the EOADL-BTSC approach has shown superior performance with low TLS 
and VLS values. The EOADL-BTSC method obviously produces lower VLS values. 
 

 

Figure 7. TLS and VLS analysis of EOADL-BTSC system under BraTS 2020 dataset 

Table 4 reports an overall comparative analysis of the EOADL-BTSC method with recent techniques on 
the BraTS 2019 dataset. Table 4 examines the comparative 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦,  𝑠𝑝𝑒𝑐𝑦 ,PPV and JI results of the 

EOADL-BTSC model on the BraTS 2019 database. The table implied that the DT methodology has shown 
lower values of 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values.  
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Furthermore, the linear LDA and LR methods have achieved slightly increased 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 

values. Although the linear SVM, KNN, and ensemble models have obtained reasonable 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 

𝑠𝑝𝑒𝑐𝑦 values, the EOADL-BTSC model has gained maximum 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values of 99.15% 

98.78%, and 99.15% respectively. 
Table 4 implies that the DT methodology has shown lower values of PPV and JI. Moreover, the linear 

LDA and LR methods have slightly increased PPV and JI values. Although the linear SVM, KNN, and 
ensemble models have obtained reasonable PPV and JI values, the EOADL-BTSC model has gained 
maximum PPV and JI values of 99.15% and 97.93%, respectively. 

Table 5 reports an overall analysis of the EOADL-BTSC method with recent methods in the BraTS 2020 
database. Table 5 examines the comparative 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, 𝑠𝑝𝑒𝑐𝑦 ,PPV and JI results of the EOADL-BTSC 

model on the BraTS 2020 database. The table implied that the DT algorithm has shown lower values of 
𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values. Furthermore, the linear LDA and LR methods have reached slightly 

increased 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values. Although the linear SVM, KNN, and ensemble models have 

obtained reasonable 𝑎𝑐𝑐𝑢𝑦, 𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values, the EOADL-BTSC model has gained maximum 𝑎𝑐𝑐𝑢𝑦, 

𝑠𝑒𝑛𝑠𝑦, and 𝑠𝑝𝑒𝑐𝑦 values of 99.58% 99.58%, and 99.58% respectively. 

Table 5 implies that the DT approach has shown lower PPV and JI values. Furthermore, the linear LDA 
and LR methods have achieved increased PPV and JI values. Although the linear SVM, KNN, and ensemble 
models have obtained reasonable PPV and JI values, the EOADL-BTSC model has gained maximum PPV 
and JI values of 99.37% and 98.94%, respectively. Thus, the EOADL-BTSC model has shown enhanced 
performance in the BT classification process. 

EOADL-BTSC method can be helpful to society in several ways. Accurate and fast detection of brain 
tumors can lead to early diagnosis and treatment, which can significantly improve patient outcomes and 
survival rates.The automatic segmentation of brain tumors in medical images can assist doctors and medical 
professionals in planning appropriate treatment strategies for patients. This can help in designing more 
effective treatment plans, reducing the risk of surgical complications, and improving patient outcomes. The 
time and energy needed for manual examination of medical pictures can be reduced with the help of 
automated approaches for segmenting and classifying brain tumor utilising deep learning models. This can 
lead to improved efficiency in medical diagnosis and treatment planning. By enhancing the precision and 
consistency of brain tumor segmentation and classification, the suggested EOADL-BTSC approach can also 
help to the development of medical imaging technology. In the long run, this can help patients by paving the 
way for more research in the field of medical imaging. 

CONCLUSION 

In this study, a new EOADL-BTSC methodology was formulated for BT segmentation and classification 
on brain MRI. The presented EOADL-BTSC technique involves different phases of operations such as pre-
processing, attention inception-based UNet segmentation, EOA-based parameter tuning, extraction of 
features through CapsNet model, and CRNN classification. At first, the contrast level of the images is 
improved, and then skull stripping is performed. Next, the segmentation of MRI is performed by EOA with an 
attention-inception-based U-Net model. Finally, the CapsNet feature extraction and CRNN classification 
processes are carried out. To showcase the improved performance of the EOADL-BTSC method, a wide 
range of simulation analyses were executed using a benchmark dataset. According to the results of the 
simulations, the EOADL-BTSC technique is superior to other contemporary methods in a number of 
performance metrics. To improve the EOADL-BTSC algorithm's classification capabilities, a fusion model 
based on ensemble DL can be created in the near future. 
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